
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Cristel Archambaud,
INRAE Centre Jouy-en-Josas, France

REVIEWED BY

Audrey Chong,
National Institute of Allergy and Infectious
Diseases (NIH), United States
Stuart Cantlay,
West Liberty University, United States

*CORRESPONDENCE

Petra Spidlova

petra.spidlova@unob.cz

RECEIVED 06 November 2024
ACCEPTED 04 December 2024

PUBLISHED 24 December 2024

CITATION

Pavlik P, Velecka E and Spidlova P (2024)
Breaking the cellular defense: the role of
autophagy evasion in Francisella virulence.
Front. Cell. Infect. Microbiol. 14:1523597.
doi: 10.3389/fcimb.2024.1523597

COPYRIGHT

© 2024 Pavlik, Velecka and Spidlova. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 24 December 2024

DOI 10.3389/fcimb.2024.1523597
Breaking the cellular defense:
the role of autophagy evasion
in Francisella virulence
Pavla Pavlik1,2, Eva Velecka1 and Petra Spidlova1*

1Department of Molecular Pathology and Biology, Military Faculty of Medicine, University of Defence,
Hradec Kralove, Czechia, 2Institute of Organic Chemistry and Biochemistry, Czech Academy of
Sciences, Prague, Czechia
Many pathogens have evolved sophisticated strategies to evade autophagy, a

crucial cellular defense mechanism that typically targets and degrades invading

microorganisms. By subverting or inhibiting autophagy, these pathogens can

create a more favorable environment for their replication and survival within the

host. For instance, some bacteria secrete factors that block autophagosome

formation, while others might escape from autophagosomes before

degradation. These evasion tactics are critical for the pathogens’ ability to

establish and maintain infections. Understanding the mechanisms by which

pathogens avoid autophagy is crucial for developing new therapeutic

strategies, as enhancing autophagy could bolster the host’s immune response

and aid in the elimination of pathogenic bacteria. Francisella tularensis can

manipulate host cell pathways to prevent its detection and destruction by

autophagy, thereby enhancing its virulence. Given the potential for F. tularensis

to be used as a bioterrorism agent due to its high infectivity and ability to cause

severe disease, research into how this pathogen evades autophagy is of critical

importance. By unraveling these mechanisms, new therapeutic approaches

could be developed to enhance autophagic responses and strengthen host

defense against this and other similarly evasive pathogens.
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GRAPHICAL ABSTRACT
Introduction

Francisella is a genus of gram-negative bacteria that includes the

highly virulent species F. tularensis, known for causing tularemia in

humans and other mammals. Researches have revealed that F.

tularensis can evade the host’s immune response by escaping the

phagosome. Instead of being targeted for degradation, the bacterium

can replicate within the host cell’s cytoplasm, where it is protected from

immune responses. One intriguing aspect of the interaction between F.

tularensis and its host cells is its ability to dampen the host’s cellular

processes, including autophagy. The bacterium has developed

mechanisms to manipulate the host cell’s autophagy machinery

promoting its intracellular survival. Studies have shown that F.

tularensis can inhibit the fusion of autophagosomes with lysosomes,

where the contents are typically degraded. By preventing this fusion,

the bacterium can avoid destruction and create a favorable intracellular

niche for replication. Understanding the interplay between F. tularensis

and autophagy is crucial for developing more effective treatments and

vaccines against tularemia.
The basics of autophagy

Autophagy is a fundamental cellular process responsible for the

degradation and recycling of cellular components. This mechanism

is crucial for maintaining cellular homeostasis, responding to stress

conditions, and survival during nutrient deprivation. Autophagy

involves the formation of autophagosomes, double-membraned

vesicles that engulf damaged organelles, misfolded proteins, and

pathogens for degradation in the lysosomes (Levine and

Kroemer, 2019).
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The process is highly regulated and can be triggered by various

cellular signals, including nutrient levels, growth factors, and

intracellular energy status. The regulation of autophagy is

mediated by a complex network of signaling pathways, with the

mammalian target of rapamycin (mTOR) pathway playing a central

role in inhibiting autophagy under nutrient-rich conditions.

Conversely, activation of AMP-activated protein kinase (AMPK)

promotes autophagy by inhibiting mTOR under nutrient scarcity

(Kim et al., 2011).

Autophagy not only helps in the removal of cellular debris but

also plays a crucial role in defense mechanisms against infections by

degrading intracellular pathogens through a process known as

xenophagy (Deretic et al., 2013). Nevertheless, some pathogens

together with F. tularensis can affect host cellular processes,

including autophagy, to their advantage.
Mechanisms and pathways

Autophagy is a cellular degradation process crucial for

maintaining cellular homeostasis by removing damaged

organelles and misfolded proteins. There are three primary types

of autophagy: macroautophagy, microautophagy, and chaperone-

mediated autophagy (CMA), each with distinct mechanisms

and functions.

Macroautophagy is the most extensively studied form of

autophagy and involves the formation of double-membrane

vesicles called autophagosomes. These vesicles engulf cytoplasmic

material and then fuse with lysosomes, where the content is

degraded and recycled. The process begins with the nucleation

and expansion of the isolation membrane, which requires the

expression of various autophagy-related proteins (ATGs). Key
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regulators of this pathway include the ULK1 complex, Beclin-1, and

the ATG8/LC3 family proteins. This type of autophagy is highly

regulated by nutrient availability and cellular stress, playing a

critical role in cell survival during starvation and other stress

conditions (Yamamoto and Matsui, 2024).

One of the primary roles of macroautophagy in host defense is

the direct elimination of intracellular pathogens. This process,

termed xenophagy, targets bacteria, viruses, and other pathogens

for degradation. Xenophagy, also known as selective autophagy of

pathogens, is a host defense mechanism where intracellular

pathogens are recognized, sequestered within double-membraned

autophagosomes, and subsequently degraded after fusion with

lysosomes. This process is essential for maintaining cellular

homeostasis and protecting the host from infections by targeting

and eliminating invasive microbes such as bacteria, viruses, and

parasites (Yuk et al., 2012). Xenophagy not only removes these

pathogens but also facilitates antigen presentation, enhancing the

adaptive immune response. The process of xenophagy begins with

the recognition of intracellular pathogens through pattern

recognition receptors (PRRs) that identify pathogen-associated

molecular patterns (PAMPs). By delivering pathogen-derived

antigens to major histocompatibility complex (MHC) molecules,

autophagy enhances the presentation of these antigens to T cells.

This process is critical for the immune system to recognize and

respond to infections effectively (Van Kaer et al., 2019). Autophagy

contributes to the presentation of viral antigens on MHC class II

molecules, thus aiding in the activation of CD4+ T cells during viral

infections (Schmid et al., 2007). Once recognized, adaptor proteins

such as p62/SQSTM1 link the pathogen to autophagic machinery by

binding to ubiquitinated microbial proteins and recruiting

autophagy-related proteins like LC3 (Zheng et al., 2009). This

recruitment ensures the encapsulation of the pathogen within

autophagosomes. However, many pathogens have evolved

sophisticated strategies to evade or manipulate xenophagy. Some

escape recognition by autophagic receptors, while others inhibit

autophagosome formation or prevent their fusion with lysosomes

(Mao and Klionsky, 2016).

In addition to direct targeting pathogens, autophagy plays a

significant role in modulating inflammatory responses. By

degrading damaged organelles and excess proteins, autophagy

prevents the accumulation of cellular debris that can trigger

inflammation. Furthermore, autophagy regulates the production

of pro-inflammatory cytokines, such as IL-1b, by controlling the

activation of the inflammasome (Harris et al., 2011; Claude-Taupin

et al., 2018; Iula et al., 2018).

Microautophagy involves the direct engulfment of cytoplasmic

material by the lysosome itself through invagination, protrusion, or

septation of the lysosomal membrane. Unlike macroautophagy, this

process does not require the formation of autophagosomes. Instead,

the lysosomal membrane engulfs small portions of the cytoplasm,

including organelles and proteins, which are then degraded within

the lysosome. Microautophagy is less well understood than

macroautophagy but is believed to be crucial for maintaining

organelle size and number, as well as for responding to nutrient

depletion (Yamamoto and Matsui, 2024).
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Chaperone-mediated autophagy (CMA) is distinct from both

macroautophagy and microautophagy since it specifically targets

soluble cytosolic proteins for degradation. This selectivity is

mediated by chaperone proteins, particularly heat shock protein

70 (Hsp70), which recognize and bind to specific KFERQ-like

motifs in the substrate proteins. These substrates are then

translocated across the lysosomal membrane via the lysosomal-

associated membrane protein 2A (LAMP-2A). CMA is involved in

the degradation of long-lived proteins and plays a significant role in

cellular quality control and stress response (Orenstein and Cuervo,

2010; Kaushik and Cuervo, 2018).
Pathogenic bacteria and their influence
on autophagy

Some pathogenic bacteria inhibit autophagy to avoid

degradation. They employ various strategies to overcome

autophagy, such as inhibiting autophagosome formation, evading

recognition, and preventing acidification. This section summarizes

several bacterial pathogens and their effectors (see Table 1).

For instance, Salmonella enterica serovar Typhimurium, a

common cause of foodborne illness, secretes effector proteins through

its type III secretion system (T3SS) to inhibit autophagy. The bacterial

effector protein SopB disrupts the formation of autophagosomes by

interfering with the host cell’s signaling pathways (Tattoli et al., 2012;

Chatterjee et al., 2023). This inhibition allows Salmonella to reside within

a modified vacuole, where it can replicate and evade host immune

responses. Other studies have also confirmed that effectors of SPI-2

(Salmonella pathogenicity island 2) T3SS as well as Salmonella virulence

plasmids are important for bacterium to escape phagocytosis (Wu et al.,

2020). For example, SsrB and SsaV effector proteins are responsible for

activatingmTOR through disruption of AMPK signaling (Ganesan et al.,

2017). Other effector proteins, SseG and SseF, block Rab1 activity in host

cell, which results in reduction of autophagosome formation and effective

bacterial replication in cytoplasm (Feng et al., 2018). SseL acts as a

deubiquitinase, which removes ubiquitin markers from Salmonella-

infected cells, thus enabling bacterial replication instead of autophagic

degradation (Mesquita et al., 2012). On the other hand, there exist

Salmonella´s proteins that are involved in autophagy induction. L-

asparaginase hydrolyzes the L-asparagine, thus T cells are not

activated, which results in mTOR signaling inhibition and autophagy

induction (Torres et al., 2016). Among other autophagy inducing

proteins belong b-barrel outer membrane protein (b-OMP),

Salmonella invasive protein D (SipD) and cytoskelethal distending

toxin B (CdtB) (Hernandez et al., 2003; Williams et al., 2015;

Chaudhary et al., 2018).

Shigella, a genus of bacteria responsible for causing dysentery,

has developed sophisticated mechanisms to evade and manipulate

the host’s immune responses, particularly autophagy (Phalipon and

Sansonetti, 2007). Shigella can inhibit the formation of

autophagosomes, the vesicles responsible for sequestering

pathogens. This inhibition prevents the bacteria from being

engulfed and degraded. Shigella achieves this through the

secretion of effector proteins via its T3SS, which interfere with
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autophagy signaling pathways. Even if Shigella is initially captured

by autophagosomes, it can escape before being degraded. The

effector protein IcsB, secreted by Shigella, helps it evade

autophagic recognition. IcsB interferes with the recruitment of

autophagy-related proteins, such as ATG5, which are necessary

for the formation of autophagosomes (Baxt and Goldberg, 2014;

Ashida et al., 2015).

Legionella pneumophila, the causative agent of Legionnaires’

disease, hijacks the autophagic machinery through the irreversibly

inactivating ATG8 proteins to create a replicative niche known as

the Legionella-containing vacuole (LCV). Legionella secretes many

effector proteins (Thomas et al., 2020), such as RavZ, that modulate

autophagy to divert autophagic vesicles away from the lysosomal
Frontiers in Cellular and Infection Microbiology 04
degradation pathway, thereby creating a favorable environment for

bacterial replication (Choy et al., 2012).

LpSpl, a Legionella effector, mimics the enzymatic activity of

sphingosine-1-phosphate lyase 1 (SGPL1), a key regulator of

sphingolipid metabolism. LpSpl’s localization to mitochondria

and the endoplasmic reticulum suggests a complex interplay with

host metabolic pathways (Degtyar et al., 2009; Rolando et al., 2016).

By reducing sphingosine levels, which are known to stimulate

autophagy (Dall’Armi et al., 2013), LpSpl inhibits autophagosome

biogenesis. This inhibition is dependent on its enzymatic activity, as

mutants lacking functional active sites do not affect autophagy

(Rolando et al., 2016). Despite its ability to modulate autophagy,

LpSpl does not significantly impact bacterial replication in
TABLE 1 Bacteria and their effector proteins affecting autophagy.

Bacteria Effector proteins
Positive/negative
modulation of
the autophagy

References

Salmonella

SopB Negative (Tattoli et al., 2012; Chatterjee et al., 2023)

SsrB, SsaV, SseG, SseF,
SseL, SpvB

Negative
(Mesquita et al., 2012; Ganesan et al., 2017; Feng et al., 2018)

CdtB, Type II L-asparaginase,
SipD, b-OMP

Positive
(Hernandez et al., 2003; Williams et al., 2015; Torres et al., 2016;

Chaudhary et al., 2018)

Shigella IcsB Negative (Baxt and Goldberg, 2014; Ashida et al., 2015)

Legionella

RavZ, LpSp1, Lpg1137, Lpg2936,
SidE, SdeA, SdeB, SdeC Negative

(Degtyar et al., 2009; Choy et al., 2012; Bhogaraju et al., 2016; Rolando
et al., 2016; Arasaki et al., 2017; De Leon et al., 2017; Pinotsis and

Waksman, 2017; Abd El Maksoud et al., 2019; Omotade and Roy, 2020)

LegA9, SetA Positive (Khweek et al., 2013; Beck et al., 2020)

Brucella BtpB, NyxA, NyxB Negative (Li et al., 2022; Louche et al., 2023)

Mycobacterium
PknG, SapM, PE_PGRS20,
PE_PGRS47, PtpA, ESAT-6,
CFP-10

Positive/Negative
(Tan et al., 2006; Wong et al., 2011; Kim et al., 2020; Strong et al., 2021; Ge

et al., 2022; Zhang et al., 2024)

Listeria
PlcA, PlcB, ActA, LLO, InlK

Negative
(Smith et al., 1995; Schnupf and Portnoy, 2007; Yoshikawa et al., 2009a,
Yoshikawa et al., 2009b; Dortet et al., 2011, Dortet et al., 2012; Mitchell

et al., 2015)

Streptococcus SpyCEP, SpeB, Negative (Barnett et al., 2013; Bergmann et al., 2022)

Yersinia

YopB, YopD, YopJ (YopP),
YopM, YopE, YopT, YopH,
YpkA (YopO), YopK (YopQ)

Negative
(Seabaugh and Anderson, 2024)

Unknown plasmid-
borne effectors

Positive
(Lemarignier and Pizarro-Cerdá, 2020)

Pseudomonas ExoS Negative (Rao et al., 2021)

Bacillus Edtx Negative (Shahnazari et al., 2011)

Vibrio

Ctx, Negative (Huang and Brumell, 2014)

VCC, Positive/Negative (Gutierrez et al., 2007)

MakA Positive/Negative (Corkery et al., 2021; Jia et al., 2022)

Enterococcus LTA Positive (Lin et al., 2018)

Francisella

IglC Negative (Santic et al., 2005)

PdpC, PdpD Negative (Eshraghi et al., 2016)

OpiA Negative (Ledvina et al., 2018)
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macrophages or amoebae but is required for optimal replication in

mouse models (Rolando et al., 2016).

Lpg1137, a serine protease, disrupts autophagosome

biogenesis by degrading Syntaxin 17 (Stx17), a key SNARE

protein (soluble N-ethylmaleimide-sensitive factor attachment

protein receptors) involved in autophagosome-lysosome fusion

and autophagy initiation (Hamasaki et al., 2013; Kumar et al.,

2019). By cleaving Stx17, Lpg1137 prevents the formation of LC3-

and ATG14-positive puncta, essential for autophagosome

formation (Arasaki et al., 2017). Interestingly, bioinformatic

analysis suggests Lpg1137 resembles mitochondrial SLC25

carrier proteins, though its exact mechanism requires further

structural characterization (Gradowski and Pawłowski, 2017).

The effector Lpg2936 modulates host autophagy by inducing

epigenetic changes in the promoter regions of key autophagy genes,

such as ATG7 and LC3B. By methylating the GATC motif in these

promoters, Lpg2936 suppresses autophagosome formation,

indirectly promoting bacterial replication (Abd El Maksoud et al.,

2019). While this highlights its role as a transcriptional regulator, its

potential autophagy-independent roles remain under investigation

(Pinotsis and Waksman, 2017).

In contrast to other effectors, LegA9 enhances the recruitment

of SQSTM-1 to Legionella-containing vacuoles (LCVs), promoting

their recognition for autophagic clearance (Khweek et al., 2013).

However, this effector does not directly activate autophagy, and its

role appears to be more relevant in alternative hosts, suggesting an

evolutionary trade-off in mammalian infections (Price et al., 2020).

The SidE family of effectors (SidE, SdeA, SdeB, and SdeC)

inhibits the recruitment of autophagy adapters such as SQSTM-1 to

LCVs by generating unique ubiquitin linkages (Bhogaraju et al.,

2016; Omotade and Roy, 2020). Furthermore, these effectors

promote TFEB (transcription factor EB) nuclear translocation,

which upregulates autophagy and lysosomal genes, suggesting a

dual role in balancing nutrient acquisition and autophagy inhibition

(De Leon et al., 2017). Temporal regulation appears essential, as

SidE activity is blocked during co-expression with other Legionella

effectors (De Leon et al., 2017).

SetA glucosylates TFEB, preventing its cytoplasmic retention

and promoting its nuclear translocation, thereby inducing

autophagic gene expression (Beck et al., 2020).

Brucella abortus, a pathogen responsible for brucellosis, resides

in a membrane-bound compartment called the Brucella-containing

vacuole (BCV) upon entry into host cells (Celli, 2019). Brucella

inhibits the fusion of intermediate BCVs with late endosomes and

lysosomes, which are critical steps in the autophagic process.

Despite preventing full fusion with lysosomes, BCVs acquire

several markers of late endosomes, including Rab7, a small

GTPase, and its effector Rab-interacting lysosomal protein

(RILP). This interaction allows Brucella to manipulate the

endocytic pathway while avoiding degradation (Starr et al., 2008).

Brucella effector like BtpB interferes with the host’s autophagic

signaling pathways, allowing the bacteria to persist in a replication-

permissive environment (Li et al., 2022). Interestingly, some

bacteria can both inhibit and exploit autophagy at different stages

of infection. The Brucella effector proteins NyxA and NyxB

modulate host autophagy by targeting the SUMO-specific
Frontiers in Cellular and Infection Microbiology 05
protease SENP3, which regulates autophagy-related protein de-

SUMOylation. By disrupting SENP3 activity, NyxA and NyxB

inhibit xenophagy, allowing Brucella to evade autophagic

degradation and establish a replicative niche. This interference

also dampens inflammatory responses associated with autophagy,

promoting bacterial survival and persistence within host cells

(Louche et al., 2023).

Mycobacterium tuberculosis, the bacterium responsible for

tuberculosis, initially inhibits autophagy to prevent its destruction

within macrophages. However, during later stages of infection, M.

tuberculosis can exploit the autophagic process to access nutrients

and enhance its survival. This dual manipulation underscores the

complexity of bacterial interactions with the autophagic machinery

(Castillo et al., 2012). Mycobacterium can activate the mTOR

pathway, a key negative regulator of autophagy. By maintaining

mTOR activity, Mycobacterium prevents the initiation of

autophagy, hindering the formation of autophagosomes (Singh

and Subbian, 2018). This is crucial because the initiation of

autophagy is dependent on the inhibition of mTOR, which

normally suppresses the activity of the ULK1 complex, essential

for the nucleation of autophagosomes (Kim et al., 2011). Bacterium

secretes proteins such as PknG, a serine/threonine kinase, which

inhibits the maturation of phagosomes. PknG prevents the

acidification and fusion of Mtb-containing phagosomes with

lysosomes, thereby blocking their transformation into

autophagolysosomes where the bacteria would be degraded (Ge

et al., 2022). Mycobacterium also secretes SapM, which interacts

with the adaptor protein Raptor that is involved in the mTOR

pathway. SapM causes the dephosphorylation of Raptor and this

interaction results in mTORC1 hyperactivity, which in turn inhibits

autophagy (Zhang et al., 2024). Mycobacterial proteins PE_PGRS20

and PE_PGRS47 have been shown to interact with host autophagy

proteins. These interactions can modulate autophagic flux, ensuring

that the autophagy process is altered in a way that favors bacterial

survival rather than its degradation. These proteins interact directly

with Ras-related protein Rab1A - a multifunctional regulator in the

autophagy pathway (Strong et al., 2021). Phagosomal maturation

through fusion with lysosomes relies, besides others, on vacuolar

ATPase, which acidifies the phagosomal lumen by hydrolyzing

ATP. Mycobacterium inhibits host vacuolar ATPase using

mechanisms involving the mycobacterial secreted phosphatase

PtpA that interacts with vacuolar ATPase to enhance bacterial

survival and pathogenicity (Wong et al., 2011; Kim et al., 2020).

Two mycobacterial proteins ESAT-6 and CFP-10 are also secreted

and plays a critical role in preventing phagolysosomal fusion,

thereby aiding in the intracellular survival of Mycobacterium (Tan

et al., 2006). Interaction of Mycobacterium with host autophagy is

very well described in (Kim et al., 2020).

Listeria monocytogenes, a facultative intracellular pathogen,

avoids autophagy by expressing two key determinants of

pathogenes i s : s ec re t ed phospha t idy l inos i to l - spec ific

phospholipases C (PlcA) (Mitchell et al., 2015), broad-range

phospholipase C (PlcB) (Smith et al., 1995), a surface protein

(ActA) (Yoshikawa et al., 2009a, Yoshikawa et al., 2009b) and

pore-forming cytolysin listeriolysin O (LLO) (Schnupf and Portnoy,

2007). These factors allow the bacterium to escape from
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phagosomes, grow in the host cytosol, and evade the autophagic

response (Mitchell et al., 2015, 2018). In addition to these proteins,

the surface-associated protein InlK, encoded by the lmo1290 gene,

has been identified to play a crucial role in Listeria’s ability to evade

autophagy (Dortet et al., 2011). A yeast two-hybrid assay revealed

that major vault protein (MVP), a highly abundant component of

the eukaryotic cytoplasm, is a potential interacting partner of InlK

(Dortet et al., 2011). InlK recruits MVP to coat the surface of

Listeria so that the bacterium can escape autophagic recognition

(Dortet et al., 2012).

In the case of Streptococcus, SpyCEP (Streptococcal pyrogenic

exotoxin B cleaving enzyme) and SpeB (Streptococcal cysteine

protease B) are critical factors to evade the host’s autophagic

defenses, facilitating their survival and proliferation within host

cells. SpyCEP is an interleukin-8 protease that is highly upregulated

during invasive streptococcal infections. This protease cleaves and

inactivates IL-8, a key chemokine involved in recruiting immune

cells to the site of infection. By doing so, SpyCEP helps bacteria

evade the immune response, including autophagy, which is a critical

host defense mechanism (Bergmann et al., 2022). SpeB is a cysteine

protease that is involved in the degradation of host cell proteins and

immune modulators. SpeB degrades p62, NDP52, and NBR1. These

proteins are essential components of the autophagy machinery,

functioning as adaptors that help in recognizing and targeting

bacteria for autophagic degradation. By degrading these adaptors,

SpeB effectively inhibits the autophagic process within the host cell

cytosol (Barnett et al., 2013).

The uptake of Yersinia by host cells triggers autophagy-related

processes, but the specific pathways and outcomes vary depending on

the cell type and Yersinia species. For example, Y. pseudotuberculosis

has been shown to induce classical autophagy in macrophages and a

variant called LC3-assisted phagocytosis in epithelial cells (Moreau

et al., 2010). However, these autophagic processes do not effectively

eliminate the bacteria; instead, they may support bacterial survival

within host cells. The study of (Ligeon et al., 2014) found that a subset

of intracellular Y. enterocolitica localizes to autophagosomal

compartments within epithelial cells. Interestingly, the autophagy

triggered by Y. enterocolitica did not eliminate the bacteria but rather

supported their intracellular survival and multiplication. This process

differed from LC3-assisted phagocytosis and resembled classical

autophagy, involving core components of the autophagic

machinery. The increased intracellular replication of Y.

enterocolitica due to autophagy was also associated with enhanced

extracellular release of the bacteria. These findings suggest that Y.

enterocolitica may exploit the canonical macroautophagy pathway to

promote its intracellular replication and eventual escape from

infected epithelial cells (Ligeon et al., 2014; Valencia Lopez et al.,

2019). Y. pestis has been shown to reside in phagosomes that acquire

certain markers of late endosomes or lysosomes but do not undergo

the typical acidification process. It was demonstrated that within

naive macrophages, the vacuoles containing Yersinia fail to acidify.

This lack of acidification is crucial for the bacteria’s survival, as it

prevents the activation of lysosomal enzymes that would otherwise

degrade the pathogen (Pujol et al., 2009). Yersinia produces a variety

of effector proteins that play critical roles in the bacterium’s
Frontiers in Cellular and Infection Microbiology 06
pathogenicity, particularly by disrupting host cell responses. These

proteins—YopB, YopD, YopJ (known as YopP in Y. enterocolitica),

YopM, YopE, YopT, YopH, YpkA (referred to as YopO in Y.

enterocolitica), and YopK (YopQ in Y. enterocolitica)—interfere

with the host’s immune defenses. By targeting and inhibiting key

cellular processes, these Yop proteins help Yersinia survive and

proliferate within the host (Seabaugh and Anderson, 2024).

It has been demonstrated that Pseudomonas aeruginosa
infection also leads to the induction of autophagy (Yuan et al.,

2012) but the question has arisen if P. aeruginosa, an extracellular

pathogen, could modulate autophagy for its own benefit. The study

of (Rao et al., 2021) has revealed that this pathogen affects the host

defense pathway using T3SS. This secretion system could be used

for the injection of up to four cytotoxins produced by P. aeruginosa

(Hauser, 2009). The only toxin among these secreted proteins,

which could dampen autophagy, is ExoS. Its mode of action is

inhibition of mTOR by ADP ribosylation of Ras and concurrently

inhibition of the autophagy process through repression of Vps34

kinase activity (autophagy–associated) via ADP ribosylation (Rao

et al., 2021).

Bacillus anthracis produces Edema toxin (Edtx), which is a

cAMP-elevating and thus capable of inhibiting autophagy as well

as cholera toxin (Ctx) from Vibrio cholerae (Shahnazari et al.,

2011; Huang and Brumell, 2014). Apart from Ctx, V. cholerae

produces several other toxins. The V. cholerae cytolysin (VCC)

protein is a key virulence factor that can disrupt host cell

membranes by forming transmembrane pores, leading to cell

lysis or triggering various cellular stress signaling. VCC can

induce an autophagic response that leads to incomplete or

stalled autophagic flux. While autophagosomes are formed in

response to VCC, their maturation into autolysosomes—where

degradation occurs—may be impaired, resulting in an

accumulation of autophagosomes without effective breakdown

of their contents (Gutierrez et al., 2007). MakA (Motility-

associated killing factor A) interacts with the cellular membrane,

leading to pore formation and disruption of membrane integrity.

MakA is taken up by host cells, leading to the formation of

cholesterol-rich membrane aggregates in a pH-dependent

manner in endolysosomes, which triggers a non-canonical

autophagy pathway with unconventional LC3 lipidation on

these membranes (Corkery et al., 2021; Jia et al., 2022).

Enterococcus faecalis, a gram- positive opportunistic invasive

bacterium and a member of human intestinum microbiota (Klare

et al . , 2001) has been shown to induce formation of

autophagosomes in small intestinal epithelial cells (Benjamin

et al., 2013). Conversely, studies by Zou and Shankar (2014)

demonstrated that E. faecalis infection activates PI3K/Akt

signaling pathway in host cell, potentially contributing to

autophagy inhibition. Further, their research revealed that

following internalization, the Enterococcus-containing vacuole

(ECV) is a single-membrane organelle that resists acidification

(Zou and Shankar, 2016). In contrast, Lin et al. (2018) suggested

that E. faecalis lipoteichoic acid (LTA) efficiently activates

macrophage autophagy. This activation is achieved by p-Akt and

p-mTOR inhibition and the process is dependent on Beclin1.
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Francisella tularensis

Francisella species and pathogenesis

F. tularensis, a causative agent of a potentially lethal zoonotic

disease tularemia, is a gram-negative facultative intracellular

bacterium (Maurin, 2020). With an extremely low infectious dose

(fewer than 10 colony-forming units, CFU), it is considered one of

the most infectious pathogens described (Travis et al., 2021).

Therefore, due to its high virulence, and multiple transmission

routes with easy dissemination, the U.S. Centers for Disease Control

and Prevention (CDC) classifies it as a Tier 1 Select Agent with the

potential to be used as a biological weapon (Rowe and

Huntley, 2015).

Currently, three subspecies are distinguished based on their

metabolic characteristics, and virulence differences, such as F.

tularensis, subsp. tularensis (type A), F. tularensis subsp.

holarctica (type B), and F. tularensis subsp. mediasiatica.

However, only F. tularensis subsp. tularensis and holarctica are

known to cause tularemia in healthy individuals (Degabriel et al.,

2023). While the type A strain primarily occurs on the ground in

North America, the type B strain is mainly found in countries across

the Northern Hemisphere (Rowe and Huntley, 2015). Although

direct human-to-human transmission has not been reported,

transmission through solid organ transplantation occurred in the

United States in 2017, resulting in the death of one recipient

(Nelson et al., 2019).

The pathogenicity of F. tularensis is primarily attributed to its

ability to replicate and survive within various eukaryotic cells,

especially macrophages. Infections of other cells, such as dendritic

cells, hepatocytes, neutrophils, or endothelial cells, have also been

documented (Bröms et al., 2010; Celli and Zahrt, 2013). During

infection, the pathogen is engulfed by the macrophage through an

asymmetric pseudopod loop, a process known as a,looping

phagocytosis” (Clemens et al., 2004). Subsequently, the pathogen

resides within a Francisella-containing vacuole (FCV), preventing

phagolysosomal fusion and escaping into the nutrition-rich cytosol,

where a massive replication occurs. Eventually, this process leads to

cell apoptosis and infection of surrounding macrophages, thereby

spreading the infection (Pechous et al., 2009; Celli and Zahrt, 2013;

Ramakrishnan, 2017). The mechanisms of phagosome escape are

not fully understood yet, but a gene cluster known as the Francisella

pathogenicity island (FPI) has been identified as a key factor,

encoding proteins essential for the constitution of the atypical

type VI secretion system (T6SS) (Clemens et al., 2015; Rigard

et al., 2016; Spidlova and Stulik, 2017). Interestingly, none of

those proteins possess properties of cytolysins, pore-forming

toxins, or hydrolytic enzymes, suggesting a novel bacterial escape

mechanism (Bröms et al., 2010). In addition to FPI proteins, F.

tularensis virulence is critically dependent on several other factors,

including MglA, SspA, PigR (also known as FevR), ppGpp,

(Lauriano et al., 2004; Wrench et al., 2013) and the HU protein

(Stojkova et al., 2018, Stojkova et al., 2019; Stojkova and Spidlova,

2022). These proteins, along with various other transcription factors

(Spidlova et al., 2020), play essential roles in regulating virulence
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gene expression and ensuring the pathogen’s ability to survive and

proliferate within the host. Their coordinated action is vital for the

bacter ium ’s pathogenic i ty and abi l i ty to evade host

immune responses.
Molecular insights into Francisella-
autophagy interaction

The role of autophagy in the host defense against members of

the Francisella genus is controversial (Qi et al., 2016). Comparative

studies indicate that the less virulent LVS genome has undergone

significant rearrangements compared to fully virulent SchuS4

strain. These rearrangements include inversions and deletions,

leading to differences in gene content and organization. For

instance, certain genes present in SchuS4 are either absent or

pseudogenized in LVS, potentially affecting pathogenicity

(Chaudhuri et al., 2007). While both strains possess the FPI,

variations in gene sequences and expression levels have been

observed, which may account for differences in their virulence

(Faron et al., 2013). The distinct immune response dynamics

observed between SchuS4 and LVS strains highlight differential

regulation of key cellular processes, including the induction or

suppression of autophagy, which may significantly impact their

pathogenic strategies and host interactions. At an early stage of

infection, F. tularensis dampens the autophagy process. The reasons

why are still unanswered but a few possible explanations exist: a) F.

tularensis prefers replication in cytosol instead of phagosome, b) the

de lay cou ld br ing t ime to become res i s tant to the

autophagolysosome’s acidic environment. On the other hand, at

late stages of infection, F. tularensis exploits autophagy to be hidden

inside autophagosomes, which leads to suppression of

proinflammatory cytokines production (Cremer et al., 2009). F.

tularensis avoids autophagic degradation by escaping from the

phagosome before it can be targeted by autophagic machinery.

After being phagocytosed by host cells, F. tularensis rapidly escapes

into the cytosol, thereby avoiding the lysosomal degradation

pathway (Checroun et al., 2006). The bacterial factors that

mediate this escape are crucial for avoiding recognition by the

autophagy machinery. The study has shown that the IglC protein is

essential for phagosomal escape and subsequent replication in the

cytosol (Santic et al., 2005). PdpC and PdpD that were identified as

T6SS effectors (Eshraghi et al., 2016) are required for phagosomal

escape (Ludu et al., 2008; Uda et al., 2016) and OpiA, a

phosphatidylinositol 3-kinase that is not encoded in FPI, is

responsible for delaying phagosomal maturation (Ledvina et al.,

2018). These effector proteins contribute to Francisella virulence

(Brodmann et al., 2021). Similarly, many other studies have

described various proteins that are necessary for the intracellular

replication of F. tularensis inside the host cell (Bröms et al., 2010;

Barel and Charbit, 2013; Celli and Zahrt, 2013; Ozanic et al., 2016;

Alam et al., 2018; Spidlova et al., 2018; Stojkova et al., 2018). After F.

tularensis enters the host cell (usually a macrophage), it is initially

enclosed in a membrane-bound compartment known as the

Francisella-containing vacuole. This is a phagosome-like structure
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formed during the phagocytosis process. Once F. tularensis escapes

the FCV and replicates in the cytosol, the host cell may attempt to

target the bacterium for destruction through autophagy, a process

where cellular debris or pathogens are engulfed by autophagosomes

(double-membrane structures) and delivered to lysosomes for

degradation. F. tularensis interferes with the autophagy machinery

by negative modulating the expression of autophagy-related genes

and proteins, including BECN1, ATG5, ATG12, ATG16L2, ATG7,

and ATG4a (Cremer et al., 2009). It is known that there exist two

type of autophagy process: a) ATG5- dependent autophagy and b)

ATG5-independent autophagy. In order to increase intracellular

stocks of host amino acids, which may be utilized as a source of

carbon, energy, and iron, F. tularensis induces ATG5-independent

autophagy (Steele et al., 2013). It has been shown that WT strains of

Francisella species are able to resist ATG5-dependent autophagy

(Chong et al., 2012; Case et al., 2014). But it seems that the WT

strains somehow exploit ATG5-dependent autophagy or responses

to this pathway, as shown in an example of LVS. This strain

proliferates less effectively in ATG5-deficient mice when

compared to the WT mice (Kelava et al., 2020). Contrarily the

mutant strains unable to replicate within the host or deficient in O-

antigen synthesis are captured by ATG5-dependent autophagy

(Case et al., 2014). Highly virulent strain F. tularensis subsp.

tularensis SchuS4, which successfully avoids being recognized by

the autophagic machinery, does not undergo ubiquitination (a

critical step for autophagic targeting) in the cytosol and SchuS4

bacteria are not fully recognized by the key autophagy receptors

p62/SQSTM1 and NBR1 (Chong et al., 2012), compared to the F.

tularensis subsp. holarctica LVS that induces the recruitment of

p62/SQSTM1 and LC3 already after 1 hour post infection (Härtlova

et al., 2014). On the other hand, SchuS4 mutants that are not able to

survive in the cytosol are tagged with ubiquitin and are

subsequently captured into autophagosomes in a process

dependent on ATG5, LC3, and p62/SQSTM1 (Chong et al.,

2012). Tagging of bacteria by ubiquitin is a critical step for

recognition in autophagic process and many bacteria can

manipulate with this ubiquitination/deubiquitination system for

their benefit (Vozandychova et al., 2021) and likewise F. tularensis

that is able to suppress the activity of deubiquitinating enzymes and

thus disrupt the homeostasis in ubiquitin cycle (Vozandychova

et al., 2023). F. tularensis subsp. holarctica FSC200 downregulates

the activity of USP10 enzyme in human macrophages 1 hour post

infection, leading to the decreased amount/degradation of LC3, and

thus repression of autophagy. USP10 normally removes ubiquitin

molecule from the Beclin1 and LC3 (required for autophagosome

formation) and thus these proteins are not degraded (because they

are not tagged by ubiquitin). This suggests an active manipulation

of the autophagy by F. tularensis specific strain (Vozandychova

et al., 2023). Francisella’sHU protein (Stojkova et al., 2019), a DNA-

binding protein involved in pathogenesis and virulence (Stojkova

et al., 2018), may play a regulatory role in host´s response. It has

already been shown in other pathogens that the bacterial HU

protein is capable of binding host DNA (Stojkova and Spidlova,

2022). Since it has been demonstrated that F. tularensis HU protein

is secreted into the medium (Konecna et al., 2010), we can speculate
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whether it enters the host cell, or even host nucleus where it could

bind host DNA, because the F. tularensis HU protein´s DNA

binding motif that we identified in our previous study (Pavlik and

Spidlova, 2022) can be found in the host genome (Genome Data

Viewer, NCBI). By binding to the promoter regions or regulatory

elements of these genes, HU protein could affect their transcription,

thus modulating the expression of key components in the

autophagy process.

The key question remains regarding the dual role of autophagy

as both a defense mechanism and a resource exploited by

Francisella species. For instance, the exploitation of autophagy by

F. tularensis at different infection stages, such as its ability to evade

recognition by suppressing ubiquitination or manipulating ATG5-

independent pathways, represents not just a mechanistic insight but

a potential focal point for therapeutic intervention. So far, we know

only a few of bacterial effector proteins that are somehow included

in affecting the process of autophagy and their exact mechanisms of

action remain elusive. It is crucial to delve deeper into the molecular

interactions between bacterial effector proteins and host proteins

that regulate autophagy machinery. Uncovering these detailed

mechanisms can guide future research toward the development of

targeted inhibitors, offering new strategies to combat infections.
Conclusion

The study of Francisella provides general insight into the fight

against intracellular bacterial pathogens, as many of these

organisms share similar strategies for avoiding autophagy.

Understanding the molecular interplay between host autophagy

and microbial evasion tactics may be the basis for the development

of treatments not only against tularemia but also against a number

of other infectious diseases. Additionally, the insights gained from

F. tularensis research have the potential to extend beyond infectious

diseases and offer new approaches to manipulate autophagy for

therapeutic benefit in cancer, autoimmune diseases, and other

conditions where autophagy plays a critical role. Once the

molecular interactions between F. tularensis and the host

autophagy machinery are better understood, novel regulators of

autophagy may be identified. These could include host proteins that

are modulated by F. tularensis to suppress autophagy or new

bacterial factors that inhibit autophagic processes. Future research

should focus on uncovering the molecular details of Francisella-host

interactions, characterizing the role of host genetic factors in

autophagy response, and developing novel drugs and vaccine

strategies that can modulate autophagy.
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