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Atopic dermatitis (AD) is a chronic and inflammatory skin disorder characterized

by impaired barrier function and imbalanced immunity. Recent advances have

revealed that dysbiosis of skin microbiota plays important roles in the

pathogenesis and development of AD. Meanwhile, endogenous and external

factors contribute to the dysbiosis of skin microbiota in AD. Additionally, various

treatments, including topical treatments, phototherapy, and systemic biologics,

have demonstrated positive impacts on the clinical outcomes, alongside with the

modulations of cutaneous microbiota in AD patients. Importantly, therapeutics

or products regulating skin microbiota homeostasis have demonstrated potential

for AD treatment in early clinical studies. In this review, we underline changes of

the skin microbiota correlated with AD. Meanwhile, we provide an overview of

the skin microbiota regarding its roles in the pathogenesis and development of

AD. Finally, we summarize therapeutic strategies restoring the skin microbial

homeostasis in AD management.
KEYWORDS
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1 Introduction

Atopic dermatitis (AD) is a long-lasting and inflammatory skin disease. It usually

appears during infancy and childhood; however, people of all ages can get this skin

condition (Wollenberg et al., 2016; Weidinger et al., 2018). Symptoms of AD range from

excessively dry, extremely itchy skin to painful skin, which can flare in multiple areas of the

body sites, severely affecting the life quality of patients worldwide (Sidbury et al., 2014;
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Silverberg et al., 2015; Vakharia et al., 2017; Silverberg et al., 2019).

Although it is clearly that genetics, immune system, and

environmental factors play roles in AD pathogenesis, the precise

mechanism that causes atopic dermatitis remains elusive

(Weidinger and Novak, 2016; Weidinger et al., 2018; Langan

et al., 2020). Recently, increasing evidence revealed that dysbiosis

of skin microbiota contributes to AD development (Williams and

Gallo, 2015; Bjerre et al., 2017; Tao et al., 2022).

The skin microbiota are mainly composed of numerous

bacterial species, as well as fungi and virus (Flowers and Grice,

2020; Whiting et al., 2024). Homeostasis of the skin microbiota

benefits the host by providing support to the skin barrier function

and inhibiting pathogen colonization (Prescott et al., 2017; Parlet

et al., 2019; Swaney and Kalan, 2021; Hammond et al., 2022).

Meanwhile, the skin microbiota can modulate the host innate and

adaptive immunity (Coates et al., 2019; Paller et al., 2019; Boxberger

et al., 2021), both of which are core components of the skin immune

system (Richmond and Harris, 2014; Coates et al., 2018; Ong, 2022).

Thus, the skin microbiota homeostasis is apparently important in

maintaining healthy skin, while its dysbiosis contributes to

skin pathology.
2 The regulatory roles of skin
microbiota in AD pathogenesis

Given that skin microbiota dysbiosis is increasingly implicated

as a contributor to the pathogenesis of AD, the effects and molecular

mechanisms of cutaneous microbiota on the development of AD

cannot be overlooked (Figure 1).
2.1 Staphylococcus aureus (S. aureus) plays
crucial roles in AD pathogenesis

S. aureus on the skin is positively correlated with disease

severity and represents one of the main triggers for the worsening

of skin lesions in AD patients (Tauber et al., 2016; Totté et al., 2016).

In the mouse model of AD, epicutaneous exposure of skin to S.

aureus induces inflammation (Liu et al., 2017). Mechanistically,

phenol-soluble modulin a (PSMa) secreted by S. aureus contributes
to skin inflammation (Liu et al., 2017). Additionally, S. aureus-

expressed PSMa induces release of pro-inflammatory cytokines/

chemokines from keratinocytes, as well as subsequent IL-17

production from immune cel ls , leading to cutaneous

inflammation in a murine infection model (Syed et al., 2015;

Nakagawa et al., 2017). Consistently, Williams et al. reported that

the proteases and PSMa secreted by S. aureus lead to epidermal

proteolysis and skin barrier damage (Williams et al., 2019), further

confirming that S. aureus contributes to AD pathogenesis.

Upon incubation with keratinocytes, heat killed S. aureus from

AD patients are strongly agglutinated inside the cytoplasm, where

they are located in lysosomes and promote the secretion of IL-1a
(Moriwaki et al., 2019). In addition, the inoculation with S. aureus

increased IL-1b and IL-18 production, whereas silencing of NLRP1

decreased the secretion of these cytokines in keratinocytes,
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suggesting that S. aureus may contribute to the pathogenesis of

AD through NLRP1 inflammasome/IL-1b and IL-18 axis (Vaher

et al., 2023). Moreover, S. aureus enhances the release of thymic

stromal lymphopoietin (TSLP) in human keratinocytes, and

mediates the Th2-type inflammation (Vu et al., 2010), providing

further clue for the association between S. aureus colonization and

AD disease progression.

Using shotgun metagenomic sequence analysis, Byrd et al.

revealed that AD flares exhibited greater S. aureus predominance

in patients with severe disease (Byrd et al., 2017). Specifically, S.

aureus from AD patients with more severe flares induced epidermal

thickening and expansion of cutaneous Th2 and Th17 cells in the

murine models (Byrd et al., 2017), indicating its contributory role to

AD development.

S. aureus is unique among staphylococcal species, as it’s able to

induce rapid release of IL-33 from keratinocytes, identifying it as a

dominant type 2 immunity trigger underlying AD pathogenesis (Al

Kindi et al., 2021). Interestingly, Th2 cytokine exposure increases

the sensitivity to S. aureus alpha toxin-induced cell lethality in

keratinocytes, which is more commonly observed in skins from AD

patients compared with healthy individuals (Brauweiler et al.,

2014). Furthermore, Th2 cytokines decrease levels of

sphingomyelinase (SMase) and production of lamellar bodies,

which are critical for cleaving alpha toxin receptor and keeping

epidermal barrier formation, respectively. Finally, SMase prevents

Th2-mediated cell death (Brauweiler et al., 2014), uncovering a

mechanism that Th2 cytokine exacerbating S. aureus-induced

AD pathogenesis.

In fact, in addition to S. aureus alpha toxin, several other

staphylococcal exotoxins also play crucial roles in the

pathogenesis of AD. Nakamura et al. found that d-toxin produced

by S. aureus potently facilitated the degranulation of mast cells

(Nakamura et al., 2013). Further studies demonstrated that the skin

colonization by S. aureus enhanced the production of

immunoglobulin-E (IgE) and IL-4, along with skin inflammation,

in a d-toxin-dependent manner. Interestingly, IgE could amplify the

d-toxin-induced mast cell degranulation in the absence of antigens.

Moreover, mast cell deficiency and subsequent reconstitution could

either abrogate or restore the production of IgE induced by d-toxin,
respectively, in a dermatitis mouse model. Clinically, S. aureus

isolated from AD patients produced large amounts of d-toxin
(Nakamura et al., 2013). Therefore, the S. aureus/d-toxin/IgE/
mast cell axis represents a novel mechanism in the pathogenesis

of AD.

Strikingly, the skin inflammation leads to a rapid recruitment of

neutrophils, which correlates with enhanced S. aureus colonization.

On the contrary, depletion of neutrophils reduces the skin

colonization of S. aureus (Bitschar et al., 2020). Meanwhile, the

interaction of neutrophil extracellular traps (NETs, released by

infiltrating neutrophils) with keratinocytes are responsible for

increased S. aureus colonization (Bitschar et al., 2020), suggesting

that inflammatory environment contributes to enhanced S. aureus

colonization in AD pathogenesis.

Moreover, monocyte-derived Langerhans cells stimulated by

AD associated-S. aureus induce rapid proliferation of T cells

(Iwamoto et al., 2017), demonstrating that S. aureus can skew T
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cell responses in AD pathogenesis. Additionally, exposure of S.

aureus secretomes to monocyte-derived dendritic cells (moDC)

promotes the release of pro-inflammatory IFN-g (Laborel-

Préneron et al., 2015). Meanwhile, allogeneic moDC exposed to S.

aureus secretome induces CD4+ T cell proliferation. Furthermore,

the S. aureus secretome inhibits Treg activity (Laborel-

Préneron 9et al., 2015). Therefore, colonization of S. aureus on

AD skins regulates cutaneous inflammation through multiple

different pathways.
2.2 Roles of commensal microbiota in
AD pathogenesis

S. aureus is known to exacerbate AD, whereas Staphylococcus

epidermidis (S. epidermidis) has been considered as a beneficial

commensal organism. Interestingly, S. epidermidis activates and

upregulates Perforin-2 (P-2), while the upregulation of P-2

correlates with increased killing of intracellular S. aureus in skin

cells, thereby protecting the host from skin infections (Strbo et al.,

2019; Pastar et al., 2020). Moreover, S. epidermidis contributes to

skin’s physical integrity by secreting SMase (Zheng et al., 2022). In

mouse models, S. epidermidis increases the skin ceramide levels and

prevents skin water loss in a SMase-dependent way (Zheng et al.,

2022), demonstrating its crucial role in maintaining the skin’s

barrier function. S. epidermidis also plays important roles in

keeping the proper differentiation and repairment of the
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epidermal barrier, which are partially mediated by aryl

hydrocarbon receptor (AHR) signaling in keratinocytes (Uberoi

et al., 2021). Interestingly, S. epidermidis strains produce strong

cysteine protease activity when grow at high density, which is able

to degrade desmoglein-1 and LL-37 in vitro, and disrupt the

physical barrier and induce skin inflammation in vivo (Cau et al.,

2021). Clinically, the abundance of S. epidermidis is increased on the

skin of some patients with AD, which is correlated with disease

severity (Cau et al., 2021). Mechanistically, phenol-soluble modulin

(PSM) peptides produced by S. epidermidis induce host defense and

are cytotoxic to human keratinocytes. Moreover, the expression of

PSMd from S. epidermidis is positively correlated with disease

severity in AD patients (Williams et al., 2023). Thus, the over-

presence of S. epidermidis found on some AD patients can act

similarly to S. aureus and contribute to AD pathogenesis.

As discussed in “2.1 Section“, S. aureus secretes PSMa and

contributes to skin inflammation and barrier dysfunction.

Interestingly, coagulase-negative staphylococci (CoNS) species

residing on normal skin, inhibit S. aureus growth and

subsequently lead to decreased PSMa expression (Williams et al.,

2019), showing a concept that normal skin microbiota contributes

to epithelial barrier homeostasis. Meanwhile, the CoNS strains with

antimicrobial activity are common on the healthy skins but rare on

the AD skins. Moreover, application of these CoNS strains to mice

or reintroduction of them to AD patients confirms their defense

against S. aureus (Nakatsuji et al., 2017). Further, spent media from

the CoNS species can inhibit quorum sensing by S. aureus (Paharik
FIGURE 1

The regulatory roles of cutaneous microbiota on the pathogenesis and development of AD. Dysbiosis of the skin microbiota contributes to the
pathogenesis and development of AD. Firstly, the S. aureus colonization promotes the disease progression through inducing the skin inflammation,
triggering the skin barrier damage, and mediating the Th2 immune response. Secondly, the commensals, including the S. epidermidis and the CoNS
species, contribute to skin homeostasis via inhibiting the S. aureus overgrowth and maintaining the skin’s barrier function. Thirdly, the commensal
fungi, especially the over-presentation of Malassezia, selectively induce Th17 activation and subsequent skin inflammation.
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et al., 2017). Specifically, the autoinducing peptide of CoNS species

is responsible for the reduction of quorum sensing, and it

dramatically reduces the cutaneous bacterial burden in a murine

model of infection (Paharik et al., 2017). Thus, the skin commensals

protect against skin dysbiosis, especially the S. aureus outgrowth,

and impact disease outcomes in AD.

Commensal fungi of the skin, such as those of the genus

Malassezia, are also associated with AD pathogenesis. For

instance, the presence of Malassezia, selectively induce IL-17 and

related cytokines, leading to aggravated cutaneous inflammation.

Moreover, AD patients show enhanced frequency of Th17 subsets

than healthy individuals, which is Malassezia involved and specific

(Sparber et al., 2019). Thus, Malassezia-induced Th17 response is

pivotal in promoting skin inflammation.

The most common sebaceous skin commensal yeasts are

Malassezia, while the dominant secreted Malassezia globosa

protease is Malassezia globosa Secreted Aspartyl Protease 1

(MGSAP1), which can rapidly hydrolyze Staphylococcus aureus

protein A and holds anti-biofilm properties against S. aureus (Li

et al., 2018), indicating that Malassezia and its enzyme maybe

beneficial for skin health. In AD patients, upregulated MGSAP1 is

observed in lesional skins, as compared to healthy skins (Goh et al.,

2022). Functional loss of MFSAP1 leads to reductions in the cell

adhesion and dispersal in both cultured and a human 3D epidermis

models. Furthermore, MGSAP1 contributes to inflammation in a

murine model of Malassezia colonization (Goh et al., 2022). Thus,

MGSAP1 plays crucial roles in enabling fungi (Malassezia)

colonization and promoting the skin barrier disruption.
2.3 The microbiota-host interaction
contributes to AD pathogenesis

The overabundant colonization by S. aureus may trigger the

aggravation of AD skins. Meanwhile, the initiation and progression

of AD may require the adherence of S. aureus to the skin, the

mechanism of which remains largely unknown. Interestingly,

fibronectin and fibrinogen enhance the binding of S. aureus to

the skins of AD patients (Cho et al., 2001). Meanwhile, the S. aureus

itself stimulates keratinocytes to increase their trypsin activity, as

well as degradation of desmoglein-1 and filaggrin (Williams et al.,

2017), illustrating that S. aureus influences the skin barrier integrity

by stimulating endogenous proteolytic activity.

Adhesion of S. aureus to corneocytes in the stratum corneum is

also a key initial event in colonization. It was recently reported that

S. aureus interacted with and took advantage of the host protein

corneodesmosin, to facilitate its binding with AD corneocytes

(Towell et al., 2021). The abnormalities of epidermal barrier in

AD can also alter the entry of S. aureus into the dermis, while the

dermal dysbiosis results in increased inflammation and exacerbated

disease severity (Nakatsuji et al., 2016), defining a novel mechanism

by which S. aureus contributes to AD development. Keratinocytes

lacking JunB exhibit higher MyD88 levels, which promotes the

colonization of S. aureus (Uluçkan et al., 2019). Additionally, the

spontaneous S. aureus colonization in JunB deficient mice shows a

large transcriptomic overlap with AD (Uluçkan et al., 2019). Thus,
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JunB works as an upstream regulator of microbiota-immune

interaction in AD pathogenesis.
2.4 Roles of microbial metabolites in
AD pathogenesis

The metabolites of skin microbiota can also act as a regulator of

AD inflammation (Li and Yosipovitch, 2020). For instance, indole-

3-aldehyde (IAId), a skin microbiota-derived tryptophan

metabolite, is significantly lower in the lesional skins of AD

patients than that of healthy individuals (Yu et al., 2019).

Moreover, IAId attenuates the skin inflammation in MC903-

induced mice through inhibit ing TSLP expression in

keratinocytes (Yu et al., 2019), indicating a novel mechanism that

skin microbial metabolites modulating AD pathogenesis. In the

Langerhans cells (LCs), IAId increases the production of

indoleamine 2,3-dioxygenase and IL-10 (Liu et al., 2020).

Additionally, IAId induces a mature phenotype of LCs, leading to

the inhibition of CD4+ T cell proliferation and IL-10 secretion (Liu

et al., 2020), revealing its negative regulation of LC function in

AD pathogenesis.

AD patients also demonstrates a dysregulated lipidome of

sebum and aberrant lipid metabolism in sebaceous glands (Yin

et al., 2023). Interestingly, the levels of sebum and its microbial

metabolite, propionate, are lower on the skins of AD patients

compared with those of healthy individuals (Qiu et al., 2022).

Mice lacking sebum spontaneously develop AD-like dermatitis,

which can be improved by topical propionate application (Qiu

et al., 2022), pointing the sebum-propionate axis as a protector

pattern in AD. A proof-of-concept clinical study further

demonstrates the beneficial of topical propionate application in

AD patients (Qiu et al., 2022), highlighting a possible therapeutic

for AD treatment.
3 Endogenous factors that contribute
to the dysbiosis of skin microbiota in
AD patients

Accumulating clues have demonstrated that microbial dysbiosis

can result in inflammatory skin diseases, such as atopic dermatitis

(Williams and Gallo, 2015; Bjerre et al., 2017; Tao et al., 2022). The

affected individuals are characteristically prone to colonized by

different microorganisms, which may reflect the disease condition

of patients. Specifically, the skin microbiota of AD patients shows

increased Staphylococcus aureus (S. aureus) load, which is

correlated with reduced bacterial diversity (Francuzik et al., 2018;

Hui et al., 2020; Poh et al., 2022). Additionally, increased S. aureus

abundance is positively related to exacerbated disease severity in

AD (Edslev et al., 2021). Moreover, the intra-host genetic

heterogeneity of the colonizing S. aureus provides evidence for

within-host selection in AD patients (Harkins et al., 2018). In

general, the distinct microbiotal colonization on AD skins are

affected by endogenous and external factors (Shi et al., 2016). The
frontiersin.org
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endogenous factors are mainly composed of genetics, age, and skin

sites, etc, while the exogenous factors are mainly composed of

temperature, humidity, pressure, ultraviolet irradiation, and

especially, various treatments (Figure 2).
3.1 Genetic variation (filaggrin gene
mutation) affects the microbial
heterogeneity in AD

It is widely accepted that the genetic variations are closely

associated with AD that shows high heritability. One of the main

genes related to AD is the Filaggrin gene (FLG), the null mutation of

which is a major risk factor for skin barrier dysfunction and tightly

related to AD pathogenesis (Palmer et al., 2006; Margolis et al.,

2012; Margolis et al., 2019; Hoyer et al., 2022). Interestingly, FLG

mutation correlates with disease severity, as well as the skin

microbiotal alteration in AD patients (Baurecht et al., 2018;

Clausen et al., 2018; van Mierlo et al., 2022).

In pediatric patients with difficult-to-treat AD, the prevalence of

FLG mutation is around 40%. Meanwhile, a significant effect of the

FLG mutation on the overall skin microbiome is observed (van

Mierlo et al., 2022). In adults, altered skin microbiota in AD patients

is also detected, with microbial composition linked to the FLG

mutation (Clausen et al., 2018). Importantly, the alpha diversity of

microbiome shows inversely correlation with disease severity, and is
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lower in AD patients compared with healthy individuals (Clausen

et al., 2018), proposing a possible correlation between skin

microbiota and host genetics. Coincidentally, Baurecht et al.

reported that AD displayed a distinct community structure, with

the FLG-deficient skins showed a microbiota composition

resembling the AD-related pattern (Baurecht et al., 2018). By

incorporating the host genome and skin microbial composition

into a computational model, Barnes et al. found that the bacterial

communities varied markedly between AD patients without and

with FLG mutations, further confirming the association between

FLG mutation and the skin microbiotal diversity in AD (Barnes

et al., 2022).

In Indian AD patients, the prevalence of FLG missense variants

correlated with AD are significantly less than those reported in

Europeans (Nath et al., 2020). Meanwhile, damaging missense

single nucleotide polymorphisms of FLG gene are associated with

the relative abundance of bacteria species (Nath et al., 2020).

Specifically, increased S. aureus abundance in AD patients with

FLG mutation is observed, suggesting that genetic differences are

important for bacterial colonization on AD skins (Clausen et al.,

2017). Mechanistically, FLG expression protects keratinocyte from

staphylococcal alpha-toxin-induced death (Brauweiler et al., 2013).

This partially explain why S. aureus a-toxin preferentially targets

and destroys FLG-deficient keratinocytes, which also provides a

mechani sm for S . aureus -media ted exacerba t ion in

AD pathogenesis.
FIGURE 2

Endogenous and exogenous factors that influence the dysbiosis of skin microbiota in AD patients. The distinct microbiotal colonization on the AD
skins is affected by multiple endogenous and exogenous factors. The endogenous factors are mainly composed of genetics, age, and skin sites, etc,
while the exogenous factors are mainly composed of temperature, humidity, pressure, ultraviolet irradiation, and especially, various treatments.
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3.2 Impact of age on the skin microbiota in
AD patients

The skin microbiomes differ significantly between children and

adults, suggesting the possible role of age in altering the skin

microbiota composition (Dominguez-Bello et al., 2010; Capone

et al., 2011). For instance, Kennedy et al. demonstrated that skin

microbiome, including the bacterial community and diversity, shift

over time in infants (Kennedy et al., 2017). Interestingly, infantile

AD patients do not have noticeably dysbiotic communities before

disease flares and were not colonized by S. aureus before having AD.

Moreover, reduced skin microbiome diversity is associated with an

increased risk of AD in infancy (Halling et al., 2023). Additionally,

commensal Staphylococci are less colonized in infants affected at

month 12, suggesting their protective role against AD development

(Kennedy et al., 2017). However, further studies are needed to

confirm these observations.

In adult patients with AD, cutaneous S. aureus colonization

positively correlates with skin barrier impairment, as well as the

subsequent sensitization to antigens of skin-associated

microorganisms (Jinnestål et al., 2014), illustrating its importance

in eczema pathogenesis. Besides, S. aureus also play important roles

in the pathophysiology of childhood AD (Hon et al., 2016). In

infancy, S. aureus is more prevalent on the skin of infants who

developed AD later on (Meylan et al., 2017). Further, infants

positive for cutaneous S. aureus colonization are younger than

uncolonized infants at AD onset (Meylan et al., 2017), suggesting

that S. aureus colonization contributes to clinical AD onset at an

early age, even in infancy.

In a large cohort study, Shi et al. systematically compared the

skin microbiomes among different age groups to determine the

effects of human physical developmental stages on AD (Shi et al.,

2016). In the skin microbiome of healthy individuals, young

children (age 2-12) demonstrated more diverse than adults (age

18-62), with distinct beta diversity and significant differences at

both genus and specie levels. Similarly, differences between young

children and adults and/or teenagers (age 13-17) were observed in

the skin microbiome of AD patients (Shi et al., 2016). Since

teenagers are in transition from young children to adults in

physical development, their skin microbiomes are in transition as

well, with a higher similarity to adults than young children,

providing an explanation for the age differences in AD from a

perspective of skin microbiome.
3.3 Microbial heterogeneity varies between
skin sites in AD

It is known that different sites in human skin are colonized by

distinct microbial communities (Byrd et al., 2018; Manus et al.,

2020; Boxberger et al., 2021). Moreover, the microbial heterogeneity

varies between skin sites in AD lesions, which may reflect disease

severity. For instance, although correlations exist between species in

the microbiota of nose and skin, the nose and skin harbour distinct
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microbial communities in pediatric AD (Totté et al., 2019).

Meanwhile, the skin and oral cavity of AD patients exhibit

differential reductions in microbial diversity compared with

healthy individuals, which are distinctly correlated with disease

severity (Li et al., 2019). Additionally, the different habitats of AD

patients exhibited site-specific alterations at the genus level, with

many skin-specific microbes showing opposing directions of

enrichment in oral cavity (Li et al., 2019). Specifically, the relative

abundance of S. aureus is associated with disease severity in the

posterior thigh, but not in the upper back of AD patients (Ottman

et al., 2021). Though it is unclear what is the cause for this distinct

microbial colonization, it shows that AD may select for specific

microbes, such as S. aureus in different anatomical locations

(Ottman et al., 2021). Above researches highlight the importance

of considering the variability across skin sites when studying the

microbial heterogeneity in AD.
4 Exogenous factors that contribute
to the dysbiosis of skin microbiota in
AD patients

Despite the growing understanding of the close correlation

between endogenous factors and AD dysbiosis, various external

factors—such as personal care products (including soaps and

detergents), temperature and/or climate changes, environmental

triggers like air pollution, ultraviolet radiation, and allergenic foods/

diet—can also disrupt the balance of skin microbiota, leading to

skin dysbiosis and contributing to the exacerbation of AD.

As we all know, skin barrier disruption is one of the

contributing factors that promote the development of AD (Yue

et al., 2021). Consequently, irritants or environmental factors that

compromise the skin’s barrier function can increase the skin’s

susceptibility to microbial colonization, even resulting in skin

inflammation (Yue et al., 2021). For example, factors that

determine water hardness, such as high domestic water calcium

carbonate concentrations, positively correlated with the prevalence

of infant AD (Perkin et al., 2016). Meanwhile, the effect of mineral

content in tap water were greater in children carrying FLG

mutations, who favor AD development and flares (Perkin et al.,

2016; Jabbar-Lopez et al., 2020). Additionally, climate changes, such

as dry climates and low humidity, can exacerbate AD symptoms by

disrupting the skin barrier and altering the skin microbiota

(Darlenski et al., 2021; Wrześniewska et al., 2024). Moreover,

personal hygiene practices or hygiene habits, such as friction and

the frequent use of alkaline or antimicrobial soaps, can disrupt the

skin microbiome and facilitate the pathogenesis of AD (Jing et al.,

2020; Skowron et al., 2021). Furthermore, there is growing evidence

that diet and gut microbiota are closely associated with skin

dysbiosis and the prevalence of AD (Tham et al., 2024). A clear

link between gut microbiome imbalances and AD suggests the

potential influence of the gut-skin axis on skin inflammation

(Moniaga et al., 2022; Hoskinson et al., 2024; Jiang et al., 2024;

Rios-Carlos et al., 2024).
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5 Topical therapies change the skin
microbiota in AD patients

Therapeutics have shown great success on AD treatment in

recent years. Meanwhile, different treatments may lead to varied

skin microbiota shifts in AD patients (Guo et al., 2022). Herein, we

summarized the recent progresses that different treatments

influencing the skin microbiota alterations in AD (Table 1).
5.1 Topical emollient treatment changes
the skin microbiota in AD patients

Topical emollients are considered as a first-line and mainstay

therapy for AD treatment, which can reduce disease severity both in

children and adults with AD (Tiplica et al., 2018; Pinter et al., 2019).

Moreover, emollient therapy from birth represents an effective and

safe approach for AD prevention (Simpson et al., 2014; Skjerven
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et al., 2020; Zhong et al., 2022). Further, emollients are used as

monotherapy or adjuncts to soften and moisturize the skin (Hon

et al., 2013; Giam et al., 2016; van Zuuren et al., 2017). However, the

qualities and clinical effects of different emollients vary significantly,

and only certain types are able to improve the skin’s barrier function

and protect against irritants that trigger eczema (Danby et al., 2022;

Elias, 2022). It was recently reported that one specific emollient

associated with selected carbon material reduced the number and

severity of AD flares. Concurrently, it normalized the skin

microbiota compared with other emollients (Seité et al., 2017),

suggesting that skin microbiota shifts could be used as biomarkers

to evaluate the efficacy of different emollients during AD treatment.

Through clinical analysis and high-throughput sequencing of

the skin microbiome, Seité et al. revealed that emollient improved

the clinical symptoms in 72% of the AD patients, with the microbial

communities in lesional skin more closely resembled unaffected

skin after treatment, as indicated by increased overall diversity and

decreased Staphylococcus species (Seite et al., 2014). Interestingly,
TABLE 1 Summary of changed microorganisms during different treatments.

Types
of
treatments

Study sub-
jects and
Disease
severity

Study outcomes Refs

Emollient
treatment

Children/Adults
with
moderate AD

Emollient improved the clinical symptoms of AD patients, with the microbial communities
in lesional skin more closely resembled healthy skin after treatment.
It also induces beneficial mycobiome change in AD skin.

(Seite et al., 2014; Seité et al., 2017;
Chandra et al., 2018; Glatz et al.,
2018; Hülpüsch et al., 2020;
Capone et al., 2023)

Bleach bath Children with
moderate-to-
severe AD

TCS + bleach bath or TCS alone treatment normalized the bacterial compositions on
lesional skin in AD. Additionally, standard treatment plus dilute bleach baths improved
disease severity, with significantly lower S. aureus burden in moderate-to-severe
AD patients.

(Gonzalez et al., 2016; Khadka
et al., 2022)

Apple
cider vinegar

AD patients of
all grades (age ≥
12 years)

No difference of cutaneous S. aureus in AD patients was observed after 2 weeks’ treatment
of 0.5% apple cider vinegar.

(Luu et al., 2021)

Topical coal tar AD patients
with mean EASI
of 19.8

The microbiota composition in the AD skin shifts toward the healthy skin. Meanwhile, coal
tar treatment restores the antimicrobial peptide levels in AD skin.

(Smits et al., 2020)

Ozone
treatment

Patients with
moderate to
severe AD

Ozone treatment decreases the disease severity, which is accompanied by decreased S.
aureus colonization in AD patients. Additionally, ozone therapy helps to restore the
cutaneous microbiological diversity in AD.

(Zeng et al., 2020)

Tacrolimus NA Tacrolimus positively affect the skin microbiota in AD, with increased commensal species
after treatment.

(Wongpiyabovorn et al., 2019)

NB-UVB Adult
AD patients

NB-UVB treatment improves the disease severity and reduces the recurrence of eczema
without additive effects on AD. Additionally, NB-UVB treatment increases the skin
microbial diversity and S. aureus proportion in AD.

(Kwon et al., 2019; Lossius
et al., 2022)

The 308 nm
excimer light

Patients with
moderate to
severe AD

308 nm excimer light decreased the abundance of S. aureus, restored the skin barrier
function, and improved the clinical symptom in AD patients.

(Kurosaki et al., 2020)

Climatotherapy Patients with
difficult to
treat AD

DSC treatment attenuates the dysbiosis in AD patients, with several specific species
dramatically affected by DSC. Meanwhile, the alpine climate treatment significantly changes
the skin microbiota composition in AD patients, whereas no significant change found after
moderate maritime climate treatment.

(Brandwein et al., 2019; van Mierlo
et al., 2019)

Biologic
treatment
(Dupilumab)

Patients with
moderate to
severe, milder,
and severe AD

The clinical improvement of AD mediated by dupilumab treatment is positively correlated
with increased microbial diversity and reduced abundance of S. aureus on the skin.

(Callewaert et al., 2020; Lee et al.,
2021; Olesen et al., 2021)
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the skin physiology, cutaneous microbiome, and AD severity were

not affected by the pH of applied emollient (either pH 8.5 or pH

5.5). Instead, the skin pH tightly regulated by intrinsic factors

limited the abundance of S. aureus in AD (Hülpüsch et al., 2020).

Consistently, decreased skin pH, as well as increased S. salivarius

population after emollient use, contribute to the preventative effects

of emollient in infants at high-risk for developing AD (Glatz et al.,

2018). Appropriate use of formulated emollient also increases the

richness of skin microbiome, as well as the levels of ceramides and

free fatty acids that play important roles in skin barrier integrity in

infants, further underlining the predictive role of skin microbiota

during the management of infant AD using emollient (Capone

et al., 2023).

Emollient treatments also induce changes in fungal microbiome in

AD, since the mycobiomes of pre-treatment and post-treatment

samples cluster differently at all taxa levels by principal coordinate

analysis (Chandra et al., 2018). Specifically, gram-negative

Pseudomonas spp. significantly correlates with pathogenic fungal

species (Aspergillus, Candida spp.) in lesional skins of pre-treatment

group, but not in the post-treatment group (Chandra et al., 2018).

Furthermore, lesional skins exhibit significant correlation between

gram-positive bacteria (Corynebacterium kroppenstedtiian and

Staphylococcus pettenkoferi) and pathogenic Candida species in the

pre-treatment group, but not in the post-treatment group (Chandra

et al., 2018). Thus, emollient induces beneficial changes in the skin

mycobiome and modulates the microbe homeostasis in AD skin.
5.2 Bleach bath changes the skin
microbiota compositions in AD patients

Patients with AD are prone to skin infections, most of which are

suspected of contributing to pathogenesis. Thus, bleach baths could

improve AD symptoms by reducing the skin microbial burden.

In a randomized, placebo-controlled, and single-blinded trial,

skin samples from children with/without AD were examined at

baseline and after 4 weeks’ treatment with topical corticosteroid

(TCS) alone or TCS plus bleach bath. After TCS + bleach bath or

TCS alone treatment, bacterial compositions on the lesional skins

normalized, resembling non-lesional skin, with a tendency of

restoring to the healthy skins (Gonzalez et al., 2016), indicating

that TCS treatment alone is sufficient to normalize the cutaneous

microbiota in AD. However, it does not mean that bleach baths

have no additional impact on the skin microbiota, since 4 weeks’

time period may not be long enough for this kind of observation.

Consistently, both standard treatment (emollient plus TCS) + dilute

bleach bath (DBB) and only standard treatment improved disease

severity in moderate-to-severe AD patients (Khadka et al., 2022).

However, standard treatment with addition of DBB had

significantly lower S. aureus burden than those who received only

standard treatment over a three-month period (Khadka et al., 2022).

Moreover, chronic use of DBB with intermittent application of

mupirocin ointment decreased the disease severity of AD patients

with clinical signs of secondary bacterial infections (Huang et al.,
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2009), further supporting its beneficial role of controlling bacteria

load in AD therapy.
5.3 Additional topical treatments altering
the skin microbiota in AD patients

Apple cider vinegar has been shown to have antibacterial effects.

Interestingly, no significant difference in cutaneous S. aureus

presentation was observed in AD patients before and after 2

weeks’ treatment of 0.5% apple cider vinegar (Luu et al., 2021).

However, additional studies are needed to explore the effects of

higher concentrations and longer period of apple cider vinegar

treatment on the skin microbiota in AD.

Upon topical coal tar treatment, a useful therapeutic for atopic

hand and foot eczema (van den Bogaard et al., 2013; Wollenberg

et al., 2020), Staphylococcus abundance decreased, whereas

Propionibacterium abundance increased in AD skins (Smits et al.,

2020), suggesting a shift of the microbiota composition toward that

of healthy skin. Meanwhile, coal tar treatment restored the

antimicrobial peptide levels in AD skins (Smits et al., 2020),

confirming that coal tar can combat AD through targeting the

skin microbiota and inflammation.

Ozone treatment improves AD conditions by decreasing the

disease severity (Travagli et al., 2010; Zeng and Lu, 2018), which is

accompanied by decreased S. aureus colonization in AD lesions

(Zeng et al., 2020). Additionally, ozone therapy helps to restore the

cutaneous microbiological diversity in AD patients (Zeng et al.,

2020), revealing its role in modulating the skin microbiota in AD.

Tacrolimus, a calcineurin inhibitor, has been widely used as a

maintenance therapy in AD (Cury Martins et al., 2015; Paller et al.,

2020). Interestingly, tacrolimus positively affects the skin

microbiota in AD, with increased commensal species observed

following treatment (Wongpiyabovorn et al., 2019), underlining a

novel mechanism that tacrolimus works as an useful strategy to

alleviate AD.
6 Phototherapy or climatotherapy
influence the skin microbiota in
AD patients

Phototherapy is an effective treatment in dermatology, which has

long been used for the management of various inflammatory skin

diseases, such as AD (Ortiz-Salvador and Pérez-Ferriols, 2017; Kemény

et al., 2019; Musters et al., 2021). For instance, narrow-band Ultraviolet

B (NB-UVB) is widely used in AD treatment and can significantly

improve the disease severity (Lossius et al., 2021). Interestingly, a

drastic increase in the skin microbial diversity and decrease in the

cutaneous S. aureus proportion are observed in AD patients following

NB-UVB treatment (Kwon et al., 2019). Coincidentally, shift towards

higher diversity in the microbiota of lesional skins after NB-UVB

treatment is observed in AD patients, which is associated with disease
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improvement (Lossius et al., 2022), confirming the role of NB-UVB in

regulating skin microbiota homeostasis.

The 308 nm excimer light is another effective treatment used in

AD (Nisticò et al., 2008; Oh et al., 2016). It was recently reported that

the 308 nm excimer light significantly changed the bacterial

composition, as well as improved the skin barrier function in the

lesional skins of AD (Kurosaki et al., 2020). In addition, the treatment

decreased the relative abundance of S. aureus, which was correlated

with improved clinical symptom in AD skins (Kurosaki et al., 2020),

suggesting that alterations of the skin microbiota within excimer light

treatment are partially involved in the improvement of AD severity.

In dogs with canine AD, the 308-nm excimer light changed the

composition and diversity of the skin microbiota, with increased

abundance of phyla Actinobacteria and Cyanobacteria, and decreased

abundance of S. pseudintermedius (Park et al., 2021). More

importantly, it significantly alleviated the severity of canine AD

without causing any serious side effects (Park et al., 2021),

indicating that excimer light is also a suitable and safe therapy for

canine AD.

Climatotherapy, including Dead Sea climatotherapy (DSC),

alpine and moderate maritime climates, can improve the patient’s

skin condition and have been widely used for the treatment of AD

(Harari et al., 2000; Adler-Cohen et al., 2012; Fieten et al., 2015;

Kudish et al., 2016; Heeringa et al., 2018). Notably, DSC treatment

could partially attenuate the dysbiosis in the lesional skins of AD

patients (Brandwein et al., 2019). Meanwhile, severe AD skins

underwent the most significant community shifts after DSC

treatment. Specifically, S. epidermidis, Streptococcus mitis, and

Micrococcus luteus were significantly affected by DSC (Brandwein

et al., 2019), showing new perspectives in the climatotherapy for

AD. However, not all climate therapies affect skin microbiota in AD

patients. The alpine climate treatment significantly changes,

whereas moderate maritime climate treatment does not change

the composition of skin microbiota on the lesional skins of AD

patients (van Mierlo et al., 2019).
7 Biologic treatment (dupilumab)
changes the skin microbiota in
AD patients

Dupilumab is a humanized antibody to IL-4 receptor a, which
is effective in blocking IL-4 and IL-13 signaling, and reducing Th2

response (Gooderham et al., 2018). Currently, dupilumab is the

only biologic medication approved by the US FDA for moderate-to-

severe AD in adults and children, which can significantly improve

symptoms and life quality of patients suffering from AD worldwide

(Guttman-Yassky et al., 2019; Ariëns et al., 2020; Simpson et al.,

2021; Zhao et al., 2022; Simpson et al., 2023). Interestingly,

dupilumab rapidly reduces S. aureus abundance in subjects with

moderate-severe AD, when compared with placebo. Importantly,

patients with the greatest S. aureus reductions had the best clinical

outcomes after dupilumab treatment (Pinter et al., 2019).

Mechanistically, IL-4 receptor a blockade promotes S. aureus

clearance partially by enhancing IL-17A expression from sites of
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allergic skin inflammation (Leyva-Castillo et al., 2023). The clinical

improvement of AD mediated by dupilumab treatment is also

positively correlated with increased microbial diversity

(Callewaert et al., 2020; Olesen et al., 2021). Thus, dupilumab

treatment changes the skin microbiome and ameliorates disease

severity in AD. In consistent with this, recent data showed that

dupilumab decreased the Eczema Area and Severity Index (EASI) as

well as the load of S. aureus in AD patients (Lee et al., 2021).

Concurrently, the microbial diversity and the abundance of

Cutibacterium species increased (Lee et al., 2021), which were

correlated with stratum corneum hydration levels and EASI

improvement, suggesting that Th2 blockade-induced skin

microbiotal normalization is associated with improved skin

barrier properties in AD. Moreover, systemic dupilumab

treatment tends to shift the skin microbiome of patients with

moderate-to-severe AD toward a healthy skin flora, which is

largely independent of the clinical response, indicating its direct

regulation on the skin microbiome (Hartmann et al., 2023).
8 The implication of skin microbiota in
AD treatment

Alteration of the skin microbiota, especially the S. aureus

colonization, is closely associated with disease severity in AD

(Hendricks et al., 2019). Accordingly, commensal skin bacterium

decolonizating S. aureus holds therapeutic benefits for AD

patients (Table 2).
8.1 Topical R. mucosa transplantation is a
safe and potent therapy in AD treatment

The culturable gram-negative bacteria from healthy people but

not from AD patients are associated with enhanced barrier

function, activated immunity, and controlled S. aureus

colonization (Myles et al., 2016). Particularly, one commensal,

Roseomonas mucosa (R. mucosa) from healthy skins, improves

disease severity of AD in a mouse model, suggesting its

therapeutic potential for AD treatment (Myles et al., 2016).

Recently, a first-in-human topical microbiota transplantation

using R. mucosa was conducted for AD treatment. In the open-

labeled trial, AD patients topically treated with R. mucosa showed

decreased S. aureus burden and disease severity, with no adverse

events (Myles et al., 2018), supporting the efficacy and safety of R.

mucosa therapy in AD treatment. More recently, a randomized and

placebo-controlled trial of R. mucosa treatment in children with AD

was conducted. In this trial, R. mucosa ameliorated disease severity,

improved skin barrier function, decreased S. aureus abundance on

the skin, and reduced topical steroid use without severe adverse

events (Myles et al., 2020), further confirming that topical R.

mucosa transplantation in AD patients is warranted.

To enhance the effects of R. mucosa transplantation long-

termly, a living bacterial formulation that integrates R. mucosa

with poly (vinyl pyrrolidone), poly (vinyl alcohol), and sodium
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alginate into a skin dressing was developed (Liu et al., 2022).

Functionally, the skin dressing recovers skin barrier functions and

alleviates AD-associated inflammation. Meanwhile, it serves as

extrinsic culture harbors and nutrient suppliers to support R.

mucosa survival (Liu et al., 2022), offering a clue that the

combination of topical bacteria transplant with biomaterials

represents an effective bacteriotherapy toward AD treatment.
8.2 CoNS transplantation represents a
potential herapy in AD treatment

As outlined in “2.2 Section”, the skin commensals, coagulase-

negative staphylococci (CoNS) species residing on normal skins,

inhibit S. aureus growth and development of AD (Nakatsuji et al.,

2017; Paharik et al., 2017; Williams et al., 2019). Interestingly, S.

aureus burden on the lesional skins of patients who received

autologous antimicrobial-producing CoNS (CoNS-AM+)

treatment was reduced by 99.2% compared with vehicle

treatment, in a double-blind, vehicle-controlled, and single-center

randomized trial (Nakatsuji et al., 2021a). Meanwhile, no serious

adverse events were observed after treatment. Importantly, the

autologous CoNS-AM+ treatment improved clinical outcomes in

AD patients (Nakatsuji et al., 2021a), suggesting that autologous

CoNS strains can safely decrease S. aureus colonization and

improve disease severity.

Staphylococcus hominis A9 (ShA9), a bacterium isolated from

healthy human skins, kills S. aureus on the skin of mice and inhibits

PSMa expression from S. aureus (Nakatsuji et al., 2017; Nakatsuji

et al., 2021b). Additionally, a first-in-human trial of topical ShA9 on

the skins of adults with S. aureus-positive AD was conducted. The

topical ShA9 treatment showed few adverse events on participants,

while a significant decrease in S. aureus was observed after ShA9

treatment (Nakatsuji et al., 2021b). Although some S. aureus strains

on participants were not directly killed by ShA9, mRNA expression

of PSMa was inhibited in all strains. The post-hoc analysis revealed

improvement in disease severity by ShA9 (Nakatsuji et al., 2021b),
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demonstrating the benefits of ShA9 bacteriotherapy for

AD treatment.

S. epidermidis is a well-known commensal bacteria that

selectively kills S. aureus (Nakatsuji et al., 2017), suggesting its

protective role against AD. On the agar well diffusion assay, live

planktonic S. epidermidis clearly inhibits S. aureus growth, but heat-

killed cells do not show this effect (Jang et al., 2020), leading to the

hypothesis that cytoplasmic bacteriocin from S. epidermidis could

be a promising agent to inhibit S. aureus growth. In fact, a novel

thermolabile cytoplasmic bacteriocin extracted from S. epidermidis

exhibits selectively antimicrobial activity against S. aureus and

methicillin-resistance S. aureus (Jang et al., 2020). However, more

data should be obtained to confirm its potency and safety, before its

clinical use for AD treatment.
8.3 Additional products targeting the skin
microbiota in AD treatment

Antibiotics specific for bacterial species including C. mastitidis,

S. aureus, and C. bovis, almost completely reverse dysbiosis and

eliminate the skin inflammation in mouse models (Kobayashi et al.,

2015). However, it should be concerned that the use of antibiotics

may trigger antibiotic resistance and more serious dysbiosis.

ATx201 (niclosamide, a small molecule), was recently reported to

reduce both S. aureus and methicillin-resistant S. aureus

colonization, without affecting the skin commensals (Weiss et al.,

2022). Additionally, in a phase 2 trial, ATx201 ointment effectively

reduced S. aureus colonization and increased the Shannon diversity

of skin microbiomes in patients with mild-to-severe AD (Weiss

et al., 2022), revealing that small molecules could work as a

decolonizing agent in AD treatment.

Probiotics are potent immune-modulators used in AD

management (Dissanayake and Shimojo, 2016; Fanfaret et al.,

2021; Herbert et al., 2023). A cosmetic lotion containing heat-

treated Lactobacillus johnsonii NCC 533, was recently

demonstrated to control S. aureus colonization as well as improve
TABLE 2 Representative microbiota-based therapies applied in AD treatment.

Names of
bacteria
applied

Experimental
models/Clinical
studies

Outcomes/Results Refs

Roseomonas mucosa
(R. mucosa)

Mouse model of AD, open-
labeled trial, and randomized
and placebo-controlled trial

R. mucosa from healthy people improved outcomes in mouse model of AD.
Clinically, R. Mucosa significantly decreased S. aureus burden and disease severity
in both adult and pediatric patients, with few/no adverse events

(Myles et al., 2016; Myles
et al., 2018; Myles et al.,
2020; Liu et al., 2022)

Autologous
antimicrobial-
producing CoNS
(CoNS-AM+)

Double-blind, vehicle-
controlled and single-center
randomized clinical trial

CoNS-AM+ treatment improved clinical outcomes and reduced S. aureus
colonization on lesional skin of AD patients, with no serious adverse
events observed

(Nakatsuji et al., 2021a)

Staphylococcus
hominis A9 (ShA9)

AD mouse model and a phase
1, double-blinded,
randomized trial

ShA9 killed S. aureus and inhibited PSMa expression in the mouse model.
Meanwhile, ShA9 improved the disease severity, decreased the S. aureus burden
with few adverse events in AD patients

(Nakatsuji et al., 2021b)

S. epidermidis Agar well diffusion assay, in
vitro model

Live planktonic S. epidermidis inhibited S. aureus growth. Additionally,
thermolabile cytoplasmic bacteriocin extracted from S. epidermidis exhibited
selectively antimicrobial activity against S. aureus and methicillin-resistance
S. aureus

(Nakatsuji et al., 2017;
Jang et al., 2020)
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clinical outcomes in AD patients, supporting the development of

topical lotion containing probiotics for AD treatments (Blanchet-

Réthoré et al., 2017). More recently, ointment containing live

Lactobacillus reuteri DSM 17938 was also shown to improve the

local symptoms in adult AD patients (Butler et al., 2020). Most

importantly, Lactobacillus reuteri DSM 17938 is cutaneously

acceptable and safe, confirming that probiotics are safe and

promising therapeutics in the management of AD.

Natural products represent new therapeutics combating against

AD. Aquaphilus dolomiae (ADE) is an aqueous protein extract,

which increases IL-10 expression in monocyte-derived dendritic

cells (moDC) (Martin et al., 2016). Meanwhile, ADE-moDC

counteracts the proliferative effect and mitogenic effect of S. aureus

on CD4+ T cells (Martin et al., 2016). Thus, owing to the role of S.

aureus in driving inflammation in AD, the immunosuppressive

property of the ADE might be useful to reduce disease severity.

Moreover, topical application of a Castanea sativa extract prevents

the progression of AD, through increasing filaggrin, claudin-1, and

loricrin expression, while decreasing S. aureus virulence (Cadau et al.,

2022), further confirming that natural products hold great potential

for AD treatment.
9 Prospects and perspectives

The dysbiosis of skin microbiota is widely accepted as

important mechanisms in the pathogenesis of AD. Specifically,

the decreased microbial diversity and increased S. aureus

colonization are closed associated with disease severity in AD.

Meanwhile, therapeutics targeting the cutaneous microbiota

represent a novel strategy for AD treatment. Despite the

significant potential of microbiota-based therapies for AD, the

treatment of dysbiosis should be integrated with standard

skincare practices, since AD is a complex skin disorder that

requires a multifaceted approach, incorporating various skincare

modalities and treatments for effective management. Although

numerous studies, even several early phage clinical trials have

shown that skin microbiota-based therapeutics hold great promise

for the treatment of AD, the precise mechanisms remain to be

elucidated, and many problems remain to be solved for their better

clinical applications. For instance, current studies mainly focus on

the role of skin microbiome in AD pathogenesis and its potential

use in AD treatment. However, we cannot ignore that changes and

dysregulations of skin microbiome can work as biomarkers for AD

diagnosis, especially now that a variety of non-invasive sampling

methods are developed (Elpa et al., 2021; Andersson et al., 2022;

Shima et al., 2022). Meanwhile, we need to build/construct a

systematic model, which comprehensively considers the skin

microbiota and host as a whole that involved in the management

of AD, since skin microbiota is affected by multiple internal and

external factors during AD pathogenesis. The current researches

regarding the interaction between skin microbiota and AD were

mainly conducted on cellular or mouse models, some were

conducted on preclinical or phase I/II clinical models, thus there

is still a long way to go before these investigations can be truly

applied to the clinic. However, we are confident about the
Frontiers in Cellular and Infection Microbiology 11
application prospects of skin microbiota-based therapeutics and

believe that theses therapeutics can be widely promoted for AD

treatment in the near future.
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Amato, K. R. (2020). Infant skin bacterial communities vary by skin site and infant age
frontiersin.org

https://doi.org/10.1016/j.jaad.2017.12.022
https://doi.org/10.1136/bmjopen-2021-053488
https://doi.org/10.1016/j.jaci.2018.08.022
https://doi.org/10.1016/j.jid.2023.03.1682
https://doi.org/10.3389/fmicb.2022.944365
https://doi.org/10.3389/fmicb.2022.944365
https://doi.org/10.1046/j.1365-4362.2000.00840.x
https://doi.org/10.1016/j.jid.2017.09.023
https://doi.org/10.1111/all.15742
https://doi.org/10.1111/cea.13136
https://doi.org/10.1016/j.jdermsci.2019.07.001
https://doi.org/10.1093/ced/llac138
https://doi.org/10.1007/s40257-013-0033-9
https://doi.org/10.1007/s40257-013-0033-9
https://doi.org/10.3109/09546634.2015.1093586
https://doi.org/10.1016/j.jaci.2024.03.025
https://doi.org/10.1111/bjd.20831
https://doi.org/10.1542/peds.2008-2217
https://doi.org/10.1016/j.jaip.2020.05.014
https://doi.org/10.1111/all.14461
https://doi.org/10.1016/j.jdermsci.2017.08.001
https://doi.org/10.1111/bjd.18597
https://doi.org/10.1111/bjd.18597
https://doi.org/10.3390/pathogens9020087
https://doi.org/10.1136/gutjnl-2024-332407
https://doi.org/10.3390/ijerph17093326
https://doi.org/10.3390/ijerph17093326
https://doi.org/10.1111/ijd.12198
https://doi.org/10.1080/1744666X.2020.1672537
https://doi.org/10.1080/1744666X.2020.1672537
https://doi.org/10.1016/j.jaci.2016.07.029
https://doi.org/10.1016/j.jaci.2016.07.029
https://doi.org/10.3389/fcimb.2021.720674
https://doi.org/10.1016/j.immuni.2015.03.014
https://doi.org/10.1111/phpp.12250
https://doi.org/10.1111/phpp.12531
https://doi.org/10.2340/00015555-3089
https://doi.org/10.1371/journal.pone.0141067
https://doi.org/10.1016/S0140-6736(20)31286-1
https://doi.org/10.4168/aair.2021.13.5.762
https://doi.org/10.1016/j.jaci.2023.05.025
https://doi.org/10.1016/j.jid.2017.11.034
https://doi.org/10.1016/j.jid.2017.11.034
https://doi.org/10.1016/j.jid.2019.02.009
https://doi.org/10.1007/s40257-020-00538-8
https://doi.org/10.1016/j.chom.2017.10.006
https://doi.org/10.1016/j.chom.2017.10.006
https://doi.org/10.1016/j.bioactmat.2022.08.019
https://doi.org/10.1016/j.bioactmat.2022.08.019
https://doi.org/10.1016/j.jdermsci.2020.10.004
https://doi.org/10.1016/j.jdermsci.2020.10.004
https://doi.org/10.1111/exd.14217
https://doi.org/10.1111/exd.14217
https://doi.org/10.1159/000515236
https://doi.org/10.1371/journal.pone.0252272
https://doi.org/10.3389/fcimb.2024.1518811
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Huang et al. 10.3389/fcimb.2024.1518811
across populations in Mexico and the United States. mSystems 5, e00834–e00820.
doi: 10.1128/mSystems.00834-20

Margolis, D. J., Apter, A. J., Gupta, J., Hoffstad, O., Papadopoulos, M., Campbell, L.
E., et al. (2012). The persistence of atopic dermatitis and filaggrin (FLG) mutations in a
US longitudinal cohort. J. Allergy Clin. Immunol. 130, 912–917. doi: 10.1016/
j.jaci.2012.07.008

Margolis, D. J., Mitra, N., Wubbenhorst, B., D’Andrea, K., Kraya, A. A., Hoffstad, O.,
et al. (2019). Association offilaggrin loss-of-function variants with race in children with
atopic dermat i t i s . JAMA Dermato l . 155, 1269–1276 . doi : 10 .1001/
jamadermatol.2019.1946
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