Skip to main content

ORIGINAL RESEARCH article

Front. Cell. Infect. Microbiol.
Sec. Clinical Microbiology
Volume 14 - 2024 | doi: 10.3389/fcimb.2024.1511122
This article is part of the Research Topic Synergistic Approaches to Managing Gram-negative Bacterial Resistance View all 9 articles

Acinetobacter baumannii Infection in Critically ill Patients with COVID-19 from Tehran, Iran: the prevalence, antimicrobial resistance patterns and molecular characteristics of isolates

Provisionally accepted
  • Tehran University of Medical Sciences, Tehran, Iran

The final, formatted version of the article will be published soon.

    Background: The COVID-19 pandemic has led to the excessive use of antimicrobials in critically ill patients. Infections caused by Acinetobacter baumannii have increased significantly both regionally and globally during the COVID-19 pandemic, posing dramatic challenges for intensive care unit (ICU) patients. This study aimed to determine the prevalence, antimicrobial resistance patterns, presence of selected antimicrobial resistance genes, and genetic diversity of A. baumannii isolates obtained from COVID-19 cases admitted to the ICU at the University Hospital in Iran. Materials and methods: This was a cross-sectional and single-center study comprising patients with A. baumannii infections admitted to the ICU with COVID-19 between April and November 2021. The demographic and clinical data of the patients were collected. Antimicrobial susceptibility testing was conducted based on Clinical Laboratory Standards Institute guidelines. This study used PCR and multiplex PCR to investigate antibiotic resistance genes (ARGs) and global clones (GC), respectively. Genetic diversity was investigated by repetitive element sequence-based PCR (REP-PCR).The prevalence of A. baumannii coinfection in COVID-19 cases was 8.1% (43/528).More than 90% (39/43) of A. baumannii isolates were resistant to cefepime, ampicillin-sulbactam, gentamicin, trimethoprim-sulfamethoxazole and amikacin. Furthermore, 44.2% (19/43) of isolates were resistant to colistin. There were 91% (39/43) isolates that were extensively drugresistant (XDR). The most prevalence carbapenem resistance encoding genes were bla-OXA-23 65.1% (29/43) and blaNDM 41.8% (18/43). The most common aminoglycoside resistance genes were aac(6')-Ib 65.1% (28/43) and ant(2)-Ia 46.5% (20/43). Isolates from the prominent Global clone GCII comprised 83.7% (36/43) of total isolates. Genetic fingerprinting using REP-PCR revealed that 39 typeable A. baumannii isolates were categorized into 12 distinct genotypes, of which 72% (28/39) of isolates belonged to one genotype.The high prevalence of XDR A. baumannii such as carbapenem and colistin-resistant strains, poses a significant concern for the treatment of COVID-19 patients, heightening the risk of therapeutic failure. The data demonstrate the dissemination of a single A. baumannii clone carrying multiple ARGs within our hospital. Regarding the limited therapeutic options, it is crucial to implement effective prevention and containment policies to curb the spread of these strains.

    Keywords: Acinetobacter baumannii, SARS-CoV-2, Co-infection, antibiotic resistance, Resistance genes, Global clones, ICU, Rep-PCR

    Received: 14 Oct 2024; Accepted: 30 Dec 2024.

    Copyright: © 2024 Ghamari, Jabalameli, Afhami, Halimi, Emaneini and Beigverdi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Reza Beigverdi, Tehran University of Medical Sciences, Tehran, Iran

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.