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Rising stars in parasite and host: 2023
We are at a time in science with great prospects for significant contributions from rising

stars in parasitology. This field is being enhanced by major discoveries and developments in

molecular and cell biology; particularly the rapid advances in genomics, other “omics” and

high-throughput technologies. The application of molecular techniques from PCR to

single-cell sequencing has been instrumental in advances in the detection, tracking and

characterization of protozoan parasites. The knowledge gained has been utilized to

investigate the evolution, epidemiology and biology of these microscopic organisms.

In recent years, the field of molecular biology and genetics of parasites has witnessed

remarkable evolution, particularly in the realms of genomics and high-throughput next-

generation sequencing (NGS). The advent of NGS technologies has revolutionized our

understanding of the complexity and functionality of their genomes. These advances have

enabled the comprehensive analysis of many parasite genomes, leading to the identification

of numerous genetic variations and their unique characteristics.

The integration of NGS with ‘omics’ approaches, such as transcriptomics, proteomics,

and metabolomics, has facilitated a more holistic view of parasite biological systems. This

synergy has been pivotal in unraveling the intricate networks of gene expression regulation,

protein interactions, and metabolic pathways. The application of NGS in omics studies has

also accelerated the discovery of markers for parasite diagnosis, epidemiology, and

therapeutic target identification.

Molecular parasitology has greatly benefited from these technological strides, allowing for

the exploration of genetic landscapes in diverse parasites with unprecedented resolution. The

use of NGS in molecular genetics has provided insights into the mechanisms of parasite

biology, life cycle stages and host interactions. The field of genomics has expanded our

knowledge of numerous genomes with the Welcome Sanger Institute listing 25 annotated

parasitic protozoan genomes. Efforts to further expand the number of known protist genomes

have led to the sequencing of 629 species (Genomes Online Database (GOLD), Joint Genome

Institute) and the Protist 10,000 Genomes Project (https://ngdc.cncb.ac.cn/p10k/). This

project is currently sequencing 1101 new species and has the goal of sequencing 10,000

of the 60,000-200,000 protist species. This has had significant implications for

understanding parasite evolution, metabolism, and host evasion.

Advances in molecular biology, genetics, and genomics have also been instrumental in

the response to global health challenges. Indeed, the COVID-19 pandemic showed how

these technologies could be applied on a global scale with technologies such as RT-PCR and
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NGS, which played a crucial role in the rapid sequencing of the

SARS-CoV-2 genome. These techniques, applied in hundreds of

testing facilities, were essential to the development of diagnostic

tests, vaccines and treatments. Their applications have permitted

strain detection, monitoring of viral evolution, and tracking.

In this Research Topic a series of articles written by rising stars in

parasitology apply the transformative developments in molecular

biology, molecular genetics and genomics driven by advances in NGS

and omics technologies, to expand our understanding of parasitic

infections and parasite biology. These breakthroughs have not only

deepened our understanding of parasites at the molecular level, but

have also opened new avenues of scientific research, with far-reaching

implications for disease diagnosis and treatment.

The articles in this Research Topic study parasitic protozoa in the

phyla Euglenozoa, Metamonada and Apicomplexa with the early-

branching kinetoplastid Trypanosoma brucei and Giardia and

Hemosporidia, respectively. Apicomplexa is a large phylum that

includes Plasmodium, the agent responsible for malaria.

Plasmodium species are host-specific with five species (out of

hundreds described) infecting humans. The coccidial Apicomplexa

Cryptosporidium, Cystoisospora and Toxoplasma (which escape the

gut to become systemic) are zoonotic and can be transmitted between

animals and humans. These coccidia are intestinal parasites as are

Giardia and Blastocystis which are studied in the articles.

Trypanosoma brucei, the agent responsible for African sleeping

sickness, represents the flagellated kinetoplastids.

Among the Research Topic in Rising Stars in Parasite and Host:

2023 articles apply molecular biology techniques for the

identification, epidemiology, evolution, and diagnosis of parasitic

infections. Three of the articles (Yun et al.; Musa et al.; Mei et al.)

use molecular techniques involving DNA amplification and

sequencing for the detection and characterization of parasitic

protozoa with applications in diagnosis, screening, and

epidemiology. Mutant libraries of T. brucei were developed for

unbiased scanning of residue contributions in one study

(McDermott et al.).

Articles in the Research Topic employ molecular parasitology to

investigate differences in life cycle stages and host interactions.

Post-transcriptional mRNA editing investigations in T. brucei

found life cycle stage differences between stages in the vertebrate

host and stages in the insect vector in one study (McDermott et al.).

T. gondii infection prompts a systemic immune response but

parasites that reach immunoprivileged tissues convert to slow-

growing tissue cyst forms that evade removal, establishing a

chronic infection. The early immune responses of a type III

lineage strain of T. gondii were described in another study.

Immune markers using qRT-PCR found that rather than the

association of strain type with particular markers, the immune

response was associated with the mortality rate of the isolate

(Uzelac et al.). In highly complex and poorly understood host-

parasite interactions, T. gondii induces host manipulation and

behavioral changes in animals that are advantageous in the

transmission of the parasite to the definitive host (termed ‘fatal

feline attraction). Changes at the molecular level in microflora,

neurotransmission and immune activation were evaluated in the

final paper of this series (Prandovszky et al.).
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The intestinal protozoan Blastocystis, a member of the

Stramenopiles, responsible for diarrhea and gastrointestinal

problems has traditionally been diagnosed microscopically by

fecal smear. In this series, Mei et al. developed isothermal

polymerase amplification with lateral flow detection as a rapid,

sensitive, specific detection by dipstick. The test was consistent with

the sensitivity of previous PCR assays of fecal samples and was

highly specific for this pathogen. The assay is rapid, easy and does

not require microscopy expertise.

Detection and differentiation of the intestinal parasites

Cryptosporidium, Cystoisospora, and Giardia duodenalis and species

identification were completed by PCR and sequencing of fecal

samples in one of the studies (Yun et al.). Molecular phylogenetic

analysis identified subspecies of Giardia in assemblages A, B and C.

By this approach zoonotic protozoan parasites were identified and

characterized in feline populations.

Molecular detection and identification were again applied in a third

paper in the series. This time avian infections to differentiate species of

Hemosporidia. The initial development of genus-specific detection of

avian Plasmodium infection by PCR with species identification by

sequencing was conducted in 1996 (McConkey et al., 1996) This has

grown as a method for species identification. In the study in the series

presented here, a nested PCR approach was developed using

broad Hemosporidia primers for the initial PCR with subsequent

nested PCR for genus-specific amplification (Musa et al.) PCR

detection is challenging in birds due to the nucleated red blood

cells that increase the background. Lineages of Plasmodium,

Hemoproteus and Leucocytozoa were detected in a large collection

of blood samples from passerine birds by the nested PCR protocol

and sequencing.

To uncover the functional characteristics of a protein central to

RNA editing in the parasitic protozoa trypanosomes, a high

throughput mutational screening of mutant libraries was

developed. As an early divergent group, characterization in

comparative, bioinformatic analysis is hampered by low homology

to known proteins; necessitating experimental mutant analysis. RNA

editing in kinetoplastid mitochondria involves uridine insertions and

deletions to generate open reading frames in mRNAs. In this study,

thousands of variants were tested for their effect on parasite growth in

bloodstream forms (McDermott et al.). This permitted the detection

of amino acid residues that are functionally involved but not

apparent from conservation in sequence alignments for this

highly divergent organism. RNA editing variants differed in their

phenotype between vertebrate bloodstream and insect host stages of

their life cycle.

Host interactions were further investigated in the study of early

immune responses in type III T. gondii (Uzelac et al.). The genus

Toxoplasma contains a single species but this species is composed

of several strains with the three archetypes, type I, type II, and

type III, which are distributed globally. The types differ in virulence

with type I being virulent in mice and types II and III being non-

virulent. Type II strains dominate human infections and are most

commonly associated with AIDS patients. Most prevalent in

immunocompetent individuals with severe ocular toxoplasmosis

are type I genotype parasites. Type I is also associated with

severe congenital toxoplasmosis. Strain-specific differences in
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immune responses were recently reviewed by Saeij’s group

(Mukhopadhyay et al., 2020). Type I and III strains induce a

much milder pro-inflammatory response than type II strains.

Type III strains, which do not express the parasitic rhoptry

protein ROP18, are sensitive in mice to cellular immune-related

genes that destroy parasitic vacuoles and hence rely on the virulence

factor ROP16 to dampen the initial immune response early after

infection. In the study in this series, isolates of different virulences

were examined for cytokine levels and an immune marker by qRT-

PCR found elevated systemic IFNg in a high mortality strain while it

was down-regulated in isolates with low mortality rates in mice.

Arguably one of the most interesting facets of biology, at the

interface of the parasite with the host, is the altered host behavior

induced by infection. This effect of T. gondii on mammals was

presented by Prandovszky et al. During stages of chronic infection,

when the parasite is encysted in neurons in the host brain, changes

in the behavior of the intermediate host have been observed

(reviewed in Chapter here) (Cairney and A., 2024). Notably,

infected rodents exhibit increased exploratory activity, delayed

arousal and loss of their innate fear of cat odors (Webster, 1994;

Vyas et al., 2007; Ihara et al., 2016; Alsaady et al., 2019). Behavioral

changes have been observed in a variety of infected intermediate

hosts ranging from rodents, wolves and chimpanzees to humans

(Flegr et al., 2002; Poirotte et al., 2016; Meyer et al., 2022).

Seroprevalence of T. gondii has been associated with

schizophrenia in numerous studies (Sutterland et al., 2015).

Alterations in neurotransmission have been observed with

changes in neurotransmission. The levels of catecholamines and

dopaminergic and noradrenergic signaling are altered during

chronic infection (Xiao et al., 2014; Alsaady et al., 2019; Boillat

et al., 2020; Cromar et al., 2022; Tedford et al., 2023). Changes have

also been seen in the distribution of the g-aminobutyric acid

biosynthetic enzyme GAD67, decreased glutamate transporter in

astrocytes, and dendritic spine loss.

The number and types of contributors to these neurological and

behavioral changes during T. gondii infection remain unclear.

Immune activation, parasite products, neuronal signaling,

and changes in the microflora have been posited. Intriguingly,

even mice infected with an attenuated strain of T. gondii

maintain their changes in behavior when the parasite is no longer

detectable in the brain; implicating a long-term or permanent host

change (Ingram et al., 2013), which could support the involvement
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of immune dysfunction, epigenetic changes in the host brain, or

microflora dysbiosis induced by infection. Indeed, elevated levels of

pro-inflammatory cytokines correlated with increased behavioral

changes (Boillat et al., 2020). Recently, T. gondii infection was found

to induce DNA methylation changes in the vasopressin receptor

gene and the key gene for norepinephrine synthesis in the brain

and, importantly, paracrine signaling of the epigenetic changes via

extracellular vesicles to uninfected bystander neurons was observed

(Hari Dass and Vyas, 2014; Tedford et al., 2023). Evidence of gut

microflora changes has been observed during chronic infection;

with enrichment of Bacteroidetes (Prandovszky et al., 2018). Acute

infection of the intestine induces dysbiosis and an imprint is

maintained during chronic infection with multiple studies

reporting an enrichment in the Verrucomicrobia. In the review in

this Research Topic, several possible contributors are discussed with

a focus on the potential role/s of gut microbial dysbiosis.
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