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The pathogenesis of long COVID (LC) still presents many areas of uncertainty.

This leads to difficulties in finding an effective specific therapy. We hypothesize

that the key to LC pathogenesis lies in the presence of chronic functional damage

to the main anti-inflammatory mechanisms of our body: the three reflexes

mediated by the vagus nerve, the hypothalamic-pituitary-adrenal (HPA)

hormonal axis, and the mitochondrial redox status. We will illustrate that this

neuro-endocrine-metabolic axis is closely interconnected and how the SARS-

CoV-2 can damage it at all stages through direct, immune-inflammatory,

epigenetic damage mechanisms, as well as through the reactivation of

neurotropic viruses. According to our theory, the direct mitochondrial damage

carried out by the virus, which replicates within these organelles, and the cellular

oxidative imbalance, cannot be countered in patients who develop LC. This is

because their anti-inflammatory mechanisms are inconsistent due to reduced

vagal tone and direct damage to the endocrine glands of the HPA axis. We will

illustrate how acetylcholine (ACh) and cortisol, with its cytoplasmatic and cellular

receptors respectively, are fundamental players in the LC process. Both Ach and

cortisol play multifaceted and synergistic roles in reducing inflammation. They

achieve this by modulating the activity of innate and cell-mediated immunity,

attenuating endothelial and platelet activation, and modulating mitochondrial

function, which is crucial for cellular energy production and anti-inflammatory

mechanisms. In our opinion, it is essential to study the sensitivity of the

glucocorticoids receptor in people who develop LC and whether SARS-CoV-2

can cause long-term epigenetic variations in its expression and function.
KEYWORDS

long COVID, vagus nerve dysfunction, hypothalamic-pituitary-adrenal axis reflex,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2024.1501949/full
https://www.frontiersin.org/articles/10.3389/fcimb.2024.1501949/full
https://www.frontiersin.org/articles/10.3389/fcimb.2024.1501949/full
https://www.frontiersin.org/articles/10.3389/fcimb.2024.1501949/full
https://www.frontiersin.org/articles/10.3389/fcimb.2024.1501949/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2024.1501949&domain=pdf&date_stamp=2024-12-13
mailto:marta.camici@inmi.it
https://doi.org/10.3389/fcimb.2024.1501949
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2024.1501949
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Camici et al. 10.3389/fcimb.2024.1501949
Introduction

Long COVID (LC) was redefined by the US National Academies

of Sciences, Engineering, and Medicine as “an infection-associated

chronic condition that occurs after severe acute respiratory syndrome

Coronavirus 2 (SARS-CoV-2) infection, present for at least three

months, manifesting as continuous, relapsing, or progressive disease

affecting one or more organ systems” (A Long COVID Definition: A

Chronic, Systemic Disease State with Profound Consequences, 2024).

This consensus classified LC among chronic health issues following

infections of any kind, such as myalgic encephalomyelitis/chronic

fatigue syndrome (ME/CFS) and Lyme-associated chronic illness,

without needing laboratory confirmation of the initial infection (A

Long COVID Definition: A Chronic, Systemic Disease State with

Profound Consequences, 2024). LC can worsen preexisting conditions

or emerge as new issues, impacting individuals’ ability to work, attend

school, care for families, and manage self-care. A recent meta-analysis

found that nearly half of Coronavirus disease 2019 (COVID-19)

survivors reported lingering symptoms around 120 days post-

recovery, with about almost 7.3% developing high-morbidity LC,

predominantly affecting young, productive individuals (Mastrorosa

et al., 2023). In minors, LC is linked to a more severe acute illness

requiring hospitalization, whereas in adults, it often occurs in those

with mild to moderate COVID (Su et al., 2022). Risk factors for

developing LC include female sex (Bai et al., 2022), multimorbidity,

unvaccinated status (Robertson et al., 2023), EBV reactivation,

autoimmunity disorders, asthma, type 2 diabetes (Su et al., 2022),

attention deficit hyperactivity disorder (ADHD), chronic urticaria and

allergic rhinitis (Merzon et al., 2022), although a third of people with

LC have no identified pre-existing conditions (Davis et al., 2023).

Unfortunately, no biological marker for LC has been found, and no

cures exist, with spontaneous recovery being rare (Ely et al., 2024).

Actually, various pathogenetic mechanisms of LC have been proposed,

including persistent infection, autoimmunity, antigenic mimicry,

mitochondrial damage, vagus nerve (VN) injury (Woo et al., 2023),

hypercoagulability, microbiota alterations (Alvarez-Santacruz et al.,

2024), neurotropic virus reactivation, hypothalamic-pituitary-adrenal

(HPA) gland axis dysfunction, and epigenetic modification in gene cell

expression (Cheong et al., 2023). Different clinical form of LC have

been identified, based on symptoms, but it remains unclear if they

reflect distinct pathogenetic pathways. SARS-CoV-2 infection likely

has a pleiotropic effect, with multiple causative pathways present

concurrently. Notably, LC symptoms fluctuate unpredictably, and

the hierarchy and relationships between these mechanisms are still

not fully understood, nor is it clear if a common thread connects them.
Vagus nerve damage may play a
central role in long COVID
pathogenesis, potentially reducing the
body’s anti-inflammatory response
and mitochondrial cell function

Our hypothesis proposes that VN damage is a primary

contributor to LC development, leading to dysautonomia and
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disruption of key anti-inflammatory pathways, and mitochondrial

function (VanElzakker, 2013). SARS-CoV-2 has been shown to induce

both direct and indirect VN damage (Andersson and Tracey, 2024).

Woo et al. conducted a post-mortem analysis demonstrating direct

SARS-CoV-2 infection of the VN, accompanied by significant

neuroinflammation (Woo et al., 2023). Specifically, by studying cells

gene expression, they observed increased interferon (IFN) signaling in

activated monocytes, glial cells, endothelial cells, and Schwann cells

within brain tissue, irrespective of viral load (Woo et al., 2023).

Conversely, SARS-CoV-2 RNA load in vulnerable neurons showed

a positive correlation with upregulation of stress responsemechanisms

(e.g., autophagy, proteasomal breakdown). However, these higher

levels of intracellular SARS-CoV-2 RNA were also associated with

reduced activity in genes responsible for neurotransmitter signaling

and neuronal transport, showing a dose-dependent direct VN damage

and a dose independent neuroinflammatory response (Woo et al.,

2023). Moreover, autoantibodies targeting receptors involved in the

vagal anti-inflammatory reflex have been found in convalescent

COVID-19 patients, indicating potential functional impairment

beyond nerve damage (Dobrowolska et al., 2023). In addition to the

VN impairment mechanisms already mentioned, alterations in

coagulation and the reactivation of herpes viruses can collaborate to

neurotoxicity (VanElzakker, 2013). Interestingly, VN dysfunction

triggered by SARS-CoV-2 infection occurs early on during the

infection and contributes to the virus’s virulence. In the acute phase,

the impairment of the anti-inflammatory reflex may sustain the

development of severe cytokine storms, leading to conditions like

Acute Respiratory Distress Syndrome (ARDS) and micro embolisms,

which increase organ damage and worsen prognosis severity

(Johnston and Webster, 2009; Song et al., 2020). Accordingly, Woo

et al. found that COVID-19 patients who died exhibited a lower

respiratory rate compared to survivors, even in the presence of

elevated blood carbon dioxide and severe respiratory insufficiency.

This finding suggests that damage to the VN, resulting in autonomic

dysfunction,may contribute to respiratory failure in severe COVID-19

cases (Woo et al., 2023).

In the post-COVID phase, impaired vagal signaling could have a

pivotal role in preventing the body from restoring inflammatory

balance, ultimately perpetrating the LC syndrome (Llados et al.,

2024). To strengthen our position, this mechanism was already

postulated in a cohort of patients affected by irritable bowel

syndrome (IBS) and Crohn’s disease (CD) (Pellissier et al., 2014).

In fact, this relevant research found that healthy individuals with

higher vagal tone in the morning, defined as an high heart rate

variability (HRV), tended to have lower cortisol levels in the evening

(Pellissier et al., 2014). This inverse relationship proves the clear

neuroendocrinal correlation between VN and axis and suggests that

greater vagal tone is associated with better regulation of the stress

hormone cortisol (Pellissier et al., 2014). Interestingly, this

correlation was not observed in patients with IBS, suggesting an

impairment in the vagal anti-inflammatory mechanisms. Further

supporting this finding, lower vagal tone in CD patients correlated

with higher levels of the inflammatory marker tumor necrosis factor-

alpha (TNF-a) (Pellissier et al., 2014). The same study underlined

that IBS patients with low vagal tone display high epinephrine levels,

indicating heightened and potentially maladaptive sympathetic
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nervous system activity (Pellissier et al., 2014). Accordingly, HRV

was found to be reduced in LC patients compared to a control group,

thus reflecting a reduced VN tone (da Silva et al., 2023).

The VN plays a crucial role in regulating the anti-inflammatory

response and maintaining balance within the neuro-endocrine-
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immune system. This is achieved by stimulating the nucleus of

the solitary tract (NTS) in the medulla oblongata. The NTS,

activated by afferent VN fibers, detects and responds to

inflammatory and immune signals from body tissues, initiating

three separate pathways (Figure 1) (Kaniusas et al., 2020).
FIGURE 1

Anti-inflammatory pathways of the VN disrupted by SARS-CoV-2. 1) The HPA axis reflex (black) depicts the suppression of the hypothalamic-
pituitary-adrenal axis reflex, leading to a reduction in cortisol production by SARS-CoV-2. This reduction in cortisol impairs the regulation of both
innate and adaptive immune responses. Nerve fibers from the NTS stimulate the release of CRH by neurons in the PVH, a hypothalamic nucleus
within the central autonomic network. The CAN, comprised of the thalamus, amygdala, hypothalamus, and brainstem nuclei, integrates emotional,
sensory, and cognitive stimuli to produce autonomic and endocrine responses. 2) The cholinergic anti-inflammatory reflex (green) illustrates the VN
projection to the gastrointestinal tract. This reflex is initiated by afferent fibers from the NTS, which relay peripheral visceral sensory information to
the DMNV. ACh, released from DMNV efferent fibers, finally inhibits cytokine release from intestinal macrophages, thereby mitigating local
inflammation. Moreover ACh suppress platelets activation. 3) The vago-sympathetic pathway (orange) is activated by vagal efferent stimuli originating
from the NTS. This pathway regulates sympathetic outflow, thought the CAN. It targets preganglionic sympathetic neurons in the IML of the spinal
cord and chromaffin cells. This complex network modulates peripheral blood tone, vasoconstriction, and immune responses. Enterochromaffin cells
are involved in the gut metabolism of 5-HT. a7-nAChR, alpha7-nicotinicACh-Receptor; ACh, acetylcholine; ACTH, adrenocorticotropic hormone;
CAN, central autonomic network; DMNV, dorsal motor nucleus of vagus nerve; EPI, epinephrine; HPA, hypothalamic–pituitary–adrenal; IML,
intermediolateral nucleus; NE, norepinephrine; NTS, nucleus tractus solitarius; PVH, parvo-cellular nucleus; VN, vagus nerve; 5-HT, serotonin.
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The hypothalamic-pituitary-adrenal
axis reflex: the neuroendocrine anti-
inflammatory pathway

The VN carries out its anti-inflammatory function by activating

the axis reflex, leading to increased cortisol production. Therefore, it

plays a crucial role in the neuro-immuno-endocrine axis (Figure 1,

Black line).

The efferent A2 noradrenergic group of VN fibers from the NTS

directly activate the secretion of corticotrophin-releasing hormone

(CRH) by the hypothalamic neurons located in the parvo-cellular

PVH nucleus (Kaniusas et al., 2020). This nucleus plays a role

within the central autonomic network (CAN), an intricate network

connecting various nervous centers such as the thalamus, amygdala,

hypothalamus, and brain stem nuclei. Together, these centers

integrate emotional, sensory, and cognitive stimuli to generate

autonomic, behavioral, and endocrine responses. Upon CRH

stimulation, adrenocorticotropic hormone (ACTH) is released

from the pituitary gland. ACTH then travels to the adrenal glands

where it prompts the production of cortisol. Cortisol, in turn,

hinders the activation of both innate immunity (splenic and

tissue macrophages) and adaptive immunity (spleen T-

lymphocytes) via interaction with the glucocorticoid receptor

(GR). Glucocorticoids (GCs) bind to the cytoplasmic GR,

facilitating its translocation into the nucleus as a transcription

factor (Scheinman et al., 1995). A neurovisceral integration model

suggests that impaired VN tone, frequently seen in LC patients

(Acanfora et al., 2022), contributes to chronic changes in cortisol

production and elevated levels of proinflammatory cytokines and

acute-phase proteins (Thayer and Sternberg, 2006).

GCs reduce inflammation in several ways. One key mechanism

is increasing the production of IKBa protein, which blocks the

activity of nuclear factor kappa B (NF-KB), a factor that activates

immune response genes (Auphan et al., 1995). GCs also impact

immune cells like monocytes, macrophages, and T helper (Th)

lymphocytes, influencing their movement, function, and survival

(Quatrini and Ugolini, 2021). For example, GCs can suppress

inflammation in asthma by altering the balance of Th1 and Th2

cells (Hu et al., 2018). Additionally, GCs can increase CXCR4

expression, affecting the migration of B cells (Cain et al., 2020).

Recently, it was discovered that GCs can also activate immune

checkpoints in cytotoxic lymphocytes, further suppressing immune

responses (Quatrini et al., 2018).

During SARS-CoV-2 infection, both vagal signaling and axis

function appear to be impaired, potentially hindering this reflex at

various stages. A comparison of autopsies from individuals who

died from COVID-19 and those who died from influenza revealed

that all COVID-19 patients, but only a small number of influenza

patients, had adrenalitis with significantly more severe damage to

the structure of the adrenal cortex. Additionally, COVID-19

patients with intensive care unit (ICU) stays exceeding one week

showed widespread fibrosis and degeneration of their adrenal

glands (Paul et al., 2022). The same authors demonstrated that

the SARS-CoV-2 virus has a strong affinity for and replicates

effectively in vivo within adrenal cortical cells, which express
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angiotensin converting enzyme 2 (ACE2) and transmembrane

protease serine 2 (TMPRSS2) membrane receptors (Paul et al.,

2022). Intriguingly, a UK study on 353 hospitalized patients with

suspected COVID-19 found that those with confirmed infections

had significantly higher cortisol levels early in their illness

compared to those without COVID-19 (Tan et al., 2020). This

suggests potential adrenal injury and a strong stress response in

COVID-19 patients. Additionally, the high cortisol levels was a

reliable severity disease marker during the acute infection (Tan

et al., 2020). The authors propose that these patients may develop

adrenal insufficiency later in their illness, similar to what has been

seen in patients with prolonged ICU stays (Tan et al., 2020).

Accordingly, impairment of the VN neuro-endocrine reflex,

coupled with potential direct damage to endocrine glands by

SARS-CoV-2, can lead to reduced cortisol secretion, that was an

hallmark of LC (Klein et al., 2023). Notably, a US study identified

lowmorning blood cortisol as a strong predictor of LC development

(Wallukat et al., 2021; Klein et al., 2023). This study also observed a

blunted stress-induced increase in ACTH and a flat diurnal rhythm

of GCs in LC patients, suggesting impaired axis feedback regulation

(Jacobson et al., 1988) as previously observed for SARS-CoV (Leow

et al., 2005). Indeed, after the acute phase of SARS-CoV, many

survivors develop central hypocortisolism, which is characterized

by low or inappropriately normal ACTH levels (Leow et al., 2005).

It is also fascinating that molecular mimicry between ACTH

and the SARS-CoV viruses has been shown (Wheatland, 2004). The

presence of antibodies against SARS-CoV-2 could collaborate to

impair the body’s stress response and potentially impact the cortisol

response during LC (Wheatland, 2004). Even more interesting is the

fact that cortisol seems to directly inhibit the binding of the Spike S1

protein to its intracellular ACE2 receptor, a mechanism that has

been postulated to underlie asymptomatic infections (Sarker et al.,

2022). The central role of adrenal dysfunction in both LC and ME/

CFS is further underscored by the significant overlap of symptoms

with adrenal fatigue (AF). AF, a stress-related disorder, typically

arises when the adrenal glands struggle to meet heightened cellular

energy demands following prolonged stress or trauma (Wilson,

2014). While the similarities in clinical presentation are striking,

unlike LC, AF can often be reversed through significant lifestyle

modifications, dietary adjustments, and supplements, although

recovery may take up to two years (Wilson, 2014).
The cholinergic anti-inflammatory
reflex is fundamental in maintaining
anti-inflammatory and
coagulative homeostasis

The second anti-inflammatory reflex mediated by the VN, the

cholinergic anti-inflammatory reflex (Figure 1, green lines),

involves efferent fibers from the dorsal motor nucleus of the VN

(DMNV). This reflex is initiated by afferent fibers from the NTS,

which relay peripheral visceral sensory information to the DMNV

(Kaniusas et al., 2020). The DMNV, through its efferent cholinergic

pathway, modulates immune responses in the spleen (via the celiac
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ganglion), liver, and gastrointestinal (GI) tract by the enteric

neurons suppressing pro-inflammatory cytokines. In the spleen,

acetylcholine (ACh) stimulates celiac neurons, leading to

norepinephrine (NE) release, which suppresses cytokines from

macrophages, both directly and via splenic T-cell activation.

Similarly, ACh stimulates cholinergic enteric neurons in the GI

tract, locally inhibiting the innate immune response (Pavlov and

Tracey, 2012). Research in mice shows that absence of this reflex

enhances innate immune responses and cytokine-related toxicity

(Auphan et al., 1995). Moreover, animal models inducing sepsis,

ischemia-reperfusion, and pancreatitis, have indicated that VN

nerve stimulation (VNS) reduces TNF-a synthesis, prevent acute

inflammation, and ultimately enhance overall health outcomes

(Borovikova et al., 2000). This reflex involves ACh receptors

(AChR) in the celiac ganglion, a7-nicotinic acetylcholine

receptors (a7-nAChR) on macrophages, and both NE receptors

and b2-adrenergic receptors (b2AR) on T-lymphocytes and

macrophages in the spleen. In a7-subunit knockout mice, TNF-a
levels fail to decrease after endotoxin exposure, along with a less

significant reduction in interleukin(IL)-1b and IL-6 production

(Wang et al., 2003), highlighting the receptor’s role in reducing

inflammation. T lymphocytes, central to both effector and

regulatory immune functions, play a critical role in inflammation

and autoimmunity (Hu et al., 2018). Notably, distinct splenic and

intestinal T cell subsets express functional choline acetyltransferase

(ChAT) and synthesize ACh, constituting a population termed

ChAT+ T cells. These ChAT+ T cell subsets are predominantly

localized near catecholaminergic splenic nerve fibers, establishing a

non-neuronal cholinergic reservoir. The ACh released within this

microenvironment activates a7-nAChR on T cells, thereby

facilitating their activation and proliferation (Halder and Lal,

2021). Nicotine activation of a7-nAChR in a mouse model of

autoimmune encephalomyelitis alleviated symptoms, shifting CD4

+ T cells tow an anti-inflammatory IL-4-producing Th2 phenotype

while reducing Th1 and Th17 cytokines (Yamakawa et al., 2020).

Intriguingly, a sequence in the SARS-CoV-2 spike glycoprotein

receptor-binding domain (RBD), termed SARS-CoV-2 glycoprotein

peptide (SCoV2P), shares homology with the snake venom

neurotoxin NL1, that interact with nAChRs (Farsalinos et al.,

2020). This peptide, SCoV2P, modulates a7-nAChRs, enhancing
ACh-mediated currents at low concentrations and inhibiting them

at higher concentrations (Farsalinos et al., 2020). Other immune

cells like mast cells, microglia cells, Kupffer cells may also express

a7-nAChRs and could potentially be sensitive to ACh’s anti-

inflammatory effects (Wang et al., 2003). Moreover, a7-nAChRs
on platelets form functional Ca2+ channels, suggesting that ACh

acts as a natural inhibitor of platelet activation (Schedel et al., 2011),

with implications for thrombotic complications in COVID-19. Li

et al. demonstrated that chronic VN stimulation in mice can

suppress endothelial activation during inflammation (Li et al.,

2016). Further research by the same group revealed that Ach, by

binding nAChRs, inhibits the expression of adhesion molecules like

VCAM-1, ICAM-1, and E-selectin on endothelial cells. This

binding also reduces cytokine production, providing new insights

into the anti-inflammatory and anti-thrombotic effects associated
Frontiers in Cellular and Infection Microbiology
 05
with the cholinergic anti-inflammatory reflex (Li et al., 2022).

Supporting this, some LC patients experienced improvement with

nicotine patches, which act as competitive agonists for nAChRs,

potentially restoring cholinergic function (Leitzke, 2023).
The vagus-sympathetic pathway
influences the anti-inflammatory
reflex and regulates serotonin
production and reabsorption in
the gut

The vagus-sympathetic pathway is the third autonomic route

potentially impaired in LC. Vagal efferent stimuli from the NTS

activate five brain nuclei within the CAN, which regulates

sympathetic outflow and targeting preganglionic sympathetic

neurons located in the intermediolateral nucleus (IML) of the

spinal cord (Woo et al., 2023) (Figure 1, orange line). This network

modulates blood tone, vasoconstriction, and immune responses

through postganglionic sympathetic neurons targeting adrenal

chromaffin cells, enterochromaffin cells (ECs), the celiac ganglion,

and the spleen (Andersson and Tracey, 2024). Challenging the

traditional view of the VN as purely parasympathetic, experimental

studies has shown that in many species the VN stimulation has a

double role in both increasing and reducing heart rate (Chiang and

Leaders, 1966), and allow to retain endogenous NE in heart (Jellinek

et al., 1965). Finally, an animal histochemical study identified a

component of adrenergic fibers in the VN, which are characterized

as small and unmyelinated (Muryobayashi et al., 1968). This suggests

the VN may influence the anti-inflammatory reflex also by

modulating sympathetic activity.

Interestingly, a recent study found that LC is associated with

decreased enteral reabsorption of serotonin (5-HT), potentially due

to gut inflammation and impaired vagal signaling, both mediated by

SARS-CoV-2 (Wong et al., 2023). While primarily stored in ECs, 5-HT

is also present in gut nerve terminals and mast cells. The vagal-

adrenergic pathway is essential for 5-HT release from ECs into

portal circulation and the gut lumen, mediated by sympathetic fibers

(Linan-Rico et al., 2016). Furthermore, gut 5-HT has been shown to

upregulate VN activity, demonstrating a bidirectional relationship.

Intact vagal signaling between the gut and brain is essential for

mediating the behavioral effects of orally administered selective 5-HT

reuptake inhibitors (SSRIs) (McVey Neufeld et al., 2019). This suggests

that SSRIs may function, in part, by restoring VN function,

highlighting its crucial in 5-HT regulation (McVey Neufeld et al.,

2019). According to this theory, while intestinal inflammation may

contribute to reduced 5-HT absorption, the inability to restore efficient

VN signaling could be a key factor in the 5-HT depletion observed in

LC. Peripheral 5-HT deficiency, in turn, impairs cognitive function via

reduced vagal signaling (Manta et al., 2009; McVey Neufeld et al.,

2019). Given this understanding, therapeutic strategies targeting the

VN hold promise for LC treatment. Preliminary studies indicate that

non-invasive VNS may improve cognitive function, mood, sleep, and

fatigue in LC patients (Yap et al., 2020; Zheng et al., 2024).
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Autoantibodies targeting G-protein-
coupled receptors may play a pivotal
role in altering neurological,
immunological, and cellular functions
in long COVID

The impairment of the three identified anti-inflammatory

reflexes appears central to the pathogenesis of LC. This

impairment may stem from initial direct VN damage, perpetuated

by a dysregulated host response to SARS-CoV-2 remnants,

particularly in the gut. This sustained immune response could

lead to the production of autoantibodies targeting receptors

crucial to these reflexes and vasal nerve tone. Intriguingly, a

recent preprint demonstrated that transferring IgG from specific

LC patient subgroups, stratified by symptom patterns, to healthy

mice induced similar LC symptoms. This finding aligns with

previous research in ME/CFS and fibromyalgia (Blomberg et al.,

2018; Goebel et al., 2021; Chen et al., 2024).

This theory is supported by the observation of elevated

circulating autoantibodies in LC patients compared to healthy

individuals. Many of these autoantibodies target GPCR

muscarinic (mAChR) or nAChR and adrenergic receptors

(Wallukat et al., 2021). While the precise pathogenic mechanisms

of anti-GPCR autoantibodies in LC warrant further investigation,

these autoantibodies could contribute to LC pathology by causing

damage to nerve signal transmission, reducing microvascular blood

flow, directly impacting cardiac tissue, and/or triggering mast cell

activation. Given the established roles of anti-GPCR autoantibodies

in diseases like glaucoma and cardiomyopathy, and the promising

efficacy of GPCR-targeting molecules in preclinical studies

(Campbell and Smrcka, 2018), further research is warranted to

elucidate the interplay between autoimmunity, GPCR dysfunction,

and the development of LC.
Mitochondrial dysfunction in SARS-
CoV-2 acute infection and
long COVID

Mitochondria generate adenosine triphosphate (ATP), the primary

energy currency of cells, through cellular respiration and are crucial for

cells function. Additionally, mitochondria contribute to various cellular

processes, including cell differentiation, autophagy, apoptosis, calcium 2

+ (Ca2+) signaling, and thermoregulation (Andrieux et al., 2021). This

double-membrane organelles containmultiple copies of their ownDNA

(mtDNA), that encode subunits of the respiratory-chain complexes, as

well as ribosomal and transfer RNAs needed for their synthesis

(Wallace, 2005). However, complex II subunit and other

mitochondrial proteins, are encoded by the nuclear genome and

transported into the mitochondria, where they fold into their

functional forms (Walker and Moraes, 2022). Under stressful events,

if the mechanisms ensuring mitochondrial integrity and protein folding

fail, misfolded proteins can accumulate within mitochondria, leading to

dysfunction and cellular apoptosis (Tatsuta, 2009). The dynamic nature
Frontiers in Cellular and Infection Microbiology 06
of mitochondria allows them to adapt their mass based on cellular

energy demands and external stimuli (Scarpulla et al., 2012). They

constantly undergo fission and fusion to maintain cellular homeostasis

and eliminate damaged organelles through mitophagy (Twig et al.,

2008). Notably, mitochondria play a vital role in the innate immune and

inflammatory responses. In fact, upon detecting infection, pattern-

recognition receptors (PRRs) starts mitochondrial antiviral signaling

proteins, leading to increased production of mitochondrial reactive

oxygen species (mtROS) (Andrieux et al., 2021). This process activates

the Nucleotide-binding oligomerization domain, Leucine rich Repeat

and Pyrin domain containing 3 (NLRP3) inflammasome, induces pro-

inflammatory gene expression, and triggers the release of pro-

inflammatory cytokines, ultimately leading to the elimination of

infected cells and viral clearance (Mantle et al., 2024).

Although mitochondrial damage is a common virulence

mechanism for many pathogens to evade the immune response

(Mehrzadi et al., 2021; Singh et al., 2021), animal models have

confirmed that coronaviruses (CoVs) are particularly pernicious

against them, directly invading mitochondria and relying on them

for its replication (Zhang et al., 2020). A study, comparing gene

expression in lung cells infected with Influenza A virus, SARS-CoV-

2, and Middle East respiratory syndrome (MERS)-CoV, revealed

that all three viruses caused an increase in IFN signaling genes.

However, only the two CoVs caused increment of mtROS

production and perturbation in autophagy. Besides, only SARS-

CoV-2 infection led to an increase in inflammatory and cytokine

signaling genes (Singh et al., 2021). SARS-CoV-2 has been shown to

manipulate host cell mitochondria for its benefit, inducing

mitochondrial damage at multiple levels of biological function.

The mitochondrial mechanisms damage, during SARS-CoV-2

infection, are listed in Table 1. For instance, the spike protein can

reduce normal mitochondrial respiration and ATP production while

simultaneously increasing glucose-induced glycolysis to promote its

metabolic path (Lei et al., 2021; Shang et al., 2021). This effectively

hijacks the host’s metabolic processes, as evidenced by elevated

lactate and glucose levels in infected patients (Moolamalla et al.,

2021). Studies show that the virus disrupts the organization and

function of the electron transport chain, as evidenced by the mis-

localization of key proteins in infected cells (Soria-Castro et al.,

2021). This disruption, along with impaired expression of

mitochondrial and antioxidant genes, compromises the

mitochondrial membrane and the oxidative phosphorylation

(OXPHOS), ultimately increasing harmful mtROS (Soria-Castro

et al., 2021). Furthermore, to improve its replication, SARS-CoV-2

directly downregulate the expression of genes crucial for

mitochondrial ribosomes and Complex I, thereby impairing the

mitochondrial respiratory chain, increasing cell oxidative stress

causing the loss of mitochondrial integrity and cell death (Singh

et al., 2021). Another mitochondrial injury mechanism, is mediated

by the CoVs non-structural proteins Open Reading Frame (ORF),

such as ORF-7a, ORF-8a and ORF-9b, which are located in

mitochondria and inhibit the retinoic acid-inducible gene I-

mitochondrial antiviral signaling protein (RIG1-MAVS)-

dependent IFN signaling, evading host cell immunity and

promoting viral replication (Singh et al., 2020). Additionally, ORFs

can directly trigger the mitochondrial apoptotic pathways (Ren et al.,
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2020; Mehrzadi et al., 2021). Specifically, the SARS-CoV-2 ORF3a

protein can dimerize and generate a non-selective Ca2+ permeable

cation channels on the mitochondrial membrane, that upregulates

Ca2+ signaling from endoplasmic reticulum (Davies et al., 2020).

This activates e cascade starting with Ca2+-dependent caspases, that

leads to programmed cell death (Ren et al., 2020), contributing to the

reduced lymphocyte count observed in COVID-19 (Ren et al., 2016;

Mehrzadi et al., 2021). SARS-CoV-2 proteins can disrupt cellular

Ca2+ balance also by direct blocking L-type Ca2+ channels,

perturbing cardiac energetic and ultimately cause cardiomyocyte

death (Ramachandran et al., 2022). Moreover, SARS-CoV-2 may

induce the NLRP3 inflammasome, and upregulate the expression of

the inflammatory cytokine genes such as IL-1b and IL-18 and

contributing to the proinflammatory storm. This can trigger pyro-

ptosis, a highly inflammatory form of programmed cell death,

particularly in lymphocytes and macrophages (Yang, 2020).

Additionally, CoVs can antagonize the unfolded protein response

and organelle fission, resulting in hyperfused, non-active

mitochondria (Tondera et al., 2009; Shi et al., 2014). Accordingly,

a study on mitochondrial morphological changes during acute

infection found mitochondrial swelling and vacuolization after one

day (Shang et al., 2021). Notably, a recent study has shown that the

degrading mitochondrial material eliminated by the cells stolen in

extracellular vesicles can activate the innate immune response and

autoantibodies cross reaction against mitochondrial antigens (Di

Florio et al., 2024). In addition to that, SARS-CoV-2 has been shown

to disrupt mitophagy. While the virus initially upregulates this

process by activating the Pink1-Parkin-P62 pathway, it

subsequently inhibits its completion by obstructing the binding of
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P62 and LC3, which is essential for the selective engulfment of

targeted components into autophagosomes (Shang et al., 2021).

Lastly, SARS-CoV-2 may indirectly affect mitochondrial function

by impacting cortisol and Ach metabolism, as discussed later.

Interestingly, mitochondria dysfunction seems last long in those

patients developing LC, although the precise mechanisms require

further investigation (Chen et al., 2023; Molnar et al., 2024). For

example, a study conducted on mice infected by a lentivirus vector

encoding sequence of Spike gene demonstrated that Spike protein

can induce transcriptional suppression of metabolic genes,

determining an impairment in energy production and redox

status, hesitating in morphologic cells change, and cardiac fibrosis

(Cao et al., 2023). Similarly, neuropsychiatric manifestation of LC

resulted correlated with the increment of mitochondrial proteins

and SARS-CoV-2 proteins in neuronal and astrocytes-derived

patients exosomes (Peluso et al., 2022). Further studies are

needed to understand the evolution of mitochondrial damage

over time and its specific impact on the pathogenesis of LC. It

will also be important to determine the mechanisms by which those

who do not develop LC restore basal mitochondrial function and

what prevents patients from returning to the previous equilibrium.

The altered cortisol signaling can
affect both cellular gene expression
and mitochondrial function

Cortisol, produced in the zona fasciculata cells of the adrenal

cortex, is synthesized from cholesterol in mitochondria-rich cells,
TABLE 1 Mitochondrial Damage Mechanisms Induced by SARS-CoV-2.

Author
SARS-CoV-2
mediators

Mechanism Outcome

Cao et al. (Cao et al., 2023) Spike protein
Suppression of respiratory chain genes

including ATP synthases
Impaired ATP production

Di Florio et al. (Di Florio
et al., 2024)

SARS-CoV-2 Mitochondria extracellular vesicle Mitochondria auto-Ab

Ley et al. (Lei et al., 2021) Spike protein ACE2 downregulation ↑ Endothelial glycolysis

Ramachandran et al.
(Ramachandran et al., 2022)

M-protein, NSP6, ORF3A,
ORF9C, ORF10

Inhibition of L-type Ca2+ channels Cell apoptosis

Ren et al. (Ren et al., 2020) ORF-3 Alteration of Ca2+ mitochondrial signaling Cell apoptosis

Sci et al. (Shi et al., 2014) ORF-9b Degradation of DRP1 Hyperfused mitochondria

Shang et al. (Shang et al., 2021) SARS-CoV-2 Inhibition of P62 and LC3 binding ↓ Mitophagy

Singh et al. (Singh et al., 2021) SARS-CoV-2 Complex I gene downregulation Impaired ATP production

Singh et al. (Singh et al., 2020)
ORF-7a, ORF-8a,

ORF-9b
Inhibition of RIG1-MAVS dependent

IFN signaling
To evade host cell immunity and viral

induce replication

Soria-Castro et al. (Soria-Castro
et al., 2021)

M-protein, NSP2, NSP7 OXPHOS impairment ↑ mtROS

Yang et al. (Yang, 2020) PAMPS Induction of NLRP3 inflammasome Activate pyro-ptosis
ATP, adenosine triphosphate; DRP1, dynein-related protein 1 (mitochondrial fission protein); mtROS, mitochondrial reactive oxygen species; LC3, microtubule-associated protein 1 light chain
3; NSP 6, non-structural protein 6; ORF, open reading frame; OXPHOS, oxidative phosphorylation; PAMPs, pathogen-associated molecular patterns; RIG1-MAVS, retinoic acid-inducible gene
I-mitochondrial antiviral signaling protein.
↑= increased, ↓= decreased.
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regulated by two families of mitochondrial enzymes: cytochrome

P450 and the hydroxysteroid dehydrogenase/ketosteroid reductase

(HSD/KSR) (Midzak and Papadopoulos, 2016).

Although primarily produced in the adrenal gland, extra-

adrenal cortisol is also synthesized in the brain, thymus (Talaber

et al., 2015), blood vessels, and epithelial cells (Noti et al., 2009),

contributing to local hormonal regulation (Taves et al., 2011).

Transported in the blood by cortisol-binding protein (Henley

et al., 2016), cortisol becomes active inside cells after conversion

by 11b-hydroxysteroid dehydrogenase 1 (11b-HSD1), an enzyme

with tissue-specific regulation (Timmermans et al., 2019).

Biologically active cortisol then binds to its intracellular receptors

and mediates a wide range of cell-specific effects (Rhen and

Cidlowski, 2005). The human GR gene is highly variable,

producing multiple receptor isoforms, with 13 exon-1 variants

that regulate transcription, reflecting the complexity of GR gene

expression (Timmermans et al., 2019; Quatrini and Ugolini, 2021).

The binding of transcription factors to gene variants can

significantly affect receptor protein availability in target tissues

(Vandevyver et al., 2014), while alternative splicing of the GR

gene generates multiple protein isoforms, with intracellular

factors further regulating ligand sensitivity. This intricate

regulation enables the GR to function in a cell-specific manner,

influencing responses to cortisol and GC treatments (Nagy et al.,

2016). Epigenetic modifications like DNA methylation and histone

acetylation further regulate GR gene expression, which can

profoundly influence their function (Timmermans et al., 2019).

Interestingly, the presence or absence of specific epigenetic

variations has been linked to cancer development and mental

health issues (Radtke et al., 2015). Classically, GC/GR controls the

expression of around 1,500 genes involved to vital functions

including metabolism, cardiac function, immune response, mood,

and cognition (Wilson, 2014). However, recent research has

uncovered a non-genomic role for GC/GR in mitochondrial

function. GC/GR can activate mitochondrial transcription,

enhancing cell energy production and regulating electron

transport chain function and mtRNA expression in response to

stressors (Lapp et al., 2019). While acute corticosteroid stimulation

appears to boost mitochondrial oxidation, chronic or excessive

stimulation can have the opposite effect (Picard et al., 2018). This

is crucial since mitochondria synthesize all steroid hormones,

including cortisol, indicating a self-regulating feedback loop (Bose

et al., 2002). Progesterone may also act as a stress hormone (Musto

and Camici, 2022) and its potential role in SARS-CoV-2

pathogenesis and treatment has to be assessed. As a result, an

altered cortisol signaling affects both gene expression and

mitochondrial function. Besides, GR and adrenal receptor (AR)

are transcriptional activators of ACE2 and the TMPRSS2 both

fundamental for the SARS-CoV-2 cells adhesion and penetration.

A molecule modulating, through allostatic inhibition its activity, has

shown to reduce the severity of SARS-CoV-2 infection in animal

models (Rocha et al., 2022). Considering what has already been

stated, we believe it is appropriate to evaluate whether the cortisol

sensitivity of receptors in patients affected by LC differs compared

from those who do not develop it. Additionally, it is important to

study the existence of possible epigenetic alterations in the synthesis
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of this receptor, which is crucial for cellular function, induced by the

interaction with the virus.
Consequences of detrimental
cholinergic signaling in long COVID:
from neurocognitive impairment to
mitochondrial dysfunction

Adding another layer of complexity, a VN dysfunction and the

consequent decline in cholinergic signaling can locally contribute to

neurodegenerative processes (Chen et al., 2022). As is known, the

cholinergic system regulates neurogenesis, synaptic plasticity,

neuronal differentiation, and neuroprotection through nAChR

and mAChR (Frinchi et al., 2018). Cholinergic neurons in the

basal forebrain, rich in ACh-producing fibers, are particularly

important for learning, memory, and cognitive function due to

their influence on cortical and hippocampal regions (Latina et al.,

2018). Experimental models using scopolamine, a muscarinic

antagonist, have shown that blocking these receptors can induce

Alzheimer Disease (AD)-like pathology by impairing mitochondrial

antioxidant systems and increasing reactive oxygen species (Bujan

et al., 2019). Conversely, xanomeline, a mAChR (M1/M4) agonist,

has shown promise in treating AD and schizophrenia (Montani

et al., 2021). Intriguingly, studies have found elevated levels of anti-

muscarinic antibodies in the serum of LC and ME/CFS patients

compared to controls, further implicating cholinergic dysfunction

in these conditions (Wallukat et al., 2021). Notably, ACh synthesis,

like cortisol production, depends on mitochondrial function, as

ACh is synthesized from acetyl-CoA a byproduct of mitochondrial

glycolysis (Halder and Lal, 2021). Further solidifying this link, a

study investigating the cardioprotective effects of ACh found that it

significantly increased mitochondrial density, mass, and mtDNA

copy number, increasing ATP synthesis and mitochondrial activity

(Sun et al., 2013). These suggests a feedback loop where ACh both

relies on and boosts mitochondrial function, which can be highly

impaired in LC.

In summary, these findings highlights the strong biochemical

link between vagal and adrenal functions, both disrupted by SARS-

CoV-2, and their modulation of mitochondrial activity. Indeed, in a

scenario where SARS-CoV-2 infection significantly impairs

mitochondria, vagal nerve dysfunction, leading to reduced

cholinergic and cortisol signaling, could further hinder

mitochondrial function. This could create a vicious cycle,

perpetuating oxidative stress, inflammation, cell damage, and

ultimately cell death.
Conclusions

In conclusion, the model of a dysfunctional VN nerve-HPA-

mitochondrial axis can provide a comprehensive explanation for

the various alterations observed in LC. Disruptions to more

components of this intricate system, whether through direct

damage, immune dysregulation, autoantibody interference or
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epigenetic gene modification in predisposed patients may

determine the development and the persistence of this complex

syndrome. As a consequence, individual susceptibility to LC likely

can depends on baseline vagal tone, cortisol sensitivity, basal

mitochondrial cell functioning and immunity factors (Dedoncker

et al., 2021). According to this theory, individuals with mild pre-

existing VN impairment may be more vulnerable to developing LC,

particularly when faced with cortisol reductions and epigenetic

modifications in GR signaling pathway and mitochondrial genes.

Specifically, investigations into the long-term effects of chronically

low morning cortisol levels and their impact on the epigenetic

regulation of mtDNA will be instrumental, in our opinion, in

unraveling the contributions of mitochondria to LC pathogenesis.

For example, it has been hypothesized that dysregulation of cellular

microRNAs (miRNAs), which are small non-coding RNAs that

modulate gene expression by binding to messenger RNA, may

contribute to the upregulation of the IL-6/signal transducers and

activators of transcription 3 (STAT3) proinflammatory axis, leading

to pain in LC patients (Reyes-Long et al., 2023).

With this paper, we aim to highlight the potential fundamental

connection between VN dysfunction, the resulting deficit of Ach

and cortisol, which directly leads to mitochondrial dysfunction,

perpetuating the process and contributing to the exacerbation of LC

symptoms. This theory could also partly explain why SARS-CoV

infection accelerates aging (Strong, 2023) and facilitates the

development of autoimmune diseases (Sharma and Bayry, 2023).

Given this complexity, an integrated and multidimensional

approach to patient evaluation is paramount. This evaluation

should encompass assessments of VN basal tone, comprehensive

autoantibody panels, mitochondrial function, and potentially even

genetic typing of relevant receptors and their epigenetic regulation.

A thorough understanding of how stress affects mitochondrial

physiology requires a multifaceted evaluation that includes

measuring mitochondrial copy number, function, and

methylation status. An integrated, multidimensional evaluation

could enable personalized treatments by targeting simultaneously

specific pathways, offering the best hope for addressing

LC challenges.
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