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The efficacy of a nitric
oxide-releasing formulation on
nares isolated Methicillin-
Resistant Staphylococcus
aureus in porcine wound
infection model
Stephen C. Davis*, Joel Gil , Michael Solis and Ryan Strong

Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School
of Medicine, Miami, FL, United States
Background: The colonization of Staphylococcus aureus (SA) acquired in

nosocomial infections may develop acute and chronic infections such as

Methicillin-Resistant Staphylococcus aureus (MRSA) in the nose. As a

commensal microorganism with the ability to form a biofilm, SA can dwell on

the skin, nostrils, throat, perineum, and axillae of healthy humans. Nitric oxide

(NO) is an unstable gas with various molecular functions and has antimicrobial

properties which are converted into many potential treatments.

Methods: Methicillin-Resistant Staphylococcus aureus MRSA BAA1686 isolated

from nasal infection was used in a porcine wound infection model. Deep partial-

thickness wounds (10mm x 7mm x 0.5mm) were made on three animals using a

specialized electrokeratome. All wounds were inoculated and then covered with

polyurethane film dressings for biofilm formation. After 48 hours, threewoundswere

recovered from each animal for baseline enumeration. The remaining wounds were

randomly assigned to six treatment groups and treated once daily. The treatment

groups are as follows: NO topical ointments concentrations of 0.3, 0.9 and 1.8%,

Vehicle Ointment, Mupirocin 2%, and Untreated Control. Microbiological recoveries

were conducted on day 4 and day 7.

Results: The greatest efficacy observed from the NO formulations against MRSA

BAA1686 was the 1.8% concentration. This agent was able to reduce more than

99% of bacterial counts when compared to Baseline, Vehicle Ointment, and

Untreated Control wounds on both assessment days. Mupirocin 2% was the

overall best treatment against MRSA BAA1686 on both assessment days, with a

significant reduction (p ≤ 0.05) of 4.70 ± 0.13 Log CFU/mL from day 4 to day 7.

Conclusions: Overall, the positive control Mupirocin 2% was the most effective in

eliminating MRSA BAA1686 throughout the study. This experiment demonstrated a

downward trend from the highest concentration of NO topical ointment formulations

to the lowest concentrations on both assessment days (0.3% - 1.8%). Out of all NO

topical ointments, the highest concentration (1.8%) was the most effective with the

potential to be an alternative treatment against a MRSA nasal strain biofilm.
KEYWORDS

nitric oxide, intranasal gel, biofilm, nasal infection, Methicillin-Resistant Staphylococcus
aureus, porcine wound model
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Introduction

Many skin and soft tissue infections (SSTIs) are commonly caused

by Staphylococcus aureus (SA), a gram-positive pathogen that colonizes

anterior nares, and are further complicated by the prevalence of

methicillin-resistant S. aureus (MRSA) infections correlated to nasal

carriage strains (Costa et al., 2024). These pathogens can easily transfer

to various body parts, and even spread to other individuals in infected

environments (Dexter et al., 2024).

The identification of MRSA colonization to prevent these

infections remains a considerable challenge with an associated

economic burden stemming from screenings for pathogens, materials

for prevention, surveillance and isolation of patients (McKinnell et al.,

2015). The nasal passage is vulnerable as particles can easily enter the

respiratory tract while it is performing its common functions such as

humidifying air, trapping and removing dust particles, and draining

paranasal sinuses and lacrimal ducts (Wos-Oxley et al., 2016). Cases of

compulsive nose picking (rhinotillexomania) have shown elevated risks

to epistaxis and nasal infections by SA, stemming from damage to the

interior nares from constant penetration (Gupta and Dhingra, 2018).

The human nose is a biological reservoir for SA strains with

MRSA being one of the leading causes of bacterial infections and a

risk factor for nosocomial infections within hospital settings and

developing countries (Wolde et al., 2023). The spread of SA from

nares to surgical sites can transfer through either direct contact,

indirect contact from contaminated instruments, airborne within

an operating room or hematogenous transmission (Troeman and

Kluytmans, 2023). One study demonstrated that nasal swabs of

atopic dermatitis patients found various isolates such as MRSA,

methicillin-susceptible SA (MSSA), methicillin-resistant

Staphylococcus epidermidis (MRSE), and methicillin-susceptible

Staphylococcus epidermidis (MSSE) (Augusto de Oliveira

et al., 2024).

Nitric oxide (NO) is an endogenously produced small gas

molecule with many functions throughout the body and that has

bactericidal properties (Cartwright et al., 2022). Literature has

demonstrated the benefits of NO throughout the body and the

phases it goes through, with notable interactions related to healing

and terminating pathogens (Belenichev et al., 2024). Due to its short

lifespan, NO has been incorporated into various delivery systems

such as hydrogels, ointments, and nanoparticles to control the

storage and release rate of NO (Choi et al., 2020). In today’s

market, NO is found in ventilation devices, nasal sprays,

solutions, topical agents, dressings and bandages due to its

multiple benefits (Bryan, 2015; Gonzalez et al., 2023). With its

incorporation into multiple antibacterial agents, NO has shown to

be an effective antimicrobial against gram positive and negative

bacterial strains, capable of disrupting the formation of biofilms

(Cui et al., 2024).

Biofilms are colonies of bacteria cells that are surrounded by an

extracellular polymeric substance (EPS) matrix that provides

structural support and resistance, along with elastic properties

that restores its form after deforming (Almatroudi, 2024).

Biofilms increase resistance to antimicrobials and the host

immune response which leads to frequent incidences of
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bacteremia and sepsis in hospital settings (Gulati et al., 2024).

Studies have shown that the nasal carriage colonization of SA

strains develops even when unexposed in a hospital setting and

are more susceptible if exposed (Sharma et al., 2020; Yang

et al., 2022).

The efficacious of NO in in-vitro studies have shown success

against various microbes such as: MSSA, MRSA, Streptococcus

pyogenes, Enterococcus faecalis, Klebsiella pneumoniae, Escherichia

coli (E. coli), Pseudomonas aeruginosa (PA), Acinetobacter

baumannii (AB) and even a fungi like Candida albicans (CA)

(Abdel Azim et al., 2024). Ghaffari et al. has supported findings of

other studies that against these bacterial pathogens, NO as topical

antimicrobial agent is effective (Ghaffari et al., 2006). The

antimicrobial effect of NO demonstrated efficacy in viruses,

bacteria, fungi, and parasites, while in animal models enhanced

the abilities of host to fight infectious agents and reduced microbial

proliferation (Jones et al., 2010). This study measures the efficacy of

NO topical ointments of various concentrations, on MRSA

BAA1686 biofilms clinically isolated from nares in a deep partial

thickness porcine wound infection model. The ointment

formulation evaluated in this study, NVN4428, has previously

demonstrated antimicrobial efficacy in vitro against a multitude of

S. aureus strains (Carbó and Croasdell, 2013). A porcine model is

relevant since the skin morphology and immunome of swine are

analogous to humans with these similarities yielding valuable

findings on in vivo studies of wound healing and infections

(Sullivan et al., 2001; Goodwine et al., 2019). This study found

that topical application of nitric oxide ointment effectively reduced

pathogenic burden in wounds infected with a nasal MRSA isolate.
Materials and methods

Experimental animals

The protocol for this study was reviewed and approved by the

University of Miami’s Institutional Animal Care and Use

Committee. Three young female specific-pathogen-free Yorkshire

pigs, 2-3 months old, weighing 35-40 kg were used for this study.
Animal preparation

Each of the animals were sedated for all procedures and given

analgesics throughout the study. The back and sides of each animal

were clipped with standard animal clippers, washed with non-

antibiotic soap and sterile water, and then blotted dry with

sterile gauze.
Wounding

Deep partial-thickness wounds (10 mm x 7 mm x 0.5 mm)

were created on the paravertebral and thoracic areas of each

animal using a specialized electrokeratome device fitted with a 7
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mm blade (Figure 1) (Davis et al., 2015; Davis et al., 2017; Davis

et al., 2019). Fifty-one (51) deep partial-thickness wounds were

created on each of the animals resulting in a total of 153 wounds.

Each wound was separated from one another by 5 - 7 cm of

unwounded skin, and randomly assigned to one of six treatment

groups. All treatment groups consisted of eight wounds per

animal, and three wounds per animal were designated for

baseline recovery (Figure 2).
Inoculation

A fresh culture of MRSA which was clinically isolated from

nasal infections and deposited in the American Type Culture

Collection (ATCC) BAA1686 (MRSA BAA1686) was used in this

study. Serial dilutions were performed from a scraping of overnight

growth in saline to create an inoculum suspension with a

concentration of 106 CFU/mL, which was then quantified by

plating serial dilutions of the suspension onto specific media. The

inoculum suspension was vortexed and twenty-five (25) (Davis

et al., 2019) µL aliquots of the suspension were deposited into the

center of each wound for all animals. After inoculation, wounds

were covered individually for 48 hours with a polyurethane film

dressing (Tegaderm; 3M, St. Paul, MN) to allow for biofilm

formation. We have previously shown mature biofilm formation

in wounds 48 hours after inoculation using a scanning electron

micrograph (Davis et al., 2008). The dressings were secured in place

with surgical tape and self-adherent bandages (Coban, 3M).
Treatment regimen

The polyurethane film dressings were removed 48 hours after

inoculation. Three wounds per animal were recovered for baseline

bacterial counts. The remaining wounds were randomly assigned to
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six treatment groups, all treatment groups consisted of eight

wounds per animal (Figure 2). A proprietary ointment (NVN

4428) was used at various concentrations for these studies (Doxey

et al., 2020). The treatment groups were as follows: NVN 4428

(0.3%), NVN 4428 (0.9%), NVN 4428 (1.8%), Vehicle Ointment,

Positive Control (Mupirocin) and Untreated Control. NO

formulations were prepared immediately prior to application.

Each wound received 200mg of assigned formulations that were

applied daily after 48 hours of inoculation and the dressings were

replaced after each treatment application (Figure 3). After

treatment application, wounds from each treatment group were

covered with a polyurethane fi lm dressing to prevent

cross contamination.
Microbiology assessment

Three wounds per animal were recovered 48 hours after

inoculation to obtain the baseline bacterial counts. Four wounds

from each treatment group per animal were recovered on days 4

and 7. Each wound was recovered for microbiology assessment

only once. Recovery was conducted by placing a sterile surgical

steel cylinder (22 mm diameter) at the center of the wound. One

(1) mL of a scrub solution was dispensed via pipette into the

cylinder. The site was then scrubbed with a sterile Teflon spatula

for thirty (Pastar et al., 2013) seconds. Serial dilutions were

performed for all recovery samples and the Spiral Plater System

(Spiral Biotech, Norwood, MA) was used to quantify the bacterial

load. The Spiral Plater System deposits a 50 mL aliquot of the scrub

suspension over the surface of a rotating agar plate. Oxacillin

Resistance Screening Agar Base (ORSAB) was used to quantify the

bacterial count of MRSA. The selective media plates were

incubated aerobically at 37°C for 24 - 48 hours, then the

number of viable colonies was counted, and the Log CFU/mL

was calculated (Pastar et al., 2013).
FIGURE 1

(A) Using an electrokeratome to create the wounds. (B) An example of a deep partial thickness wound.
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Results

The baseline wounds after a 48-hour biofilm formation and

prior to treatment application were recovered and quantified to

determine the effect of the NO formulations. The observed baseline

bacterial burden was 8.33 ± 0.39 Log CFU/mL of MRSA BAA1686

(Figure 4). Both Mupirocin 2% (Positive Control) and NVN 4428

(1.8%) treatment groups had the most significant MRSA BAA1686

reductions (p ≤ 0.05) of 99.32% and 99.15% (2.17 ± 0.06 and 2.07 ±

0.14 Log CFU/mL, respectively) when compared to the baseline

wounds on day 4. Similarly, when compared to Untreated Control,

Mupirocin 2% and NVN 4428 (1.8%) resulted in significant (p ≤

0.05) reductions of MRSA on day 4 with reductions of 99.69% (2.50
Frontiers in Cellular and Infection Microbiology 04
± 0.09 Log CFU/mL) and 99.61% (2.41 ± 0.17 Log CFU/mL)

observed, respectively. Compared to the Untreated Control

wounds, NVN 4428 (0.9%) treatment significantly (p ≤ 0.05)

reduced 1.25 ± 0.05 Log CFU/mL (94.33% reduction) of bacteria

on day 4 (Figure 4). Furthermore, the NVN 4428 (0.3%) treatment

significantly (p ≤ 0.05) reduced MRSA BAA1686 by 0.90 ± 0.03 Log

CFU/mL (87.51%) when compared to the Untreated Control

wounds on day 4. Lastly, when compared to Vehicle Ointment on

day 4, NVN 4428 (1.8%) significantly (p ≤ 0.05) reduced the

bacterial count by 2.16 ± 0.23 Log CFU/mL or 99.30%. The NVN

4428 (0.9%) and NVN 4428 (0.3%) also resulted in significant (p ≤

0.05) bacterial reductions of 89.86% and 77.66%, respectively, on

day 4 compared to Vehicle Ointment.
FIGURE 2

Experimental design for 3 animals infected with Methicillin-Resistant Staphylococcus aureus MRSA BAA1686.
FIGURE 3

(A) Example of formulation being applied to the wound. (B) Example of 200 mg of formulation on deep partial thickness wound. (C) Formulation
being spread around the wound with a sterile Teflon spatula before covering with a Tegaderm dressing.
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By Day 7, both Mupirocin 2% and NVN 4428 (1.8%) treatment

groups continued to exhibit the lowest amounts of MRSA BAA1686

with bacterial counts of 1.46 ± 0.32 Log CFU/mL and 2.95 ± 1.29

Log CFU/mL, respectively (Figure 4). These treatments resulted in

significant (p ≤ 0.05) bacterial reductions of 99.99% when compared

to the baseline wounds containing reductions of 6.87 ± 0.06 Log

CFU/mL and 5.38 ± 0.91 Log CFU/mL, respectively. Similarly

significant (p ≤ 0.05) MRSA reductions of 99.99% were confirmed

on day 7 when comparing Mupirocin 2% and NVN 4428 (1.8%)

treated wounds to the Untreated Control wounds.

The NVN 4428 (0.9%) treatment group on day 7 significantly (p

≤ 0.05) reduced the counts of bacteria by 2.79 ± 0.03 Log CFU/mL

(99.84%) compared to the baseline wounds and 2.78 ± 0.05 Log

CFU/mL (99.83% of reduction) when compared to Untreated

Control wounds. The wounds treated with NVN 4428 (0.3%)

exhibited significant (p ≤ 0.05) bacterial reductions of 99.03%

(2.01 ± 0.03 Log CFU/mL) when compared to the baseline

wounds and 99.00% (2.00 ± 0.05 Log CFU/mL) when compared

to Untreated Control wounds.

On day 7, the NVN4428 (1.8%), NVN 4428 (0.9%), andNVN4428

(0.3%) treatment groups each significantly (p ≤ 0.05) reduced bacterial

burden compared to Vehicle Ointment, with respective reductions of

4.52 ± 0.94 Log CFU/mL (99.99%), 1.94 ± 0.00 Log CFU/mL (98.84%)

and 1.16 ± 0.01 Log CFU/mL (93.01%). When comparing Vehicle

Ointment to the baseline wounds on Day 7, there was a significant (p ≤

0.05) difference of 0.86 ± 0.04 Log CFU/mLwith a bacterial reduction of
Frontiers in Cellular and Infection Microbiology 05
86.11%. Additionally, a significant (p ≤ 0.05) reduction of 0.85 ± 0.04

Log CFU/mL (85.74%) of MRSA was observed when comparing the

Vehicle Ointment treatment to Untreated Control wounds. There was

no significant difference detected between baseline and Untreated

Control wounds on both assessment days.

There was significance observed in the reduction of MRSA

BAA1686 amounts among all treatment groups between each

assessment day (Figure 5). The most significant (p ≤ 0.05) bacterial

reductions were observed from treatment groups Mupirocin 2% and

NVN 4428 (1.8%) with bacterial reductions of 4.70 ± 0.13 Log CFU/

mL (99.99%) and 3.31 ± 0.76 Log CFU/mL (99.95%), respectively,

between assessment day 4 and day 7. The remaining NO treatment

groups, both NVN 4428 (0.9%) and NVN 4428 (0.3%) + Hydrogel,

each demonstrated significant (p ≤ 0.05) reductions of MRSA between

both assessment days with differences of 1.88 ± 0.04 Log CFU/mL and

1.45 ± 0.04 Log CFU/mL (98.69% and 96.42%), respectively. The

Vehicle Ointment + Hydrogel and Untreated Control treatments from

day 4 to day 7 exhibited significant (p ≤ 0.05) but comparatively minor

differences of <1 Log CFU/mL in MRSA BAA1686 burden between

the assessment days during the study.
Discussion

The nose is a protective barrier with epithelial cells able to create

an immune response, but S. aureus is a persistent pathogen with an
FIGURE 4

Effects of treatment groups on bacterial counts of MRSA BAA1686 infections between treatments. p ≤ 0.05 compared to Baseline. p ≤ 0.05
compared to NVN 4428 (0.3%). p ≤ 0.05 compared to NVN 4428 (0.9%). p ≤ 0.05 compared to Vehicle Ointment. p ≤ 0.05 compared to
Untreated Control. p ≤ 0.05 compared to all treatment groups.
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invasive infectious potential that interacts with multiple host and

bacterial factors (Mulcahy and McLoughlin, 2016). Further, MRSA

is a common colonizer within nares in health care settings and nasal

screenings are frequently implemented for infection control and

prevention purposes for vulnerable inpatients and outpatients

(Coye et al., 2023). A report from the National Nosocomial

Infections Surveillance stated that MRSA in intensive care units

(ICUs) has, on average, accounted for 57% of S. aureus isolates

causing nosocomial colonization or infections per data ranging

from 1992 to 2002 (NNIS System, 2003). According to Davis,

Kepler A et al., there’s an increased risk of MRSA colonization of

nares for ICU patients and additionally that nares colonization

increased the risk for postoperative infections (Davis et al., 2004).

A study which conducted genetic analysis of surgical site

infections found that among patients with S. aureus infections

who were S. aureus nasal carriers, the wound infection isolates

were identical to those of the nasal isolates and indicative of

autoinfection (Ahmed et al., 1998). Similar findings were reported

in a study that evaluated the relation between oro-nasal S. aureus

and diabetic foot ulcers. Patients who had S. aureus present in both

their oro-nasal area and ulcer sites were found to have identical

strains of the bacteria in both locations (McManus et al., 2020).

These findings highlight the significance of evaluating potential

therapies for MRSA soft tissue infections against nasal isolates. To

our knowledge, there are not many existing studies that have

evaluated topical NO formulations for treating wounds infected

with a nasal MRSA isolate.
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Since 1991, the airflow of NO was found within the airways of

humans and animals with studies showing that it accumulates

during nasal cycle, speech, swallowing or even humming which

may be subsequent with reducing the risk of sinusitis and other

sinus infections when exhaling through the nose (Chatkin et al.,

1999; Weitzberg and Lundberg, 2002). There are many functions

for NO that have been incorporated into a diverse array of

treatments beyond those for nasal and skin infections. Prevention

and treatment of urinary tract infections have been evaluated by

filling urinary catheter retention balloons with NO and ascorbic

acid which subsequently prevented biofilm formation and

decreased bacterial counts. Respiratory infections have been

analyzed in animal and human trails with gaseous NO to

improve airflow support and prevent or reduce infections, biofilm

growth, pulmonary vascular resistance, and lung infiltrates for

patients, especially with severe acute respiratory syndrome

(SARS) (Bath et al., 2021).

As a free radical, NO cells can easily interact with reactive

oxygen intermediates, such as hydrogen peroxide (H2O2) and

superoxide (O2−) that target DNA and can make alternations for

creating various antimicrobial molecular species (Doxey et al.,

2020). Research has shown that NO can disseminate bacterial

biofilms, and that the antibacterial mechanism of NO

demonstrates limited bacterial elimination at low concentrations

(usually below 1 mM) while a greater extent of bacterial eradication

is observed at high concentrations (Rong et al., 2019). This aligns

with our results which demonstrated that the higher concentration
FIGURE 5

MRSA BAA1686 bacterial counts for each treatment group between assessment days.
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of NO (1.8%) exhibited more bacterial reductions on than the lower

concentrations of NO on both assessment days (Figure 4).

Treatment NVN 4428 (1.8%) + Hydrogel displayed significant

differences of bacterial reductions over 2.58 Log CFU/mL

(99.74%) on day 7 when compared to the other NO formulations.

A higher concentration of NO than NVN 4428 (1.8%) may

demonstrate substantial reductions and possible eradication

if tested.

Our study shows a significant (p ≤ 0.05) decline of MRSA

BAA1686 following treatment with each NO formulation, with a

bacterial reduction greater than 96% observed between both

assessment times. Similarly, an in vivo study evaluated

antibacterial and anti-inflammatory abilities of titanium implants

integrated with NO on MRSA biofilms achieved over 95.7%

eradication after near-infrared light (NIR) irradiation with limited

inflammatory cells and residual bacteria (Yu et al., 2023). The NVN

4428 (1.8%) + Hydrogel treated wounds displayed a bacterial

difference of 3.31 ± 0.76 Log CFU/mL within 3 days, while the

lower concentrations of NO exhibited reductions of about half that

amount. While although the present study period was 7 days, all the

topical NO formulations from day 4 to day 7 had significant (p ≤

0.05) bacterial reductions over 1.45 Log CFU/mL within three days.

A longer study duration may elucidate the potential for NO therapy

to achieve pathogen eradication or more substantial reductions.

The results for this study demonstrate how effective topical NO

formulation is against MRSA BAA1686. Although the treatment

Mupirocin 2% was the best overall at extinguishing MRSA

BAA1686, the NVN 4428 (1.8%) treatment performed just as

well. Our study demonstrates that a topical NO-releasing

formulation closely matches the antimicrobial efficiency of

mupirocin which can lead to unlocking more antibiotic properties

and development of new therapies. It may as well lead to being able

to perform well against other microorganisms.

The present study evaluated NO only against Gram-positive

MRSA but additional investigation into topical NO therapy against

the Gram-negative P. aeruginosa (PA) or other common pathogenic

microorganisms may provide additional insight into the range

of antimicrobial efficacy. Innumerable reports from both in vitro

and in vivo studies have publicized the efficacy of NO against

numerous microorganisms, including fungi. (Stasko et al., 2018;

Bath et al., 2021). Previously, NO-releasing polymeric fibers were

demonstrated to have greater efficacy against PA than MRSA in

vitro by observing viability of 46%-65% compared to 60%-86%,

respectively (Wang et al., 2021). One study investigated a topical

NO-releasing nanoparticle and demonstrated reductions of over

99% against PA, S. aureus, E. coli, MSSE and CA biofilms in culture,

and approximately 90% of AB in infected murine wounds (Schairer

et al., 2012). These various organisms could also be affected by the

NVN 4428 formulations and may reveal some interesting results.

Most nasal infections are treated with proper nasal irrigations,

sprays, steroids or oral antihistamines with sodium hyaluronate to

help adults and children and prevent associated morbidities such as

reduced productivity and psychological problems (De Corso et al.,

2022). By Harnessing NO and being able to use and distribute it

properly has led to multiple NO products successfully reducing
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microorganisms. This study shows the effectiveness of the NVN

4428 on a colonized intranasal specimen which may spread from

the nose to other parts of the body and even other individuals.

Although effects on wound healing were not evaluated in the

present study, many studies have also demonstrated the use of

topical NO agents for wound healing and that this therapy has the

potential to act as a suitable barrier from infections while

accelerating wound healing (Man et al., 2022). NO has shown to

regulate cytokines that initiate inflammation such as interleukins,

monocytes, and neutrophils which lead to promoting acceleration

to the wound healing process in general and also in burned wounds

(Luo and Chen, 2005; Singer et al., 2018; Malone-Povolny et al.,

2019). These findings ought to be further evaluated to not just

eradicate microbes but also the potential for accelerating wound

healing and its application within nares.

Over the past few years, the antibacterial properties of NO have

drawn the interest of many researchers for a better understanding of

its antibacterial mechanism (Jones et al., 2010). There are still

multiple things to learn about the various functions of NO and

how it collaborates with other materials to fulfill its utmost

potential. As technology advances with nanotechnology and being

developed into various wound dressings, an array of NO-releasing

nanoparticle formulations has shown improvement on antibacterial

and wound healing proficiencies (Lee et al., 2020).
Conclusion

All treatment groups displayed a significant (p ≤ 0.05) decreasing

trend of MRSA BAA1686 from one assessment day to the other. The

NVN 4428 (1.8%) treatment reduced the most nasal strain biofilms of

MRSA by outperforming the other NO formulations with lower

concentrations on both assessment days. All treatment groups on

Day 4 exhibited bacterial counts above the standard amount of

infection (6 Log CFU/mL), while Mupirocin 2% alongside NO

concentrations of 1.8% and 0.9% were the only treatments below

the standard amount of infection on Day 7. A significant difference of

over 2.58 Log CFU/mL in bacterial elimination was observed between

the highest concentration of NO against the other NO formulations

which supports its efficacy and ability to reduce nasal strains of

MRSA biofilms. Every NO formulation may possess the ability to

become more active over a certain timespan since all concentrations

decreased the MRSA counts, however the most concentrated 1.8%

expressed the greatest difference of reductional value between

assessment days. Further investigations of the NO formulations

and optimizations are needed to evaluate these results, to produce a

more effective product with a greater potential of eliminating

infections and biofilms.
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