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Messenger RNA (mRNA) vaccines offer an adaptable and scalable platform for

cancer immunotherapy, requiring optimal design to elicit a robust and targeted

immune response. Recent advancements in bioinformatics and artificial

intelligence (AI) have significantly enhanced the design, prediction, and

optimization of mRNA vaccines. This paper reviews technologies that

streamline mRNA vaccine development, from genomic sequencing to lipid

nanoparticle (LNP) formulation. We discuss how accurate predictions of

neoantigen structures guide the design of mRNA sequences that effectively

target immune and cancer cells. Furthermore, we examine AI-driven approaches

that optimize mRNA-LNP formulations, enhancing delivery and stability. These

technological innovations not only improve vaccine design but also enhance

pharmacokinetics and pharmacodynamics, offering promising avenues for

personalized cancer immunotherapy.
KEYWORDS

neo-antigen mRNA vaccines, lipid nanoparticles, bioinformatics, artificial intelligence,
targeted immunotherapy
1 Introduction

Messenger RNA (mRNA) vaccines have emerged as a rapid, flexible, and scalable

strategy in cancer immunology. This innovative method elicits a robust and targeted

immune response (Lorentzen et al., 2022; Yao et al., 2024). The effectiveness of mRNA

vaccines during the COVID-19 pandemic has underscored their potential in addressing
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infectious diseases (Chakraborty et al., 2021; Pennisi et al., 2024).

However, moving from concept to clinical implementation involves

navigating significant scientific and technical challenges,

necessitating a comprehensive, interdisciplinary approach

(Lorentzen et al., 2022; Sayour et al., 2024). mRNA vaccines in

oncology are considered personalized, representing a key advance

in precision medicine by targeting the unique genetic mutations in

an individual’s tumor cells (Lorentzen et al., 2022). By crafting a

vaccine that targets these specific anomalies, this personalized

method seeks to elicit a precise immune response, minimizing

off-target effects and significantly enhancing therapeutic outcomes

(May, 2024).

Unlike traditional vaccines, which use inactivated or attenuated

pathogenic proteins, mRNA vaccines deliver tumor-associated

antigens (TAAs) or neoantigens directly to antigen-presenting

cells (APCs) like dendritic cells (DCs) or macrophages. After the

tumor antigen is presented on the surface of the APCs, a cascade of

immune responses is triggered, initiating adaptive immunity (Pardi

et al., 2018; Gote et al., 2023). These neoantigens are processed and

displayed on the cell surface via major histocompatibility complex

(MHC) class I molecules, allowing the immune system to recognize

the tumor proteins as foreign and triggering an immune response

(Esprit et al., 2020). The primary immune response involves

cytotoxic T lymphocytes (CTLs), which recognize and eliminate

cancer cells expressing specific tumor antigens (Vishweshwaraiah

and Dokholyan, 2022). Additionally, APC activation stimulates

CD4+ T helper 1 (TH1) cells, which release cytokines to boost

CTL activity and recruit macrophages, creating an immune-reactive

tumor microenvironment (TME) (Li et al., 2022b; Ramirez et al.,

2023). By enhancing the infiltration of immune cells, such as CTLs

and macrophages, and overcoming immune checkpoint inhibition,

mRNA vaccines can help shift the balance in favor of anti-

tumor immunity. This reprogramming of the TME supports a

more effective and sustained immune response against cancer

cells, ultimately improving the overall efficacy of cancer

immunotherapy (Gote et al., 2023; Ramirez et al., 2023).

In the case of naked mRNA vaccines, the mRNA is delivered

directly into the body without any protective carrier. Once

administered, the naked mRNA is taken up by cells, including

DCs, through endocytosis or direct membrane fusion (Hasan et al.,

2023). After entering the cytoplasm, the mRNA is translated into

the target tumor antigen, which is processed and presented on

MHC class I molecules, stimulating a robust immune response,

specifically activating CTLs that target and destroy tumor cells

expressing the same antigen. However, naked mRNA has some

limitations, particularly in terms of stability and delivery efficiency

(Abbasi et al., 2024).

To overcome these challenges, lipid nanoparticles (LNPs)-

encapsulated mRNA are commonly used, and they are the only

FDA-approved delivery vehicles for mRNA vaccines (Igyártó and

Qin, 2024). LNPs are designed to encapsulate the mRNA,

protecting it from degradation and improving its stability in the

bloodstream. They also facilitate the efficient delivery of mRNA into

target cells. Once inside the cell, the mRNA is released from the

LNPs and enters the cytoplasm, where translation occurs, leading to

the production of tumor antigens. LNPs are especially advantageous
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for improving cellular uptake. They interact with the cell

membrane, facilitating endocytosis and ensuring that the mRNA

is delivered into cells in a controlled manner. Once inside, the

mRNA is translated into the antigen, processed, and presented by

APCs on MHC class I molecules, leading to the activation of CTLs

and the initiation of a strong anti-tumor immune response (Imani

et al., 2024). By using LNPs, the delivery of mRNA vaccines

becomes more efficient, enhancing both the stability of the

mRNA and the ability of APCs to initiate a targeted immune

response (Alameh et al., 2021; Shuptrine et al., 2024).

The development of personalized mRNA vaccines involves

several crucial steps, each supported by advanced bioinformatics

tools. Initially, next-generation sequencing (NGS) is used to analyze

the genome of the pathogen or tumor, identifying unique mutations

and neoantigens (Alburquerque-González et al., 2022; Al Fayez

et al., 2023). Comprehensive genetic data is crucial for designing

mRNA vaccines. Tools like NetMHCpan and the Immune Epitope

Database (IEDB) identify the most immunogenic HLA-I and MHC

class I epitopes to trigger a strong T-cell response (Kim et al., 2012;

Cai et al., 2021). To enhance stability and efficiency, RNAfold and

mfold predict the mRNA’s secondary structure, reducing

degradation and improving effectiveness (Chen and Chan, 2023).

LNP formulation tools, such as NanoAssembler, optimize delivery

by protecting the mRNA and aiding its entry into host cells for

effective antigen expression (Wang et al., 2022).

On the other hand, machine learning algorithms further refine

these predictions by analyzing extensive immunological data.

Incorporating machine learning and AI into this process is vital.

Algorithms like Random Forest, Support Vector Machines (SVMs),

and Convolutional Neural Networks (CNNs) analyze large datasets

to predict vaccine efficacy and potential side effects. These AI-

driven insights help optimize vaccine design, enhancing efficacy and

safety (Bravi, 2024).

While advancements in bioinformatics and AI are significant,

comprehensive comparative studies in this field are lacking, which

limits our understanding of their full potential. This paper explores

the role of these technologies in developing personalized mRNA

vaccines, focusing on genome sequencing, epitope prediction, RNA

structure analysis, and LNP formulation. We discuss the challenges,

insights, and future directions, highlighting how AI improves

vaccine development by analyzing data, identifying patterns, and

optimizing design to predict side effects and enhance effectiveness.

This paper aims to address current knowledge gaps and encourages

further research in oncology and immunology, where personalized

mRNA vaccines have the potential to transform cancer treatment.
2 Sequencing and initial
data acquisition

Figure 1 presents a schematic overview of bioinformatics tools

for mRNA structure prediction and design, covering methods for

secondary structure prediction, coding sequences (CDS)

optimization, and 3D modeling. Sequencing and initial data

acquisition are fundamental steps in developing mRNA vaccines,

providing essential genetic information about target viruses, and
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setting the stage for vaccine design and optimization (Gunter et al.,

2023). Key sequencing technologies such as Illumina, Oxford

Nanopore, and PacBio play crucial roles in this process.

Illumina’s high-throughput short-read sequencing offers extensive

coverage of viral genomes, helping to identify genetic variations that

are important for understanding viral diversity and evolution

(Lemay et al., 2022). Oxford Nanopore’s real-time long-read

sequencing provides insights into full-length RNA transcripts and

complex genomic regions, which is useful for detecting diverse viral

variants and structural features (Stefan et al., 2022). PacBio’s high-

accuracy long-read sequencing allows for detailed genomic

characterization and variant analysis, particularly beneficial for

studying RNA viruses. Bioinformatics tools play a crucial role in

maintaining the quality, preprocessing, and comprehensive analysis

of sequencing data across all three sequencing technologies.

FASTQC (Fast Quality Control) assesses key quality metrics like

base quality scores and GC content, while Trimmomatic eliminates

artifacts and adapter sequences from raw reads (Bolger et al., 2014),

thereby improving the accuracy of subsequent analyses. SAMtools

manages aligned sequences in Sequence Alignment/Map (SAM)

and Binary Alignment/Map (BAM) formats, which is vital for

variant calling and in-depth genomic analysis, offering valuable

insights for vaccine design. The workflow begins with alignment

tools such as the Burrows-Wheeler Aligner (BWA) and Bowtie,

which align short-read mRNA sequences to reference genomes or

transcriptomes (Rajan-Babu et al., 2021). Also, Visium Spatial Gene

Expression (Visium SGE) is an advanced platform that combines

spatially resolved transcriptomics with histological imaging to map

gene expression within the structural context of tissues, enabling

precise insights into cellular activity and tissue architecture

(Toyama et al., 2023). These tools are instrumental in identifying

conserved regions and potential immunogenic epitopes within the

mRNA sequences. Following alignment, assembly algorithms
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reconstruct full-length mRNA sequences by integrating sequence

overlaps and pairing information, ensuring the integrity and

completeness of mRNA constructs for vaccine production.

In practice, during the development of mRNA vaccines for

novel viral outbreaks, alignment tools like BWA are used to

compare mRNA sequences with known sequences of related

viruses. This process helps identify conserved regions critical for

vaccine design, ensuring effective targeting of the virus and the

induction of protective immune responses in vaccinated

individuals. Table 1 compares the main key sequencing

technologies, including Illumina, Oxford Nanopore, and PacBio.
2.1 Illumina

Illumina sequencing is a high-throughput technology known

for its precision in generating short DNA or RNA sequence reads,

which can produce fragments hundreds of bases in length and is

vital for mRNA vaccine development. The process starts with

fragmenting DNA samples of approximately 300-500 bp or RNA

samples of about 200 bp, followed by the attachment of adapters.

These fragments are then amplified on a flow cell through bridge

amplification, forming clusters of identical sequences. During

sequencing, fluorescently labeled nucleotides are incorporated

into the growing DNA strands. Techniques like RELIC are used

to correct dye bias in Illumina data, ensuring accurate sequencing

results (Xu et al., 2017). Illumina can also help length-sequencing

platforms such as ONT get high-quality genomes more efficiently

(Lerminiaux et al., 2024). Each nucleotide emits a unique color

when excited by a laser, and high-resolution cameras capture these

colors to determine the nucleotide sequence. This technology is

crucial for identifying genetic variations and viral genome features,

aiding in the development of effective mRNA vaccines. For
FIGURE 1

Overview of bioinformatics tools for mRNA structure prediction and design. This diagram highlights the various stages of mRNA design, including
secondary structure prediction, coding sequence (CDS) optimization, and 3D structure modeling, along with the bioinformatics tools employed at
each stage to enhance mRNA design for therapeutic applications.
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processing sequencing data, algorithms like BWA (Guo and Huo,

2024) and Bowtie are essential. BWA uses the Burrows-Wheeler

Transform (BWT) (Keel and Snelling, 2018) for efficient sequence

alignment, while Bowtie utilizes the FM-index for indexing and

searching data (Table 1). Brittney N. Keel’s comparison shows that

BWA is more robust, whereas HISAT2 is faster and uses less

memory than both BWA and Bowtie2 (Keel and Snelling, 2018).

Data quality is ensured with preprocessing tools such as FASTQC,

which evaluates base quality scores, and Trimmomatic, which

removes low-quality bases and adapter sequences to enhance

alignment accuracy and variant detection. Detailed mathematical

formulations and specific operational details of these methods are

available in Supplementary file S1.
2.2 Oxford nanopore

Oxford Nanopore sequencing is a state-of-the-art long-read

technology that plays a crucial role in mRNA vaccine development.

This method uses nanopore sensors to detect changes in ionic

current as nucleic acids pass through a protein nanopore (Xue et al.,

2020), such that a negatively charged single-stranded DNA or RNA

molecule is driven from the negatively charged “cis” side through

the nanopore to the positively charged “trans” side, which is

recorded and analyzed to infer the base sequence (Su et al., 2023).

Currently, there are eight versions of the system, with R9 achieving

an impressive translocation rate of 250 bases per second and R9.4

achieving a translocation rate of 450 bases per second, which is a
Frontiers in Cellular and Infection Microbiology 04
significant improvement over R7’s 70 bases per second. The other

different systems have their advantages (Wang et al., 2021).

For mRNA vaccine development, Oxford Nanopore sequencing

has been modified to sequence them directly without reverse

transcription. Although the accuracy of direct sequencing of RNA

is lower than that of DNA sequencing, about 83% to 86%. Similarly,

Oxford Nanopore sequencing also provides direct sequencing of

complementary DNA (cDNA) without the need for polymerase

chain reaction (PCR) amplification (Wang et al., 2021). This

capability is essential for understanding the complete structure

and function of RNA, including secondary structures and

complex genomic regions vital for designing effective vaccines.

Key bioinformatics tools for Oxford Nanopore sequencing are

MinION Knowledge Base (MinKNOW) and Guppy. MinKNOW

manages the sequencing device and collects raw data (Oeck et al.,

2023), while Guppy performs base-calling to convert the raw signal

data into nucleotide sequences (Wick et al., 2019). After base-

calling, alignment tools such as Minimap2 are used to map these

long reads to reference genomes. During mRNA vaccine

development, this technology allows real-time sequencing of viral

genomes, aiding in the identification of conserved regions and

potential epitopes crucial for effective vaccine design. Although

the average accuracy of ONT sequencing is improving, certain

subsets of reads or read fragments have very low accuracy, and the

error-rate reads of 1D reads and 2D/1D reads are still much higher

than the short reads produced by NGS technologies (Wang et al.,

2021). Oxford Nanopore sequencing also excels at detecting viral

variants by analyzing complete sequences and complex genomic
TABLE 1 Comparison of sequencing technologies for mRNA vaccine development.

Feature Illumina Oxford Nanopore PacBio VAX-seq Visium SGE

Read length Short-read Long-read Long-read Short-read to long-read Short-read to long-read

Tech.
Seq. by

Fluor. nucleotides
Nanopore-based detect. SMRT tech.

Sequencing of
mRNA sequences

Spatial transcriptomics

Data High-throughput Real-time seq. High-accuracy High-throughput High-throughput

Accuracy Very high Moderate Very high High Moderate to high

Tools BWA, FASTQC Minimap2, GraphMap HGAP, SMRT
Custom tools (specific to

VAX-seq)
Space Ranger, Seurat

Complexity Moderate Lower High Moderate Moderate

Seq. depth Very high Moderate High High High

Turnaround Moderate Fast Moderate Fast Moderate

Cost Mod. to high Moderate High Moderate High

Capabilities No Yes No Yes Yes

Suitability High High Moderate High High

Advantages
Extensive coverage,

high acc.
Real-time seq., long reads,

min. lib. prep
High acc., long reads,

detailed analysis
High-resolution
immune profiling

Spatial resolution, gene
expression mapping

Disadvantages
Short reads, complex

lib. prep
Lower acc. Higher cost, complex lib. Limited to vaccine studies Limited to tissue samples
Seq., Sequencing, Fluor., Fluorescent, Tech., Technology, Detect., Detection, SMRT, Single Molecule Real-Time, VAX-seq, Vaccination Sequencing, Acc., Accuracy, Min., Minimal, Lib., Library,
Prep., Preparation, Genom., Genomic, Mod., Moderate, BWA, Burrows-Wheeler Aligner, BWT, Burrows-Wheeler Transform, FM-index, Full-text Minute-space Index, HGAP, Hierarchical
Genome Assembly Process, FASTQC, FAST Quality Control, Trimmomatic, Trimming tool for quality control, Minimap2, Alignment tool for long reads, GraphMap, Alignment tool for long
reads; SMRT Link; Software suite for managing SMRT sequencing data; Space Ranger, Software for analyzing Visium spatial gene expression data; Seurat, Tool for analyzing single-cell RNA-seq
and spatial data.
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regions, with the characteristics of short turnaround time and low

cost (Xu et al., 2022). This ability to identify mutations and

variations is essential for designing mRNA vaccines that elicit

strong immune responses against diverse viral strains.
2.3 PacBio

PacBio sequencing, utilizing Single Molecule Real-Time

(SMRT) targeting technology that does not require pausing

between read steps, so kinetic changes interpreted from light-

pulse movies can be analyzed to detect base modifications, such

as methylation, and accurate detection and discovery of all variant

types, even in hard-to-reach regions of the genome (Rhoads and Au,

2015), has the potential to revolutionize physical health,

reproduction, cancer research, as well as microbial and viral

genetic testing (Ardui et al., 2018), is crucial for mRNA vaccine

development due to its capability to produce highly accurate long-

read sequences. This technique involves DNA polymerase

synthesizing complementary DNA strands with fluorescently

labeled nucleotides. The emitted light from these nucleotides is

detected in real-time, enabling immediate base calling. For RNA

molecules, PacBio finds novel genes, transcripts, and alternative

splicing through a complete view of transcript isoform diversity to

sequence them (Rhoads and Au, 2015).

The long-read capability of PacBio sequencing, which can

extend up to 60 kb, provides significant advantages in identifying

and quantifying subtypes, including novel ones (Rhoads and Au,

2015). According to Jia H. et al. findings, this technology allows for

low-input library preparation, requiring only 100 ng of DNA for the

Sequel system and 400 ng for the Sequel II system (Jia et al., 2024).

This is particularly useful for comprehensive viral genome

sequencing, including the identification of new variations and

genetic mutations in viruses like SARS-CoV-2 (Nicot et al., 2023).

The SMRT Link software suite manages data collection and

processing, including base calling and error correction. Algorithms

such as the Hierarchical Genome Assembly Process (HGAP) (Chin

et al., 2013) and Canu et al. (Prjibelski et al., 2023) address the

challenges of assembling long reads by correcting errors and

constructing complete genome sequences. HGAP builds

consensus sequences from long reads. PacBio sequencing is

crucial for identifying conserved regions and potential

immunogenic epitopes within viral genomes, which helps in

designing effective mRNA vaccines. However, the technology has

limitations, including lower throughput with fewer sub-reads or

CCS reads and a higher error rate of about 11-15% for CLR reads

(Rhoads and Au, 2015).
2.4 VAX-seq

VAX-seq, a novel sequencing technology, plays a pivotal role in

advancing the field of mRNA vaccine development. This high-

throughput sequencing method is specifically tailored for the

identification and quantification of vaccine-induced immune

responses (Gunter et al., 2023b). VAX-seq is a specialized
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technology focused on sequencing mRNA in the context of

immune profiling. Its ability to detect modified nucleosides is

limited and primarily inferred through indirect analyses or

complementary assays (Gunter et al., 2023). By providing a more

detailed understanding of the interactions between mRNA vaccines

and the immune system, VAX-seq enables the identification of

specific mRNA sequences that contribute to optimal immune

activation. This technology allows researchers to profile the

genetic composition of mRNA vaccines and their translation

products with greater accuracy, improving both the design and

efficacy of these vaccines (Gote et al., 2023).

One of the key advantages of VAX-seq over traditional

sequencing methods, such as Illumina and Oxford Nanopore, lies

in its ability to offer higher-resolution insights into the

transcriptome (Gunter et al., 2023). This enables a more

comprehensive analysis of vaccine-induced responses, allowing

for the detection of rare or subtle immune reactions that might

be missed with other methods. The technique enhances the ability

to tailor mRNA vaccine sequences to better stimulate desired

immune responses, which is crucial for optimizing vaccine

formulations for various pathogens, including those that require

more precise immune targeting. Incorporating VAX-seq into

mRNA vaccine development holds significant potential for both

enhancing vaccine design and guiding clinical decision-making. By

combining its high sensitivity with the ability to sequence and

quantify complex mRNA sequences, VAX-seq aids in the

identification of critical sequence motifs and epitopes (Jeeva et al.,

2021). This level of detail is essential for the development of more

effective mRNA vaccines, capable of eliciting stronger, more

targeted immune response, and ultimately providing better

protection against infectious diseases (Gunter et al., 2023).
2.5 Visium SGE

Visium SGE by 10x Genomics has emerged as a transformative

analytical tool, integrating spatially resolved transcriptomic data

with high-resolution tissue histology (Ståhl et al., 2016). This

platform allows researchers to map gene expression patterns

directly onto histological sections, providing unparalleled insights

into the spatial context of mRNA translation and immune cell

dynamics within tissues (Toyama et al., 2023). Visium SGE

combines spatial transcriptomics with high-throughput short-read

sequencing. While it offers spatial resolution and gene expression

mapping, its capability to detect modified nucleosides is restricted

to indirect bioinformatic inferences (Williams et al., 2022). By

combining transcriptomics with histopathological features,

Visium enables the identification of specific cell populations and

their molecular activities about their precise tissue location. For

example, in the context of mRNA vaccine development, Visium can

localize mRNA-encoded antigen expression to immune-competent

regions, such as lymphoid aggregates, while simultaneously

identifying structural changes in surrounding tissue architecture.

This dual-layer information is invaluable for validating predictive

models like AlphaFold, ensuring that computationally predicted

antigens are accurately expressed and situated in biologically
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relevant microenvironments (Smith et al., 2024). In mRNA vaccine

development, Visium has proven instrumental in refining antigen

design and delivery strategies. For instance, studies leveraging

Visium have demonstrated its capability to map DCs activity in

lymphoid tissues following mRNA-LNP administration, directly

linking antigen presentation to CTLs recruitment. In one example,

Visium analysis identified specific tissue regions where mRNA

vaccines encoding TAAs were translated most efficiently, allowing

researchers to pinpoint the spatial co-localization of antigen-

expressing cells and CD8+ T-cell activation zones. This spatial

information guided the optimization of LNP formulations to ensure

antigen delivery to DCs located in lymphoid-rich areas, thereby

enhancing CTL priming and overall vaccine efficacy (Melo Ferreira

et al., 2021; Hudson and Sudmeier, 2022).

Moreover, Visium facilitates the identification of off-target

effects and unintended mRNA expression in non-target tissues, a

critical consideration in vaccine safety profiling. For example,

spatial transcriptomic analysis using Visium uncovered ectopic

expression of mRNA constructs in hepatocytes during preclinical

studies, revealing suboptimal LNP biodistribution. Based on these

findings, LNP formulations were redesigned to incorporate specific

targeting ligands that preferentially deliver mRNA to DCs while

minimizing liver uptake (Ståhl et al., 2016). This iterative approach

underscores the power of Visium in bridging computational

predictions with experimental outcomes, ensuring the spatial

fidelity of mRNA expression, and advancing the rational design

of mRNA vaccines for cancer immunotherapy (Toyama

et al., 2023).
3 Antigen and epitope prediction

Antigen prediction uses bioinformatics to analyze pathogen

genomes or proteomes, identifying specific epitopes that trigger

immune responses through various MHC classes or DC and

macrophages (Capelli et al. , 2023). In mRNA vaccine

development, choosing the right antigen targets is essential for

effective expression and a strong immune response. Neo-antigen

prediction technologies enhance vaccine safety and effectiveness by

finding highly immunogenic epitopes, which can shorten

development timelines and reduce costs (Soria-Guerra et al.,

2015). The following section will detail the specific tools used in

this process. Selecting optimal epitopes is crucial for robust immune

stimulation, and epitope prediction tools are key in developing

effective mRNA vaccines.
3.1 NetMHC

NetMHC is a user-friendly bioinformatics tool that utilizes

information from both data types for training on binding affinity

and eluting ligand data, thus being used to predict peptide-MHC

interactions, addressing the challenge of identifying peptides that

effectively bind to MHC molecules. NetMHC has undergone

several transformative updates since its inception in the early

2000s, embracing the latest computational advancements and
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significantly enhancing its database of interactions between

peptides and MHC. These updates have incorporated

sophisticated scoring matrices, intricate hidden Markov models,

and cutting-edge artificial neural networks (ANNs) (Zhou et al.,

2023), collectively enhancing the tool’s predictive capabilities and

broadening its application scope within the field, for example,

NetMHCpan-4.0 achieves better performance, and ligands in all

cases are predicted with very strong eluting ligand likelihood values

(Jurtz et al., 2017). It has become an essential resource in

immunoinformatics, crucial for understanding how peptide

fragments derived from pathogens can activate CD8+ T cells and

trigger immune responses, particularly neoantigens in cancer

immunology (Wu et al., 2023).

Cytotoxic T cells play a central role in the pathogenesis and

immunomodulation of malignancies, and the binding of peptides to

MHC molecules is the most selective single step in the antigen

presentation pathway. It has recently been shown that over 90% of

naturally occurring MHC ligands are identified with 98% specificity

(Nielsen and Andreatta, 2016). In vaccine development, NetMHC

evaluates the binding affinity between peptides and MHC

molecules, aiding researchers in selecting optimal peptides for

vaccine inclusion to induce robust CD8+ T-cell responses. This

capability enhances vaccine specificity and efficacy by focusing on

peptides with the strongest interactions. During the intricate

process of vaccine development, the versatile NetMHC tool

harmoniously integrates with existing peptide-MHC data,

leveraging computational simulations to accurately predict

potential antigen epitopes – a pivotal step in vaccine design. This

training approach integrates larger data content and can directly

learn the length of each MHC molecule from the experimental

binding data to present the optimal peptide (Andreatta and Nielsen,

2016). NetMHC provides highly accurate predictions due to its use

of extensive training datasets and advanced modeling techniques

like neural networks and position-specific scoring matrices

(PSSMs). While it focuses on MHC class I molecules, its

performance depends on the quality and breadth of peptide-

MHC interaction data and may require substantial computational

resources. Although NetMHC is excellent at predicting MHC

interactions, it does not cover all aspects of antigen processing

and presentation, such as class II MHC interactions. Despite these

limitations, integrating NetMHC into the vaccine development

process great ly improves the des ign of specific and

effective vaccines.
3.2 IEDB Analysis Resource

The IEDB-AR (Immune Epitope Database Analysis Resource)

is a crucial tool for designing mRNA vaccines against variable

antigens, especially for virus-based vaccines such as those targeting

influenza viruses, SARS-CoV-2, and HIV.I EDB-AR has T cell

epitope prediction tools, B cell epitope prediction tools, and tools

for the analysis of known epitope sequences or sequence

groups. The IEDB-AR platform stands as an ideal choice for

addressing diseases characterized by substantial antigenic

variation or requiring a robust, multifaceted immune response. Its
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applicability extends to a wide spectrum of conditions, including

those associated with infections, allergies, autoimmune disorders,

and transplantations, where its capabilities are particularly well-

suited to inform and guide therapeutic strategies (Vita et al., 2018).

Several new tools have been added to IEDB-AR. Among the T

cell epitope prediction tools are TepiTool, MHC-NP,

Immunogenicity, CD4EpiScore, and Deimmunization. These tools

have their different functions, such as TepiTool, It can be used to

predict naturally processed MHC class I and II ligands,

deimmunization of therapeutic proteins, and prediction of T cell

immunogenicity beyond MHC binding affinity (Dhanda et al.,

2019). IEDB-AR also adds a new tool called LYRA (Automated

Modeling of Lymphocyte Receptors), which allows for the

simulation of 3D structures of B and T cell receptors (Klausen

et al., 2015), allowing for the prediction of canonical structures per

cycle, when necessary.

By utilizing algorithms such as ANNs and SVMs to predict both

class I and II peptide-MHC binding affinities, T-cell and B-cell

epitopes, and cross-reactive epitopes (Yan et al., 2024), IEDB-AR

identifies optimal antigenic targets, such as pHLA-target Ags

(Gerber et al., 2020), to stimulate both CD4+ and CD8+ T-cell

responses, as well as antibody responses. However, its effectiveness

depends on the quality and comprehensiveness of the peptide-

MHC interaction data, which can impact prediction accuracy. This

variability in data coverage may affect the tool’s precision.
3.3 SYFPEITHI

SYFPEITHI, a free bioinformatics tool from the late 1990s,

predicts peptide-MHC interactions for MHC class I and II

molecules. Its user-friendly interface and high accuracy help

identify peptides that bind to specific MHC molecules and predict

epitopes (Zhang et al., 2023a). The database includes peptide

sequences (approximately 200 peptide motifs and 2000 peptide

sequences), anchor position, MHC specificity, source protein,

source organism, and publication references. The tool employs

PSSMs as its primary algorithm to evaluate the binding affinity of

peptides to MHC molecules, which can sequence the MHC-eluting

peptides directly. The adopted scoring approach simplifies the

identification of promising vaccine candidates by providing

detailed binding scores and rankings. Chao Shen et al. findings

show that this method effectively balances scoring and docking

tasks, making the selection process both rigorous and efficient (Shen

et al., 2023). But instead of synthesizing and testing dozens or even

hundreds of peptides, SYFPEITHi prescreens a set of peptides and

enables epitope prediction of the sequence, restriction elements, and

their respective motifs of proteins or their genes., which aids in the

design of effective vaccines (Rammensee et al., 1999). The accuracy

of SYFPEITHI’s predictions depends on the quality and

completeness of the peptide-MHC interaction data, with gaps

potentially affecting reliability. SYFPEITHI does not account for

critical aspects of antigen processing and presentation, such as

peptide transport into the endoplasmic reticulum via TAP,

proteasome trimming, or competition for MHC binding. These
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factors are essential for a full understanding of immune responses

and peptide presentation (Larsen et al., 2005; Lee et al., 2024a).
4 Codon optimization

Before analyzing mRNA structure, it’s essential to focus on the

Coding Sequence (CDS) and codon optimization. Codon

optimization is crucial for improving CDS expression in a host

organism. This process involves modifying codons to match the

host’s preferred codon profile, which enhances gene expression

efficiency and reduces costs (Hanson and Coller, 2018). Codon

optimization takes into account factors such as codon usage bias,

tRNA abundance, GC content, and RNA secondary structure. By

carefully selecting codon combinations, researchers can improve

protein expression, reduce mRNA degradation, and enhance

stability. This also impacts protein folding, post-translational

modifications, and immunogenicity (Zhang et al., 2023b).

Software tools like GeneOptimizer and JCAT (Java Codon

Adaptation Tool) help in this process by choosing the most

efficient codons based on the host’s tRNA abundance and codon

usage patterns. Here is a summary of their advantages

and disadvantages.
4.1 GeneOptimizer

GeneOptimizer is a powerful tool for optimizing DNA

sequences. It uses a sliding window method to adjust codon

usage, GC content, and other factors to improve translation

efficiency (Fu et al., 2020). It handles large gene sequences and

manages key processes such as transcription, splicing, translation,

and mRNA degradation. GeneOptimizer can complete gene

optimization in minutes. Synthetic genes were designed by

uploading sequences, selecting expression systems, specifying

cloning vectors, and sequence details. At the same time, based on

the data related to a given organism and the user’s sequence

requirements, the DNA sequence that is most suitable for the

user’s research requirements is generated. Researchers can use

this tool to select optimal codon combinations for specific

organisms, enhancing gene expression efficiency and scaling up

protein production to meet experimental needs. Despite being a

premium tool, GeneOptimizer empowers users with the autonomy

to meticulously craft gene sequences, circumventing the necessity

for DNA templates. It achieves this through the implementation of

sophisticated codon optimization and sequence alignment

algorithms, exemplified by its utilization of sliding windows for

refining multiparameter DNA sequences and FOGSAA for

executing swift, global sequence alignments (Chakraborty and

Bandyopadhyay, 2013). Importantly, GeneOptimizer enhances

mRNA stability and prolongs its half-life within cells through

codon optimization (Schwanhäusser et al., 2011; Luo et al., 2023).

Optimized mRNA sequences, with more favorable codons, related

studies have shown that using GeneOptimizer at the same dose can

significantly increase protein expression and produce more antigen
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proteins, leading to stronger immune responses and improved

disease prevention. However, altering mRNA sequences with

GeneOptimizer may have some unknown risks, such as potential

interactions with other RNA and proteins within cells, which could

lead to adverse reactions or reduced vaccine efficacy.
4.2 JCAT

The JCAT uses advanced algorithms, such as the Codon

Adaptation Index and the Relative Codon Adaptation model, to

enhance the production of heterologous proteins and there is no

need to manually define highly expressed genes. Significantly, JCAT

not only enhances gene sequence design but also safeguards against

undesirable outcomes such as the emergence of restriction enzyme

cleavage sites and Rho-independent transcription terminators.

Grote et al.’s study underscores this capability, demonstrating how

JCAT successfully adapted the codon usage of the P. aeruginosa

exbD gene to that of E. coli while simultaneously evading the

formation of identical restrictive sites, ensuring the stability of

CDS. On the output, JCAT can be either a graph or a CAI

(Codon Adaptation Index) value given by the pasted sequence

and the newly adapted sequence. In addition, users can calculate

CAI values by uploading gene sequences in FASTA format (Grote

et al., 2005), which can help researchers quickly understand key

biological information during mRNA vaccine development. JCAT

is usually a codon optimization of a single gene in the laboratory.

Therefore, experiments are comparing the original Pseudomonas

aeruginosa DNA sequence with the DNA sequence optimized for

Escherichia coli to demonstrate the degree of optimization. JCAT is

user-friendly, offering high automation and precision, which allows

researchers to efficiently analyze and adjust codon combinations.

This optimization improves mRNA vaccine expression levels in

host cells and avoids Rho-independent transcription terminators in

codon-optimized DNA sequences (Postle and Good, 1985;

Ermolaeva et al., 2000).

JCAT is built on biological insights into translational optimization,

particularly the significance of codon adaptation in heterologous

protein production. By leveraging algorithms like the Codon

Adaptation Index (CAI), it aligns codon usage with host-specific

tRNA pools, improving translation efficiency and reducing

translational errors (Sample et al., 2019). Studies have shown that

codon optimization not only enhances protein yield but also stabilizes

mRNA expression by avoiding undesired sequence features, such as

Rho-independent transcription terminators, which can destabilize

transcripts (Leppek et al., 2022). Biologically, JCAT addresses critical

factors in mRNA vaccine development, such as ensuring optimal

ribosome loading to maximize protein translation while avoiding

ribosome clustering that could lead to mRNA degradation. The

tool’s ability to safeguard against restriction enzyme cleavage sites

and transcriptional terminators highlights its utility in designing

sequences for experimental and therapeutic applications. These

features align with the broader understanding of how codon

adaptation influences mRNA stability and protein expression,

making JCAT an invaluable resource for precise, biologically

informed sequence optimization (Grote et al., 2005).
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5 Secondary structure prediction

Predicting the secondary structures of mRNA, including

elements l ike a-helices and b-sheets, is essential for

understanding its tertiary structure and function (Jiang et al.,

2023). This prediction helps identify regions prone to

degradation, allowing researchers to optimize gene sequences for

greater mRNA stability. By analyzing the secondary structure,

scientists can design mRNA sequences that are more efficient for

translation, thereby improving vaccine expression in the host.

Additionally, understanding the mRNA structure aids in selecting

the most effective delivery systems, ensuring that mRNA efficiently

enters cells and translates into target proteins, which enhances

vaccine efficacy. Notably, CRISPR-Cas gene editing technology

exemplifies its immense potential in addressing disease-causing

mutations stemming from various cellular origins, highlighting

the transformative impact of such evaluations on biomedical

research and therapeutics (Cheng et al., 2020), and guiding the

selection of those that can elicit stronger immune responses. In this

section, we compare key tools for predicting mRNA secondary

structure: RNAfold, mFold, and Inverse Prediction of RNA

Knot (IPKnot).
5.1 RNAfold

RNAfold, part of theViennaRNAPackage, uses a thermodynamic

model, such as the nearest neighbor thermodynamic model (Calonaci

et al., 2020) to predict RNA secondary structures by computing the

minimum free energy (MFE) and the thermodynamic regularized

RNAfold can be used to calculate folding fractions that are highly

correlatedwith the true free energy (Satoet al., 2021).RNAfoldpredicts

RNA secondary structures by analyzing sequence inputs along with

folding constraints, algorithms, and energy parameters. Users can

select options for dangling ends,modified bases, and SHAPE reactivity

data. The output can be customized to include interactive RNA

secondary structure maps, reliability annotations, or mountain plots.

While RNAfold does not engage in direct codon optimization,

its profound capability in predicting mRNA structures lays a solid

foundation for subsequent codon optimization endeavors. Notably,

key regions within mRNA, such as the 5’UTR, 3’UTR, and Poly(A)

tail, play pivotal roles in facilitating vaccine translation, where the

application of advanced techniques like sparsification can further

enhance their efficacy (Gray et al., 2024), and RNAfold can assist in

optimizing these regions to enhance vaccine expression levels.

RNAfold also has several servers, such as RNAalifold, which can

predict a set of common structures of aligned DNA or RNA

sequences (Hofacker et al., 2002), which can calculate the

hybridization energy and base pairing pattern of two RNA

sequences (Bernhart et al., 2006). However, accurate RNA

sequence data is essential for RNAfold’s predictions, and due to

the complex diversity of RNA sequences, there may be some margin

of error. Analyzing longer mRNA sequences also requires more

computational time, which can significantly extend the

development cycle.
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5.2 Mfold

Mfold is a bioinformatics tool for predicting the secondary

structure of RNA and DNA, similar to RNAfold. Similarly, Mfold

contains several separate applications that can be used to predict

nucleic acid folding, hybridization, and melting temperatures (Zuker,

2003). Mfold predicts the most likely secondary structure of a nucleic

acid sequence by computing the most thermodynamically stable

configuration (Zuker and Stiegler, 1981). This process involves

calculating the free energy of various possible structures to

determine which one is the most stable, which is essential for

ensuring the stability of mRNA vaccines. Mfold uses dynamic

programming algorithms to provide an optimal secondary

structure based on the sequence and environmental conditions,

such as Pknots-RE, NUPACK, gfold, and Knotty (Marchand et al.,

2023) and the user can also change the rotation Angle to get the

desired molecular folding orientation (Zuker, 2003). Unlike RNAfold,

Mfold can identify regions in mRNA that might be prone to

instability (Binet et al., 2023), such as regions with a high

likelihood of forming secondary structures that may lead to

degradation or poor folding. This sophisticated functionality

empowers researchers to refine mRNA sequences with heightened

precision for vaccine design, ensuring optimal performance.

Furthermore, Mfold’s unique capability to anticipate the intricate

interplay between mRNA molecules and delivery systems, and to

visualize these interactions in various graphic formats including

PostScript, PNG, or JPG, further augments its value in the realm of

vaccine development (Zuker, 2003). Figure 2 presents a detailed

comparison between RNAFold and Mfold predictions for mRNA

secondary structure. As shown in Figure 2A, RNAFold provides a

comprehensive visualization, with a color-coded structure based on

base-pairing probabilities. Warmer colors highlight highly stable

regions, particularly within the UTRs and near the poly-A tail—key

areas for mRNA stability and translational efficiency. This allows for

an in-depth understanding of structural stability across the mRNA

sequence. In contrast, Mfold offers a simpler structural model without

color-coding or probabilistic information. While it generates quicker

results, Mfold’s predictions lack the depth required for a thorough

stability analysis.

RNAFold further enhances its predictions with a detailed entropy

analysis, using overlapping curves for MFE, probable folding

pathways, and Centroid structures to illustrate structural variability

at each nucleotide (Figure 2B). This analysis confirms low entropy in

regions like the UTRs and poly-A tail, indicating stability in these

essential areas.AlthoughMfoldprovides anenergy-basedprediction, it

does not offer the same clarity in entropy distribution. As a result,

RNAFold’s combination of structural and stability datamakes it better

suited for precise applications, while Mfold remains useful for rapid,

less detailed evaluations.
5.3 IPKnot

IPKnot is a specialized computational tool used to predict the

secondary structure of mRNA molecules, providing critical insights

into the folding process based on dynamic programming and
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thermodynamic principles (Kato et al., 2012). By simulating base-

pairing interactions, IPKnot predicts structures such as hairpins,

loops, and stems, which play a significant role in mRNA stability,

translation initiation, and susceptibility to degradation by

ribonucleases (Sato et al., 2011).

In the context of mRNA-LNP delivery, IPKnot’s folding

predictions are essential for optimizing the interaction between

mRNA and LNPs. The predicted mRNA secondary structure

influences the mRNA’s ability to be encapsulated into LNPs, as

well as the subsequent release and translation inside the target cell.

IPKnot aids in designing mRNA sequences with secondary

structures that are compatible with LNP formulations, enhancing

encapsulation efficiency and promoting stable, controlled release

into the cytoplasm. This stability is vital for maintaining the

functional integrity of mRNA once inside the cell, ensuring that it

can be efficiently translated to produce the encoded protein (Jabbari

and Condon, 2014).

In cancer immunotherapy, specifically mRNA-based cancer

vaccines, IPKnot plays a pivotal role in optimizing the mRNA

sequence and its secondary structure for enhanced immune system

activation. The folding pattern of the mRNA influences the

conformation of the encoded antigen in MHC (Solheim et al.,

1995). Efficient MHC class I and class II presentation is critical for

triggering both CD8+ cytotoxic T cell responses and B cell-mediated

antibody production against tumor-associated antigens. By fine-

tuning the mRNA sequence to achieve an optimal secondary

structure, IPKnot contributes to more efficient antigen presentation,

thereby improving the activation of both the innate and adaptive

immune systems. This leads to stronger and more sustained immune

responses, which are essential for targeting and eradicating tumor

cells (Bell et al., 2017). Moreover, IPKnot’s role in optimizing mRNA

folding extends to improving the translational efficiency of mRNA in

clinical applications, including gene therapies and personalized

vaccines. The tool is integral in ensuring that mRNA molecules

remain stable during synthesis, storage, and delivery, providing a

foundation for the development of mRNA-based therapies with high

efficacy andminimal degradation (Lee et al., 2024b). This capability is

particularly crucial in the design of mRNA vaccines, where the

accurate prediction of secondary structures ensures that the mRNA

sequences are robust and capable of eliciting the desired immune

response (Bon et al., 2008).
6 Protein structure prediction

Protein structure prediction is crucial for understanding how

mRNA vaccines generate their target antigens and interact within the

host. Unlike costly proteomics techniques like gas chromatography-

mass spectrometry (GC-MS), which analyze chemical compounds

but don’t directly reveal protein structures, protein structure

prediction provides theoretical insights crucial for refining antigen

design before empirical testing. Accurate predictions ensure proteins

fold correctly and function as intended, enhancing immune response.

Key methods in this field include AlphaFold and Rosetta (Genc and

McGuffin, 2025), which help identify potential folding and stability

issues early, guiding experimental strategies and reducing extensive
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laboratory testing. Figure 3 compares mRNA structure predictions

from AlphaFold and Rosetta.

Protein structure prediction is essential for understanding how

mRNA vaccines produce their intended antigens and how these

proteins interact within the host. Distinct from intricate and

expensive proteomics approaches, such as GC-MS, which delve

into chemical compounds yet fall short in directly illuminating

protein structures, protein structure prediction stands as a

theoretical cornerstone for refining antigen design before

empirical validation. Its precision is paramount, as it ensures that

synthesized proteins adopt their correct folds and execute their

intended functions, thereby fostering a potent immune response.

Key methods, such as AlphaFold and Rosetta (Genc and McGuffin,

2025), are commonly used in this field. These approaches help
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identify potential issues in protein folding and stability early in the

development process, guiding more effective experimental strategies

and reducing the need for extensive laboratory testing.
6.1 AlphaFold

AlphaFold leverages deep learning techniques, such as the

Attention Mechanism and Evolutionary Coupling algorithms, to

predict the intricate 3D architectures of proteins from their amino

acid sequences with atomic-level precision, even in the absence of

prior structural knowledge (Jumper et al., 2021). Figure 3 shows the

results of mRNA structure predictions by AlphaFold. In particular,

AlphaFold can handle the missing physical environment and
FIGURE 2

mRNA secondary structure prediction by RNAfold and Mfold. (A) The MFE structures for the template mRNA predicted by RNAFold and Mfold are
shown. RNAFold (left) provides a detailed structural prediction with base-pairing probabilities, emphasizing stable regions-particularly in the UTRs
and near the poly-A tail. This helps assess folding stability, essential for efficient translation. Mfold (right), while simpler, offers faster predictions,
making it useful for quick structural overviews. (B) RNAFold’s positional entropy analysis shows low entropy in the UTRs and poly-A tail, confirming
greater structural stability in these regions. Mfold provides a broader structural view but lacks detailed entropy data, making RNAFold more precise
for stability assessment, while Mfold excels in speed and simplicity. The template used is a 962 bp mRNA encoding 12 neoantigens, with key
regulatory elements like the HGH 5′ UTR, AES- mtRNA1-3′ UTR, and a 121-base pair long poly-A tail, designed for stability and efficient translation.
The predictions were generated using RNAFold (ViennaRNA Package 2.4.18) and Mfold (version 3.6) (Zuker and Stiegler, 1981), with both tools
sourced from their respective official repositories.
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generate accurate models in challenging situations, such as

intertwined homologs or proteins that fold only in the presence of

an unknown heme group (Abramson et al., 2024). At the same time,

AlphaFold has greatly improved the accuracy of structure prediction

by combining a novel neural network architecture and training

program based on evolutionary, physical, and geometric constraints

of protein structure (Jumper et al., 2021). It combines a novel neural

network architecture and training program rooted in evolutionary,

physical, and geometric constraints to achieve unparalleled accuracy.

With a database exceeding 214 million predicted protein structures,

AlphaFold has transformed structural biology and set new

benchmarks in protein structure prediction (Varadi et al., 2022;

Abramson et al., 2024; Varadi et al., 2024), which are crucial for

designing vaccines. However, it demands significant computational

power and is dependent on the quality of input data. It works well for

small to medium-sized proteins but may struggle with very large or

complex proteins due to these resource limitations. DeepMind’s

AlphaFold has set a new benchmark in protein structure

prediction, employing advanced deep learning frameworks such as

CNNs and attention mechanisms to achieve unparalleled precision.

With a database containing over 214 million predicted protein

structures, AlphaFold has profoundly influenced structural biology,

providing a median backbone accuracy of 0.96 Å r.m.s.d.95 and an

all-atom accuracy of 1.5 Å r.m.s.d.95 (Jumper et al., 2021).

In mRNA vaccine development, AlphaFold’s detailed structural

insights are pivotal for optimizing antigen design, ensuring their

stability and immunogenicity. Its ability to model viral proteins
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encoded by mRNA is crucial for assessing antigenicity, which is

essential for effective vaccine formulations (Asediya et al., 2024).

Furthermore, AlphaFold plays a significant role in enhancing the

development of mRNA-LNPs delivery systems (2020;Asediya et al.,

2024). LNPs encapsulate and protect mRNA during systemic

circulation, facilitating targeted delivery and efficient intracellular

release. AlphaFold’s structural predictions can guide the design of

mRNA sequences with stable secondary structures, such as stem-

loops or pseudoknots, to improve binding affinity and stability within

LNPs. This optimization enhances protection against nuclease

degradation and ensures efficient delivery to target cells (2020).

Additionally, AlphaFold can refine mRNA designs to optimize

release kinetics from LNPs within target cells. By predicting how

mRNA structures interact with LNP components in response to

intracellular conditions, such as pH or enzymatic activity,

AlphaFold aids in developing formulations that promote efficient

unpacking and robust antigen translation upon endosomal escape.

These advances enhance DCs activation and antigen presentation to T

cells, ensuring a potent adaptive immune response (Jumper et al.,

2021; Olawade et al., 2024). AlphaFold also supports the design of

mRNA elements encoding immune-stimulatory adjuvants, amplifying

immunogenicity when combined with LNP formulations. By

optimizing antigen stability and presentation by MHC molecules,

AlphaFold contributes to tailored mRNA-LNP formulations that elicit

durable and specific immune responses. This capability is particularly

valuable in cancer immunotherapy, enabling more precise and

effective vaccine designs (Oladipo et al., 2024).
FIGURE 3

Comparison of mRNA structure predictions by AlphaFold. This figure illustrates the predicted three-dimensional structures of proteins derived from
mRNA sequences, showcasing the strengths and limitations of AlphaFold. Panel A demonstrates AlphaFold’s capacity for detailed and accurate
predictions for small to medium-sized proteins, while also highlighting its versatility in accommodating larger and more complex structures. The analysis
is based on twelve neoantigens, featuring a YYA linker designed to enhance stability and facilitate efficient translation. The figure is powered by the
latest version of AlphaFold 3 (accessible at https://alphafoldserver.com/) (Abramson et al., 2024). AlphaFold 3 is a web service that generates highly
accurate biomolecular structure predictions for proteins, DNA, RNA, ligands, ions, and models chemical modifications for proteins and nucleic acids.
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6.2 Rosetta

Rosetta has become one of the leading computational tools for

biomolecular structure prediction and design, using energy-based

models, including Monte Carlo simulations and the Rosetta Energy

Function (Rohl et al., 2004; Varadi et al., 2024), to predict 3D protein

structures frommRNA sequences (Koehler Leman and Künze, 2023).

It is useful for analyzing protein structures and interactions, and can

alsomodel antibodies and antigens (Schoeder et al., 2021), Rosetta can

read most glycans in PDB files and automatically detect and score

them, helping in the design of mRNA sequences to elicit strong

immune responses. Rosetta provides detailed and adaptable

predictions for proteins of various sizes, from small peptides to

larger proteins, between 10-1000 residues (Du et al., 2021; Schmitz

et al., 2021). However, it requires careful setup and parameter tuning,

and its accuracy can decrease for very large or complex proteins.
7 Molecular dynamics simulations

MD simulations are crucial for understanding the intricate

movements and interactions of atoms in mRNA molecules,

especially how they interact with proteins and other cellular

components (Hollingsworth and Dror, 2018). These simulations rely

on several key parameters: Force fields are used to define atomic

interactions, while temperature and pressure controls mimic

physiological conditions. The permeability of lipid membranes is

also considered to model interactions accurately (Venable et al.,

2019). Time steps in simulations balance accuracy with

computational efficiency. Cutoff distances manage non-bonded

interactions, and periodic boundary conditions help minimize edge

effects, enhancing the realism of the model. Solvent models simulate

the surrounding aqueous environment, providing a more

comprehensive view of mRNA behavior. Electrostatic treatments

handle long-range interactions, ensuring that all aspects of the

mRNA’s behavior are captured accurately. Simulation length and

advanced techniques, such as replica exchange (Bock et al., 2023),

offer deeper insights into mRNA dynamics. By optimizing these

parameters, researchers can ensure that mRNA vaccines maintain

their structure and function, thereby improving their effectiveness and
Frontiers in Cellular and Infection Microbiology 12
immunogenicity. However, there are MD simulation tools for mRNA

vaccine development (Table 2).
7.1 GROMACS

GROMACS is a leading MD simulation tool known for its

efficiency and precision. GROMACS can use MD, stochastic

dynamics, or path integration methods to simulate any molecule in a

solution or crystal,minimizemolecular energy, analyze conformation,

etc. Its simulation package includes GROMACS force fields (proteins,

nucleotides, sugars, etc.) and can range fromglass and liquid crystals to

polymers, crystals, andbiomolecular solutions. It effectivelymodels the

movements and interactions of atoms and molecules using advanced

force fields (Rawat et al., 2021). GROMACS stands out as an

exceptional tool for capturing the intricate dynamics and binding

mechanisms of complexmacromolecules, particularlymRNA-protein

complexes. Its prowess lies in the employment of advanced algorithms,

such as the Particle-Mesh Ewald (PME) method, which necessitates

seamless all-to-all communication between the computational nodes

(Kohnke et al., 2020). This sophisticated approach ensures that

GROMACS can accurately model and analyze even the most

challenging molecular interactions, providing unparalleled insights

into their behavior, for accurate long-range electrostatics and

supporting parallel processing for large-scale simulations. This

makes it ideal for assessing the stability and behavior of

biomolecular structures, crucial for optimizing vaccine designs.

While GROMACS provides a powerful toolkit, beginners might

need some time to learn how to use it, especially if integrating with R

for data analysis and visualization, such as YAMACS, which can show

the results in real time (Sarkar et al., 2022).
7.2 AMBER

Assisted Model Building with Energy Refinement (AMBER) is a

well-known MD simulation tool used to predict and refine the 3D

structures of mRNA. AMBER excels in offering intricate energy

calculations and structural analyses of mRNA vaccines, thanks to its

harnessing of efficient parallel computing and cutting-edge
TABLE 2 MD simulation tools for mRNA vaccine development.

Feature/Tool GROMACS AMBER NAMD Rosetta CHARMM

Primary Use Large-scale sims Struct. pred. & refine Large-scale sims Prot. model & design Prot. model & design

Key Algorithms PME, Parallel Proc. GB model, PME PME, MTS integr. MC, Energy funcs C36, Leapfrog integr.

Force Fields Adv. for macro. ff14SB, NA CHARMM Prot.-focused C36, General

Strengths Efficient, large sys. Accurate, energy anal. Large-scale, dyn. studies Prot. design, interact. mRNA-prot. anal.

Learning Curve Mod. Steep Mod. Mod. Steep

Computational High High Very high Mod. High

Advantages Fast, ext. data integ. Energy & struct. anal. Large-scale, precise elect. Prot. fold. & design Free energy & struct. anal.
Sims, Simulations; Struct. pred. & refine, Structure prediction and refinement; Prot., Protein; Model, Modeling; MC, Monte Carlo; Funcs, Functions; Proc., Processing; Adv., Advanced; Macro.,
Macromolecules; NA, Nucleic Acids; Integr., Integrator; Dyn., Dynamic; Sys., Systems; Anal., Analysis; Interact., Interactions; Mod., Moderate; Elect., Electrostatics; Ext., External; Integ.,
Integration; Fold., Folding; C36, CHARMM36 (a force field).
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algorithms. The integration of the Generalized Born model and the

Particle-Mesh Ewald method, among others, ensures that the

simulations capture every nuance of the molecular interactions.

AMBER has a variety of force fields suitable for different

biomolecules, such as AMBER force field, CHARMM force field,

etc., which can accurately describe the physical and chemical

properties of various biomolecules. Furthermore, AMBER’s

specialized force fields, notably the ff14SB and nucleic acid force

fields, contribute to the highly accurate modeling of nucleic acids

and proteins, providing unparalleled insights into the behavior of

mRNA vaccines (Mikhailovskii et al., 2022). The package includes

advanced techniques for energy minimization and refinement, such

as the conjugate gradient and steepest descent methods, which

ensure precise structural optimizations. Additionally, AMBER’s

detailed analysis tools, including the Markov State Models and

Principal Component Analysis, deliver deeper insights into

tremolo-MD interactions of the mRNA vaccine. Its capabilities

for implicit solvation and advanced free energy calculations not

only study protein folding but also enhance the understanding of

biomolecular stability and interactions (Shao and Zhu, 2018;

Mikhailovskii et al., 2024).
7.3 NAMD

Nanoscale molecular dynamics (NAMD)’s advanced parallel

computing techniques offer significant benefits for the development

of neo-antigen mRNA vaccines. Its capability to perform large-scale

simulations (Acun et al., 2018), involving millions of atoms, enables

detailed modeling of neo-antigen mRNA vaccines. The use of

sophisticated force fields, such as CHARMM, ensures accurate

modeling of interactions between neo-antigen mRNA and

proteins, which is crucial for predicting how neo-antigens are

presented to immune cells and how they might stimulate an

immune response. NAMD’s PME method stands as a testament

to its precision in modeling long-range electrostatic interactions.

This innovative approach enables the calculation of complete, non-

truncated electrostatic interactions at a minimal computational

cost, ensuring that the simulations are both accurate and efficient.

With NAMD, researchers can gain unparalleled insights into the

intricate electrostatic behavior of their molecular systems (Phillips

et al., 2005, 2020). For neo-antigen mRNA vaccines, this means

accurately simulating the electrostatic interactions between mRNA

and protein targets, which is essential for understanding binding

affinities and stability. Additionally, the Multiple Time-Step (MTS)

integrator allows NAMD to handle different time scales efficiently

(Phillips et al., 2005; Pechlaner et al., 2021), which is particularly

useful for studying the dynamic behavior of neo-antigen mRNA

and its interactions over time, offering insights into how these

interactions evolve and affect the vaccine’s efficacy.
7.4 Rosetta

Rosetta is a versatile molecular modeling tool used primarily for

protein structure prediction, protein-protein, protein-peptide
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complexes, and protein-ligand docking, and the design of

biomolecules, can also model the RNA molecules in 3D structure

(Koehler Leman and Künze, 2023). Unlike traditional MD

simulation tools, Rosetta employs energy functions and Monte

Carlo sampling methods to explore molecular interactions, and uses

standard off-the-shelf computational hardware and all-atomic force

fields to model the Large-scale conformational changes in proteins

(Alford et al., 2017;Heilmann et al., 2020).Only a handful of structural

biomoleculemodeling frameworks have similar capabilities toRosetta,

covering applications of structural prediction and experimental data

modeling, as well as protein design and small molecule drug discovery

(Koehler Leman and Künze, 2023). It excels at predicting protein

folding and designing new protein structures, making it valuable for

integrating mRNA sequences with protein components to improve

vaccine design. Rosetta’s ability to model protein interactions and

designnovel biomolecules complementsMDsimulationsbyproviding

additional insights into the structural and functional aspects ofmRNA

vaccines, andSomeprotein sampling limitationswere overcomeby the

combination of MD simulation and Rosetta (Lindert et al., 2013).
7.5 CHARMM

CHARMM(Chemistry atHarvardMacromolecularMechanics) is

a sophisticatedMDsimulationpackageknown for its in-depth analysis

of biomolecular systems. It employs advanced force fields and

simulation algorithms to model the movements and interactions of

molecules over time (Brooks et al., 2009). CHARMM excels in the

study of nucleic acids and proteins, thanks to its highly detailed force

fields, such as CHARMM36 and the CHARMM General Force Field.

These force fields allow for the precise modeling of mRNA structures

and their interactions with proteins, which is essential for

understanding the stability and behavior of mRNA vaccines. The

software also offers robust integration methods, including the Verlet

algorithmand the Leapfrog integrator,which significantly enhance the

accuracy and efficiency of simulations. Moreover, CHARMM’s

advanced energy minimization techniques, like the conjugate

gradient and steepest descent methods, ensure thorough structural

optimizationofbiomolecules (Jo et al., 2017).Additionally,CHARMM

supports various analyses, such as free energy calculations, principal

component analysis, and MD trajectory analysis, providing

comprehensive insights into the dynamics and stability of mRNA

and its interactions. In vaccine development, CHARMM’s capacity to

simulate the intricate interactions between mRNA and protein

components provides crucial insights into how these interactions

impact vaccine efficacy. The package’s capabilities for modeling

complex biomolecular systems and its extensive set of tools for

analysis make it a powerful choice for researchers focused on

optimizing mRNA vaccines and other biomolecular studies.
8 mRNA-LNPs formulation

LNPs are the only FDA-approved carriers for mRNA vaccines,

ranging from 70 to 200 nm in size. They are crucial for

encapsulating and stabilizing mRNA molecules, facilitating their
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effective delivery into target cells (Li et al., 2022a). The structural

composition of LNPs, typically including lipids, cholesterol, and

polyethylene glycol (PEG) (Hald Albertsen et al., 2022), directly

influences their efficiency and efficacy. Key structural features,

including lipid headgroup interactions and the arrangement of

hydrophobic tails, play a critical role in the ability of LNPs to

fuse with cell membranes and effectively deliver mRNA payloads.

Designing and optimizing LNPs for mRNA cancer vaccines

demands advanced computational tools capable of modeling and

visualizing these complex structures and interactions. Tools such as

NANOdesign, POLYVIEW-3D, and PyMOL are indispensable in

this process. Figure 4 depicts the various sections of the mRNA-

LNP complex that must be designed, optimized, and characterized

using these bioinformatics tools. This figure highlights how these

tools contribute to achieving stable, functional, and highly efficient

mRNA-LNP formulations, addressing aspects from pharmacology

to pharmaceutical applications. By utilizing these resources,

researchers can fine-tune parameters such as lipid composition,

particle size, and surface properties to improve the performance and

stability of LNPs in mRNA cancer vaccines.
8.1 mRNA-LNPs design tools

8.1.1 NANOdesign
NANOdesign is a specialized tool for designing and optimizing

LNPs for mRNA vaccines. Nanostructures can be formed by

artificial design or by natural self-assembly mechanisms, which

rely on intermolecular forces to automatically arrange into ordered
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structures. It provides detailed capabilities for modifying lipid types

and ratios, essential for achieving optimal mRNA encapsulation

and stability.

NANOdesign allows for comprehensive adjustments to lipid

composition, which directly impacts the efficiency of mRNA

encapsulation (Li et al., 2023). Researchers can explore different

lipid types, such as phospholipids, ionizable lipids, and cholesterol,

to determine the optimal combination for creating stable and

effective nanoparticles. By adjusting these components, they can

influence the fluidity and permeability of the lipid bilayer, directly

impacting the retention and protection of mRNA within the LNP.

NANOdesign also controls particle size, which is crucial for effective

cellular uptake. It simulates how different formulation parameters

impact the size and uniformity of the nanoparticles, ensuring they

fall within the ideal range for delivery. Additionally, NANOdesign

allows for modifications to surface properties, such as charge and

hydrophilicity, which can alter cell membrane permeability. These

adjustments can enhance the vaccine’s efficacy and improve its

overall stability (Salatin et al., 2015). The tool models the

release kinetics, encapsulation efficiency, and stability of mRNA

within the LNPs, allowing researchers to optimize the release profile

for controlled delivery. It also assesses the stability of LNPs

under various conditions, including temperature and pH changes,

to ensure the mRNA remains intact throughout storage

and administration.

8.1.2 POLYVIEW-3D
POLYVIEW-3D is an advanced tool designed to visualize and

analyze the 3D structures of mRNA-LNPs, playing a crucial role in
FIGURE 4

Integrated in silico framework for mRNA-LNP design, formulation, and optimization. This figure provides a comprehensive overview of the design
and optimization process for mRNA-LNPs. (A) LNP formulation. This section highlights the tools used for nanoparticle formulation. NANOdesign
enables computational modeling of nanocarriers like LNPs. POLYVIEW-3D and PyMOL offer molecular visualization for analyzing macromolecules
and creating detailed 3D models of LNP structures (B) mRNA-LNP design. Advanced machine learning approaches, such as XGBoost are used for
the optimization of mRNA-LNP formulations. Graph convolutional networks (GCNs) enhance mRNA stability and translation through better lipid and
matrix design, while deep neural networks (DNNs) assist in optimizing immunogenicity. (C) mRNA-LNP optimization. DoE (Design of Experiments)
employs statistical methods to streamline and improve formulations. COMSOL and AMBER simulate molecular and thermodynamic properties of
LNPs to predict their behavior under various conditions, advancing their delivery efficiency. This figure was created using BioRender to incorporate
high-quality symbols and illustrations for clarity.
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the design and optimization of these nanoparticles for mRNA

delivery (Porollo and Meller, 2007). This software enables

researchers to create highly detailed 3D models of LNPs, allowing

for a deeper understanding of how these particles interact with

mRNA and cellular components (Porollo et al., 2004). By providing

clear, high-resolution representations of the nanoparticles,

POLYVIEW-3D helps scientists examine the precise arrangement

of lipids and other key components within LNPs, which is vital for

optimizing their structure for effective mRNA encapsulation,

stability, and delivery (Porollo and Meller, 2010).

One of the primary advantages of POLYVIEW-3D is its ability to

model lipid bilayer formation and nanoparticle morphology. The

software allows researchers to simulate how lipids are organized

within the nanoparticle, which is essential for determining the

overall stability and functionality of LNPs. Lipid composition plays

a crucial role in the efficiency of mRNA encapsulation, as well as the

nanoparticle’s ability to protect and deliver mRNA to target cells

(Abumanhal-Masarweh et al., 2019). POLYVIEW-3D enables users to

explore how variations in lipid composition—such as the inclusion of

ionizable lipids, phospholipids, and cholesterol—affect the

nanoparticle structure, influencing factors such as encapsulation

efficiency, particle size, and surface charge. By adjusting these

parameters, researchers can fine-tune the LNP design for optimal

mRNA delivery (Watson et al., 2005; Arno et al., 2020).

The tool is especially valuable for examining LNP interactions

with cell membranes. POLYVIEW-3D leverages the fluorescent

marker Rhodamine 123 (Rho123) to visualize and analyze the

activity of the P-glycoprotein membrane transporter in the

MDCKII-MDR1 transgenic cell line (Sklenárǒvá et al., 2021). This

analysis is crucial for understanding how LNPs are taken up by cells,

including immune cells like DCs, which play a pivotal role in the

immune response to mRNA vaccines. By studying these

interactions, POLYVIEW-3D aids in ensuring that mRNA-LNPs

are efficiently delivered to the appropriate target cells, such as DCs,

and interact with key receptors, including TLRs, to trigger the

desired immune response (Porollo and Meller, 2007).

POLYVIEW-3D also facilitates the analysis of nanoparticle

morphology and shape, which are key factors in the effectiveness

of LNPs. Nanoparticle shape influences how LNPs interact with cell

membranes during endocytosis and how they release their

encapsulated mRNA into the cytoplasm (Mrazek et al., 2014). By

visualizing and manipulating the structure of LNPs, researchers can

assess how changes in shape and size impact the delivery process.

This is particularly important for optimizing the stability and

function of LNPs, as irregularities in shape or size may affect

their ability to cross cellular membranes or release mRNA

efficiently (Byrgazov et al., 2013).

Another important application of POLYVIEW-3D is in the

design of nanocomposite hydrogels, which are often used in

conjunction with LNPs to improve the stability and delivery of

mRNA vaccines (Baigorria et al., 2023). The software allows

researchers to model how changes in lipid composition or particle

size affect the hydrogel’s properties, helping to optimize the gel’s

characteristics for enhanced mRNA delivery (Ege et al., 2023).

Nanocomposite hydrogels can provide additional protection for

LNPs during storage and transport, and POLYVIEW-3D helps
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ensure that the LNPs remain stable and effective under different

conditions (Baigorria et al., 2023).

By offering these capabilities, POLYVIEW-3D plays a pivotal

role in the optimization of mRNA-LNP vaccines. Its ability to

model complex interactions at the molecular level, visualize the

structural components of LNPs, and analyze their interactions with

cell membranes makes it an essential tool for researchers working to

improve mRNA vaccine formulations. Whether fine-tuning lipid

composition, modeling particle morphology, or studying cellular

uptake, POLYVIEW-3D enables researchers to optimize LNP

designs for maximum efficacy and stability in mRNA vaccine

development (Bates et al., 2001; Porollo et al., 2004).

8.1.3 PyMOL
PyMOL is a widely used molecular visualization and analysis

tool that plays a critical role in designing and optimizing mRNA-

LNP vaccines. This software enables researchers to create high-

resolution, 3D representations of molecular structures, providing

deep insights into the interactions between lipids, mRNA, and

cellular membranes (Rigsby and Parker, 2016). The ability to

visually manipulate and analyze the structures at the atomic level

makes PyMOL an invaluable tool for optimizing LNP formulations

(Mooers, 2020; Martı-́Centelles et al., 2024).

PyMOL helps researchers build and visualize the three-

dimensional structures of LNPs. By displaying how lipids are

arranged within the nanoparticle, PyMOL allows for detailed

structural analysis, including the packing of lipids in the bilayer

(Wang and Deserno, 2010). This visualization aids in understanding

how changes in lipid composition impact the overall stability and

encapsulation efficiency of mRNA. By adjusting parameters like lipid

chain length, headgroup types, and ionizable lipids, researchers can

explore how these factors influence the structural integrity of LNPs

and their ability to encapsulate mRNA efficiently.

PyMOL, using the molecular lipophilicity potential (MLP), a

well-established method to calculate and visualize lipophilicity in

molecules, allows researchers to observe interactions between the

hydrophilic and hydrophobic regions of lipids and the charged and

polar components of mRNA. By modeling these interactions,

PyMOL helps identify optimal lipid compositions that improve

mRNA encapsulation and stability, ensuring that the mRNA

remains protected during delivery and is efficiently released once

the LNP reaches its target cells (Oberhauser et al., 2014).

One of the critical steps in LNP design is the selection of the

appropriate lipid mixture. PyMOL provides a platform to examine

how varying lipid components—such as phospholipids, cholesterol,

and ionizable lipids—affect the structural and functional properties

of LNPs Seeliger and de Groot, 2010. By visualizing the changes in

nanoparticle morphology and surface charge as lipid composition is

modified, researchers can determine the best formulation for

maximizing mRNA encapsulation, delivery efficiency, and

stability under physiological conditions. PyMOL helps fine-tune

these compositions, optimizing the LNP’s ability to deliver mRNA

effectively while maintaining stability during storage and transport

(El Khoury et al., 2023). In addition to lipid composition, the

surface properties of LNPs, including charge, hydrophobicity, and

hydrophilicity, play a crucial role in their interaction with cellular
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membranes. PyMOL allows researchers to model how altering these

properties impacts the nanoparticle’s ability to be taken up by cells.

PyMOL helps in understanding how LNPs interact with cellular

membranes during the process of endocytosis. By simulating the

insertion of LNPs into the lipid bilayer of a cell membrane, PyMOL

enables researchers to visualize how LNPs may fuse with the

membrane and release mRNA into the cytoplasm. This insight is

vital for designing LNPs that optimize cellular uptake and ensure

the efficient delivery of mRNA into cells for translation (Yong,

2015). PyMOL allows researchers to visualize the impact of particle

size and morphology on the functionality of LNPs. Particle size is

critical for effective cellular uptake, and by using PyMOL,

researchers can simulate how varying nanoparticle sizes and

shapes affect the overall performance of mRNA delivery. The tool

helps visualize how the size and shape of the LNPs influence their

stability, encapsulation efficiency, and release kinetics, which are

essential factors for improving vaccine efficacy (Cao et al., 2020;

Sebastiani et al., 2021).

PyMOL can also be used to simulate the effects of various

environmental conditions such as pH, temperature, and ionic

strength on the stability and function of LNPs. By visualizing how

LNPs change under different conditions, researchers can predict the

behavior of the vaccine during storage, transport, and after

administration, ensuring that the mRNA remains intact and

functional throughout the vaccine’s lifecycle (Arno et al., 2020;

Sebastiani et al., 2021). One prominent example of PyMOL’s

application in LNP design is the study by Zhang et al. (2023a),

which explored LNP formulations for mRNA vaccines. In their work,

the researchers used PyMOL to visualize and model the interaction

between the lipid components of the LNPs and the encapsulated

mRNA (Zhang et al., 2023a). By adjusting lipid compositions and

evaluating the resulting structural and functional properties, the team

optimized the LNPs to enhance mRNA encapsulation and improve

delivery efficiency. The use of PyMOL in this study enabled the team

to refine the nanoparticle design, resulting in a more stable and

effective LNP for mRNA delivery (Arévalo-Romero et al., 2024).
8.2 mRNA-LNPs optimization

8.2.1 Design of Experiments
Design of Experiments (DoE) is a systematic approach that

allows for strategic compromises on information to significantly

reduce the time and resources needed to understand and optimize a

given process (Rampado and Peer, 2023), The design space is

defined by the mathematical relationship between Critical Process

Parameters (CPPs) and Material Attributes (CMAs) and Critical

Quality Attributes (CQAs) (Politis et al., 2017). This method has

been employed to optimize the formulation of mRNA-LNP

vaccines by addressing critical parameters such as lipid

composition, release kinetics, lipid-to-mRNA ratio, particle size,

and surface charge (Tavares Luiz et al., 2021; Gurba-Bryśkiewicz

et al., 2023). For cancer immunotherapy, optimizing these

parameters is crucial to ensure that LNPs effectively deliver

mRNA to tumor cells, improve half-life, bioavailability, and

biodistribution, enhance antigen presentation, and elicit a strong
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immune response, for example, mRNA vaccines against COVID-19

are designed using DoE iterations to minimize or increase cell

activation and to meet CQA characteristics while improving protein

expression (Ly et al., 2022; Morris and Kopetz, 2022). This method

also aids in fine-tuning the physicochemical properties of LNPs,

including hydrodynamic diameter, zeta potential, and lipid bilayer

integrity, to achieve the most effective therapeutic outcomes.

8.2.2 COMSOL
COMSOL Multiphysics is a sophisticated simulation tool used

to model the physical behavior of mRNA-LNP formulations

(Towne et al., 2021; Zhang et al., 2024). It allows for the

simulation of various nanoparticle dynamics, such as diffusion

rates, aggregation behavior, and interactions with cellular

membranes, and through experimental verification, COMSOL can

be used to synthesize nanoparticles down to the nm level (Erdem

et al., 2023). The tool supports the optimization of key parameters,

including nanoparticle size distribution, release kinetics, and LNP

stability under different environmental conditions.

At the same time, COMSOL allows equations from different

physics domains to be solved simultaneously in the same model,

allowing for a more realistic simulation of the interactions between

various physics under real-world operating conditions. This

approach includes modeling the behavior of LNPs in various

biological fluids, their ability to traverse cellular membranes, and

their release profiles under different physiological conditions. For

instance, Chenguo Yao et al. team developed a dynamic

electroporation model of irregular cells using COMSOL to

investigate the effects of ns+mms pulses on these cells (Yao et al.,

2020). The findings by Erdem et al. regarding COMSOL simulations

for optimizing flow rates and mixing efficiency in micro-reactors

can be adapted to mRNA-LNP cancer therapy development. By

employing COMSOL, key processes such as nanoparticle

formation, encapsulation efficiency, and controlled mixing of

lipids and mRNA can be simulated to ensure consistency and

precision. This could optimize LNP size (e.g., 50-100 nm),

improve payload stability, and refine production conditions,

facilitating scalable and efficient mRNA delivery systems for

enhanced therapeutic efficacy in cancer immunotherapy (Erdem

et al., 2023). In a parallel effort, Li et al. leveraged advanced

combinatorial chemistry and Ml to identify ionizable lipids for

mRNA delivery. Ml rapidly optimized lipid libraries, improving

encapsulation efficiency and targeting. COMSOL’s potential lies in

enhancing such designs by simulating factors like nanoparticle

stability, bioavailability, and interaction dynamics to refine LNP

formulations for applications like mRNA-based cancer

immunotherapy (Li et al., 2024).
9 AI and machine learning tools

9.1 XGBoost/Bayesian

XGBoost is a highly effective machine-learning algorithm

known for its speed and predictive power, especially when

working with structured datasets that include mRNA-LNP
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formulation parameters. The model employs an ensemble method

that builds multiple decision trees sequentially to correct for errors

made by previous trees, which allows it to handle a broad range of

input variables such as lipid composition, nanoparticle size, and

encapsulation efficiency. XGBoost can be optimized through

hyperparameter tuning, allowing the model to refine predictions

of key formulation characteristics like mRNA stability, LNP

encapsulation efficiency, and delivery performance (Maharjan

et al., 2024).

When combined with Bayesian optimization, this approach

takes advantage of a probabilistic model to efficiently navigate the

hyperparameter space. Bayesian optimization uses prior knowledge

(based on previous experimental data or expert knowledge) to

predict the most likely optimal formulation parameters and

iteratively refines the search based on observed outcomes

(Hoseini et al., 2023). For example, in mRNA-LNP optimization,

Bayesian methods can help fine-tune lipid-to-mRNA ratios, lipid

types (such as ionizable lipids), and nanoparticle characteristics

(like surface charge or size) to maximize mRNA encapsulation,

stability, and cell delivery (Sato et al., 2024). For mRNA vaccine

development, XGBoost/Bayesian optimization accelerates the

formulation process by systematically evaluating a range of

conditions with minimal experimental trials, ensuring faster

production of effective vaccine candidates. Recent applications

show that combining these techniques can enhance mRNA-LNP

performance, such as improving vaccine stability and optimizing

lipid compositions that facilitate efficient mRNA delivery into

immune cells (Castillo-Hair and Seelig, 2022). These algorithms

have been proven to identify LNP formulations with the ability to

trigger stronger immune responses by ensuring efficient antigen

presentation and reducing the risk of immunogenicity-related

adverse effects (Hoseini et al., 2024).
9.2 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) represent a

transformative application of Ml in mRNA-LNP vaccine

development. These networks effectively model complex

relationships inherent in graph-structured data, making them

uniquely suited for tasks involving the intricate design and

optimization of both mRNA sequences and their delivery systems

(Gao et al., 2024). In mRNA vaccine design, GCNs encode

secondary and tertiary structures of mRNA as graph networks,

where nodes represent nucleotides, and edges depict structural

interactions, such as hydrogen bonds or stacking interactions.

This representation enables the identification of key features, like

stem-loops or pseudoknots, that contribute to stability and

translation efficiency, facilitating the optimization of mRNA

constructs for robust antigen expression (Dorsey et al., 2024).

GCNs are also instrumental in designing LNP formulations and

modeling the interactions between mRNA and lipid components,

including ionizable lipids, phospholipids, and cholesterol. By treating

these formulations as molecular graphs, where nodes are individual

molecules and edges signify their interactions, GCNs predict

encapsulation efficiency, stability during systemic circulation, and
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intracellular release dynamics. These predictions guide the

development of formulations that enhance mRNA protection

against degradation and promote efficient delivery to target cells

(Wang et al., 2022). Furthermore, GCNs analyze how LNPs interact

with mRNA under varying cellular conditions, such as pH

fluctuations or enzymatic activity, ensuring that delivery systems

are optimized for endosomal escape and subsequent mRNA release.

This facilitates the effective translation of mRNA into antigens, which

is crucial for activating immune cells and orchestrating adaptive

immune responses. GCNs also evaluate structural variations in

mRNA sequences to design antigens and immune-stimulatory

adjuvants with enhanced stability and immunogenicity (Kejani

et al., 2020). Through their ability to integrate complex structural,

chemical, and biological data, GCNs provide a comprehensive

framework for addressing challenges in mRNA-LNP vaccine

development. These advancements accelerate the creation of

vaccines with precise delivery mechanisms and robust immune

activation, contributing to innovations in cancer immunotherapy

and infectious disease prevention (Wang et al., 2024).
9.3 Deep Neural Networks

Deep Neural Networks (DNN) are a critical tool for mRNA-LNP

immunogenicity optimization because they can model the complex,

nonlinear relationships between different variables involved in

vaccine development (Chen et al., 2020; Mekki-Berrada et al.,

2021). DNNs consist of multiple layers of neurons that learn

increasingly abstract representations of input data, which makes

them highly effective in identifying intricate patterns within high-

dimensional datasets. For mRNA-LNP formulation optimization,

DNNs can be trained to predict how specific lipid compositions,

mRNA modifications, and nanoparticle characteristics influence

immune responses, such as the activation of DCs, T-cells, and B-

cells (Mekki-Berrada et al., 2021; Konstantopoulos et al., 2022).

To enhance vaccine efficacy, DNNs work by analyzing large

datasets that include both formulation details (lipid ratios, LNP size,

and composition) and immunological endpoints (antibody

production, cytokine levels, T-cell activation). The neural network

identifies the relationships between formulation characteristics and

immune activation, providing researchers with precise

recommendations for optimizing LNP formulations that yield the

strongest immune response. This can include optimizing the lipid

mixture for better cellular uptake, adjusting particle size to improve

lymph node targeting, or modifying mRNA constructs to enhance

antigen presentation (Zeng et al., 2024).

Recent advancements in DNNs, particularly with frameworks

like TensorFlow and PyTorch, have allowed the integration of

mRNA-LNP optimization with high-dimensional data sources,

including cellular response profiles and in vivo animal data

(Taylor and Kriegeskorte, 2023). These networks can predict how

formulation changes will affect immune responses without the need

for extensive trial-and-error testing, which significantly speeds up

vaccine development. In immuno-oncology, DNNs can also predict

LNP formulations that target cancer cells more efficiently by

analyzing tumor microenvironment data, ensuring that the
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mRNA vaccines not only deliver genetic material but also elicit

strong, targeted immune responses against tumor cells (Chen et al.,

2020). For example, DNNs can optimize formulations for

enhancing the presentation of cancer antigens to immune cells in

the tumor microenvironment, significantly improving the

therapeutic efficacy of mRNA-based cancer vaccines (Raza et al.,

2023). Additionally, DNNs can fine-tune LNP formulations to

induce specific immune pathways, such as the activation of Th1

responses, which are crucial for effective anti-cancer immunity.

This predictive capability is essential for designing personalized

mRNA vaccines, where DNNs can assist in tailoring the vaccine to

an individual’s unique immune profile, making these tools

indispensable for both infectious disease and cancer

immunotherapy (Jozwik et al., 2017; Castillo-Hair and Seelig, 2022).
9.4 Prospects

Undoubtedly, the future of mRNA vaccine development is

advancing rapidly with the aid of advanced bioinformatics and AI

tools. AlphaFold, developed by DeepMind, marks a significant

advancement in predicting protein structures with high precision

(Service, 2023). Figure 5 highlights key advancements in mRNA

vaccine development through the integration of bioinformatics and

AI tools. The figure underscores the transformative potential of

these technologies in enhancing vaccine efficacy in TME and

advancing personalized immunotherapy. By utilizing deep
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learning techniques such as CNNs and attention mechanisms,

AlphaFold provides crucial insights into how proteins fold and

assemble. This capability is vital for designing mRNA vaccines that

encode TAAs and neoantigens, as it allows researchers to anticipate

how these proteins will behave and interact within the body.

TensorFlow and PyTorch play pivotal roles in advancing mRNA-

LNP vaccine technology (Xu et al., 2023). TensorFlow utilizes

advanced algorithms, such as CNNs and RNNs, to model the

impact of different lipid formulations on mRNA stability and

delivery. This capability is crucial for optimizing LNP designs,

and ensuring effective mRNA delivery to DCs, macrophages, and

CTLs. PyTorch, known for its dynamic computational graph,

facilitates the creation of sophisticated models to simulate

interactions between mRNA, LNPs, and immune cells (Zhou

et al., 2020). This flexibility is instrumental in optimizing vaccine

efficacy and enhancing immune responses.

Looking ahead, the fusion of in silico simulations with multi-

omics data is poised to revolutionize vaccine development. AI-driven

analysis of genomic (Kamimoto et al., 2023), transcriptomic,

proteomic, and metabolomic data will enable the identification of

key biomarkers and pathways, leading to more targeted and effective

vaccine strategies. These advancements will address current challenges

in optimizing LNP formulations and mRNA stability, improving both

pharmacokinetics and pharmacodynamics. Ultimately, the integration

of these cutting-edge technologies holds the promise of transforming

vaccine development and expanding the potential of mRNA-based

therapies in personalized medicine and beyond.
FIGURE 5

Future directions in mRNA vaccine development with AI and computational tools. This figure illustrates how AlphaFold’s accurate protein structure
predictions assist in designing mRNA sequences that encode tumor-associated antigens (TAAs) and neoantigens. TensorFlow’s deep learning
algorithms are used to model lipid nanoparticle (LNP) formulations, optimizing mRNA stability and delivery. PyTorch’s dynamic computational
models simulate the interactions between mRNA, LNPs, and immune cells to enhance vaccine efficacy. Advanced machine learning methods, such
as XGBoost, graph convolutional networks (GCNs), and deep neural networks (DNNs), are applied to refine mRNA-LNP formulations by improving
mRNA stability, translation, lipid and matrix design, and immunogenicity. The integration of genomic, transcriptomic, proteomic, and metabolomic
data through cutting-edge in silico simulations holds the potential to transform vaccine development, paving the way for personalized medicine and
advancing cancer immunotherapy.
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10 Conclusion

The integration of computational biology, bioinformatics, and

artificial intelligence is transforming mRNA vaccine development,

enhancing their precision and effectiveness. By combining these

advanced tools with machine learning, we gain deeper insights into

protein structures and optimize LNP formulations and their

interactions with immune cells. Additionally, incorporating MD

simulations further improves our understanding of mRNA-LNPs’

structure and their interactions with cellular machinery, providing

critical insights into optimizing stability and translation efficiency.

These in silico technologies are driving progress in personalized

cancer immunotherapy and opening new avenues for addressing

global health challenges with next-generation vaccines.
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Gurba-Bryśkiewicz, L., Maruszak, W., Smuga, D. A., Dubiel, K., and Wieczorek, M.
(2023). Quality by design (QbD) and design of experiments (DOE) as a strategy for
tuning lipid nanoparticle formulations for RNA delivery. Biomedicines 11, 2752–2779.
doi: 10.3390/biomedicines11102752

Hald Albertsen, C., Kulkarni, J. A., Witzigmann, D., Lind, M., Petersson, K., and
Simonsen, J. B. (2022). The role of lipid components in lipid nanoparticles for vaccines
and gene therapy. Adv. Drug Delivery Rev. 188, 114416. doi: 10.1016/j.addr.2022.114416

Hanson, G., and Coller, J. (2018). Codon optimality, bias and usage in translation
and mRNA decay. Nat. Rev. Mol. Cell Biol. 19, 20–30. doi: 10.1038/nrm.2017.91

Hasan, M., Khatun, A., and Kogure, K. (2023). Intradermal Delivery of Naked
mRNA Vaccines via Iontophoresis. Pharmaceutics 15, 2678–2695. doi: 10.3390/
pharmaceutics15122678

Heilmann, N., Wolf, M., Kozlowska, M., Sedghamiz, E., Setzler, J., Brieg, M., et al.
(2020). Sampling of the conformational landscape of small proteins with Monte Carlo
methods. Sci. Rep. 10, 18211. doi: 10.1038/s41598-020-75239-7

Hofacker, I. L., Fekete, M., and Stadler, P. F. (2002). Secondary structure prediction
for aligned RNA sequences. J. Mol. Biol. 319, 1059–1066. doi: 10.1016/S0022-2836(02)
00308-X

Hollingsworth, S. A., and Dror, R. O. (2018). Molecular dynamics simulation for all.
Neuron 99, 1129–1143. doi: 10.1016/j.neuron.2018.08.011

Hoseini, B., Jaafari, M. R., Golabpour, A., Momtazi-Borojeni, A. A., and Eslami, S.
(2023). Optimizing nanoliposomal formulations: Assessing factors affecting
entrapment efficiency of curcumin-loaded liposomes using machine learning. Int. J.
Pharm. 646, 123414. doi: 10.1016/j.ijpharm.2023.123414

Hoseini, B., Jaafari, M. R., Golabpour, A., Rahmatinejad, Z., Karimi, M., and Eslami,
S. (2024). Machine learning-driven advancements in liposomal formulations for
targeted drug delivery: A narrative literature review. Curr. Drug Deliv. 27 (3).
doi: 10.2174/0115672018302321240620072039

Hudson, W. H., and Sudmeier, L. J. (2022). Localization of T cell clonotypes using the
Visium spatial transcriptomics platform. STAR. Protoc. 3, 101391. doi: 10.1016/
j.xpro.2022.101391
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