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Background: Sepsis is amajor cause ofmortality in intensive care units (ICUs) and

continues to pose a significant global health challenge, with sepsis-related

deaths contributing substantially to the overall burden on healthcare systems

worldwide. The primary objective was to construct and evaluate a machine

learning (ML) model for forecasting 28-day all-cause mortality among ICU

sepsis patients.

Methods: Data for the study was sourced from the eICU Collaborative Research

Database (eICU-CRD) (version 2.0). The main outcome was 28-day all-cause

mortality. Predictor selection for the final model was conducted using the least

absolute shrinkage and selection operator (LASSO) regression analysis and the

Boruta feature selection algorithm. Five machine learning algorithms including

logistic regression (LR), decision tree (DT), extreme gradient boosting (XGBoost),

support vector machine (SVM), and light gradient boosting machine (lightGBM)

were employed to construct models using 10-fold cross-validation. Model

performance was evaluated using AUC, accuracy, sensitivity, specificity, recall,

and F1 score. Additionally, we performed an interpretability analysis on themodel

that showed the most stable performance.

Results: The final study cohort comprised 4564 patients, among whom 568

(12.4%) died within 28 days of ICU admission. The XGBoost algorithm

demonstrated the most reliable performance, achieving an AUC of 0.821,

balancing sensitivity (0.703) and specificity (0.798). The top three risk

predictors of mortality included APACHE score, serum lactate levels, and AST.
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Conclusion: ML models reliably predicted 28-day mortality in critically ill sepsis

patients. Of the models evaluated, the XGBoost algorithm exhibited the most

stable performance in identifying patients at elevated mortality risk. Model

interpretability analysis identified crucial predictors, potentially informing

clinical decisions for sepsis patients in the ICU.
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1 Introduction

Sepsis, a complex and life-threatening condition, arises from the

host’s dysregulated response to infection, leading to organ

dysfunction and potential mortality (Singer et al., 2016). Despite

recent diagnostic and therapeutic advancements, sepsis continues to

exhibit a high incidence and mortality rate. Annually, there are

approximately 31 million cases of sepsis worldwide, with 5.5 million

deaths (Rudd et al., 2020). In the United States, sepsis accounts for

one of the top causes of in-hospital death, with around 750,000

cases per year and a mortality rate of up to 30% (Rhee et al., 2017).

A study conducted at multiple centers in China found that 33.5% of

sepsis patients in the ICU experienced a mortality rate within 28

days (Zhou et al., 2014). While scoring systems like APACHE II and

SOFA are commonly employed to predict outcomes in critically ill

patients, including those with sepsis, they were not specifically

designed for sepsis populations (Singer et al . , 2016).

Consequently, their predictive accuracy for sepsis-related

mortality has been found to be suboptimal.

Several studies indicated that age, underlying diseases, infection

site, and organ dysfunction severity were key risk factors

influencing sepsis prognosis (Liu et al., 2021; Cui et al., 2024).

Among these, age ≥65 years, comorbid chronic diseases, unclear or

multiple infection foci, APACHE II score ≥25, and SOFA score ≥10

are closely related to poor prognosis in sepsis patients (Yang et al.,

2023; Cui et al., 2024). Additionally, recent studies have found that

serum lactate levels, coagulation abnormalities, and immune

dysfunction are also important factors affecting sepsis (S, 2022; Li

et al., 2023; Kim et al., 2024). Septic shock was a significant

mortality risk factor (Hotchkiss et al., 2016), and elevated

inflammatory mediators like IL-6 and procalcitonin were linked

to poor outcomes (Liu et al., 2021). Furthermore, specific gut

microbiome signatures have been linked to increased mortality

risk (Yang et al., 2024). In summary, sepsis remains a prevalent and

deadly condition with a multifactorial risk profile. Identifying risk

factors and developing predictive models are essential for

enhancing sepsis patient outcomes.

In the last few years, machine learning (ML) algorithms have

proven to be highly effective in predicting mortality risk for ICU

patients suffering from sepsis. A recent study has developed and
02
validated a stacking ensemble ML model that effectively predicts the

in-hospital mortality risk for patients suffering from sepsis-induced

coagulopathy. Based on data from the MIMIC-IV database, the

model identified anion gap and age as the most crucial predictive

features (Liu et al., 2024). Zhou S. et al (Zhou et al., 2024)

constructed an XGBoost model based on 17 features that

demonstrated good generalizability across multiple external

datasets. Another study (Wang et al., 2022) found that the

LightGBM model outperformed other ML algorithms in

predicting 30-day mortality for sepsis patients, achieving an AUC

of 0.90. These studies indicate that machine learning methods can

integrate multidimensional clinical information to provide more

accurate individualized predictions. However, existing research still

has some limitations. Firstly, most models lack interpretability,

making it difficult for clinicians to fully understand and trust them

(Gao et al., 2024). Secondly, many studies deal with missing values

to varying degrees, using algorithms for imputation or processing

(Li et al., 2024). Although these algorithms are scientifically based, it

is unavoidable that the imputed data are virtual.

Our study focused on the development and evaluation of five

distinct ML algorithms. These models were designed to predict the

likelihood of death from any cause within 28 days for sepsis patients

admitted to ICU. To achieve this, we utilized the comprehensive

eICU database for in-depth analysis. We used completely authentic

clinical variables without imputation to ensure data reliability and

better represent real-world scenarios. Additionally, we conducted

interpretability analyses on the model with the most stable

performance to enhance clinical applicability. The complete

workflow was presented in Figure 1.
2 Methods

2.1 Data source

All the data was derived from the eICU Collaborative Research

Database (eICU-CRD). The eICU-CRD (https://eicu-crd.mit.edu),

a large multi-center critical care database made available by Philips

Healthcare in partnership with the MIT Laboratory for

Computational Physiology, is a de-identified, freely accessible
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dataset containing information from 200,859 ICU patient

admissions across 208 U.S. hospitals, compiled to facilitate

research in critical care (Pollard et al., 2018). Because of its

retrospective nature, lack of direct patient intervention, and

adherence to safe harbor standards for data de-identification, this

research was deemed exempt from the Massachusetts Institute of

Technology’s institutional review board approval. The de-

identification process was certified by Privacert (Cambridge, MA)

as compliant with the Health Insurance Portability and

Accountability Act (Certification no. 1031219-2), ensuring

minimal risk of subject re-identification. The author L.S. has

completed a certification course (Record ID: 54499751)

sanctioned by the PhysioNet review committee, has database

access, and was responsible for extracting data following the data

usage agreement.
2.2 Participants

Inclusion criteria for this study encompassed sepsis patients

aged 18 years and above. For individuals with multiple ICU stays,
Frontiers in Cellular and Infection Microbiology 03
only the initial admission was considered in our analysis. Sepsis was

defined according to criteria established by the Third International

Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)

(Singer et al., 2016). In our study, patients with an ICU stay

duration of less than 24 hours were not included. Furthermore,

we excluded cases lacking documented ICU outcomes to maintain

result integrity. Lastly, subjects with incomplete or missing data

entries were omitted from the analysis to prevent potential bias and

ensure robust findings. The outcome was all-cause ICU mortality

within 28 days after being admitted.
2.3 Feature extraction

Baseline characteristics were extracted over the initial 24-hour

period after ICU admission. Data on demographics, vital signs,

severity score of illness, laboratory tests, and comorbidities or not

were analyzed in this study. Demographics contain age, gender,

admission weight, body mass index (BMI), report year, and

ethnicity. Vital signs include temperature, respiratory rate, heart

rate, and mean arterial pressure (MAP). Severity score of illness
FIGURE 1

The whole study workflow.
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including Glasgow Coma Scale (GCS) score, Sequential Organ

Failure Assessment (SOFA) score, Acute Physiology III Score, and

Acute Physiology and Chronic Health Evaluation (APACHE) IV

Score. Laboratory test data including blood urea nitrogen, alkaline

phosphatase (ALP), glucose, blood sodium, serum creatinine,

aspartate aminotransferase (AST), alanine aminotransferase

(ALT), total bilirubin, total protein, albumin, lactate, platelets, red

blood cell, mean corpuscular hemoglobin concentration (MCHC),

hemoglobin, red cell distribution width and white blood cell count

(WBC). Comorbidities include chronic obstructive pulmonary

disease (COPD), congestive heart failure, acute myocardial

infarction (AMI), diabetes, pneumonia and rhythm disturbance.
2.4 Statistical analysis

The study population was randomly split into a 70% training set

and a 30% validation set. Supplementary Table S1 in the

Supplementary Material presented the detailed information of the

two sets.

We employed a two-step feature selection process to identify the

most relevant variables for our predictive model. Initially, we applied

the least absolute shrinkage and selection operator (LASSO)

regression, a method that performs variable selection and

coefficient shrinkage through regularization (Alhamzawi and Ali,

2018). LASSO regression utilized 10-fold cross-validation to

determine the optimal lambda value that minimized the mean

cross-validated error (McNeish, 2015). Lambda (l) is a tuning

parameter that controls model complexity and the stringency of

feature selection, where smaller values retain more features in the

model. Subsequently, we implemented Boruta feature selection (Ejiyi

et al., 2024), an algorithm based on the random forest that identifies

all relevant variables by comparing the importance of original

features with randomly generated “shadow features”. The Boruta

algorithm was executed with 1000 iterations and a p-value threshold

of 0.05. To ensure a robust and parsimonious model, we selected the

intersection of features identified by both LASSO regression and the

Boruta algorithm as our final set of predictor variables. Five ML

algorithms were employed to construct models: logistic regression

(LR), decision tree (DT), extreme gradient boosting (XGBoost),

support vector machine (SVM), and light gradient boosting

machine (ligthGBM). Model development utilized 10-fold cross-

validation to enhance reliability and generalizability. Performance

evaluation of the models encompassed multiple metrics: the area

under the receiver operating characteristic curve (AUC), accuracy,

sensitivity, specificity, recall, and F1 score. For all of these

performance indicators, the values range from 0 to 1, with higher

scores indicating better model performance. Following the

comprehensive evaluation of model performance, we selected the

model demonstrating the highest stability across all performance

metrics as our final predictive model. To enhance the interpretability

of this model, we conducted Shapley Additive Explanations (SHAP)

analysis, a game theory-based approach that attributes feature

importance to individual predictions (Guo et al., 2023).

To guarantee the veracity of the data included in the study, any

variables with missing data were excluded. For continuous
Frontiers in Cellular and Infection Microbiology 04
variables, we reported either the mean accompanied by its

standard deviation (SD) or the median with its corresponding

interquartile range (IQR), depending on the distribution pattern.

In contrast, categorical data were displayed as counts and their

respective percentages. To assess differences between groups, we

employed distinct statistical methods. Continuous variables

underwent analysis using one-way ANOVA, while categorical

data were examined through chi-square testing. Our statistical

approach maintained a two-tailed perspective, with significance

established at P < 0.05.

All statistical analyses and data visualizations were performed

using R software package (version 4.2.1). For feature selection, we

employed LASSO regression using the “glmnet” package and

Boruta algorithm using the “Boruta” package. Model development

was conducted using multiple packages: LR was implemented using

“glm”, DT using “rpart”, XGBoost using “xgboost”, SVM using

“e1071”, and LightGBM using “lightgbm”. SHAP values were

calculated and visualized using the “shapviz” package.
3 Results

3.1 Baseline characteristics

A total of 4,564 eligible patients were eventually enrolled, with

3,194 individuals in the training set and 1,370 in the validation set.

The survivor and non-survivor groups were categorized according

to whether or not an all-cause death occurred within 28 days of

admission to the ICU. Table 1 presented the baseline characteristics

of survivors (n=996) and non-survivors (n=568). Compared to

survivors, non-survivors were older (67.56 ± 13.52 vs 64.91 ±

15.94 years, P<0.001), had lower body weight (80.19 ± 27.05 vs

83.37 ± 27.67 kg, P=0.01), and lower BMI (28.12 ± 8.87 vs 29.18 ±

9.03, P=0.008). Non-survivors exhibited more abnormal vital signs,

including lower temperature, higher respiratory rate, and faster

heart rate (all P<0.001). Severity scores were significantly higher in

the non-survivor group, such as SOFA (7.00 vs 5.00, P<0.001) and

APACHE score (97.00 vs 72.00, P<0.001). Laboratory tests revealed

more severe renal and hepatic dysfunction in non-survivors, with

notably higher lactate levels (P<0.001). Regarding comorbidities,

non-survivors had higher rates of congestive heart failure (P=0.024)

and pneumonia (P=0.004), but lower rates of diabetes (P=0.012).

These findings highlight several key clinical and laboratory

parameters associated with mortality in our study population.
3.2 Feature selection

First, the LASSO regression analysis was performed with a

sequence of lambda values (l), where log(l) ranged from -9 to -2.

The Through 10-fold cross-validation, the optimal lambda value

(lambda.min = 0.0041) was determined based on the minimum

binomial deviance. As shown in Figures 2A, B, the upper x-axis

numbers indicate the count of non-zero coefficient features retained

at each lambda value, and two vertical dotted lines represent

lambda.min (0.0041, left) and lambda.1se (0.0167, the largest
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TABLE 1 Demographics and baseline characteristics.

Parameters Survivors
(n = 3996)

Non-survivors
(n = 568)

P-value

Demographics

Age, years 64.91 ± 15.94 67.56 ± 13.52 <0.001

Gender 0.521

Male 1950 (48.80%) 269 (47.36%)

Female 2046 (51.20%) 299 (52.64%)

Admission weight, kg 83.37 ± 27.67 80.19 ± 27.05 0.01

BMI 29.18 ± 9.03 28.12 ± 8.87 0.008

Report year 0.464

2014 1661 (41.57%) 237 (41.73%)

2015 2335 (58.43%) 331 (58.27%)

Ethnicity 0.296

Caucasian 3156 (78.98%) 459 (80.81%)

African American 367 (9.18%) 51 (8.98%)

Hispanic 234 (5.86%) 31 (5.46%)

Asian 123 (3.08%) 8 (1.41%)

Native American 39 (0.98%) 8 (1.41%)

Other/Unknown 77 (1.93%) 11 (1.94%)

Length of Stay in ICU, days 3.08 (1.93-5.73) 3.09 (1.66-6.85) 0.739

Vital signs

Temperature, °C 36.50 (36.10-36.90) 36.30 (35.70-36.70) <0.001

Respiratory rate, bpm 32.00 (22.00-39.00) 35.00 (29.00-42.00) <0.001

Heart rate,/min 116.00 (100.00-131.00) 123.50 (106.75-139.00) <0.001

MAP, mmHg 56.00 (47.00-113.00) 50.00 (43.00-76.25) 0.370

Severity of illness

GCS score 14.00 (10.00-15.00) 12.00 (7.00-15.00) <0.001

SOFA score 5.00 (3.00-7.00) 7.00 (5.00-10.00) <0.001

Acute Physiology Score III 57.50 (44.00-74.00) 81.00 (65.00-107.00) <0.001

APACHE IV Score 72.00 (57.00-89.00) 97.00 (81.00-122.00) <0.001

Laboratory data on day 1

Blood urea nitrogen, mg/dL 28.00 (18.00-45.00) 38.00 (25.00-57.00) <0.001

ALP, U/L 87.00 (63.00-127.25) 101.50 (72.00-162.00) <0.001

Glucose, mg/dL 128.00 (102.00-172.25) 122.50 (95.75-167.25) 0.085

Blood sodium, mmol/L 138.00 (135.00-141.00) 138.00 (134.00-142.00) 0.950

Serum creatinine, mg/dL 1.40 (0.90-2.40) 1.91 (1.20-2.91) <0.001

AST, U/L 37.00 (21.00-76.00) 67.00 (33.00-182.00) <0.001

ALT, U/L 27.00 (17.00-55.00) 35.50 (20.00-91.25) <0.001

Total bilirubin, mg/dL 0.70 (0.40-1.20) 1.00 (0.60-2.40) <0.001

Total protein, g/dL 5.70 (5.20-6.30) 5.40 (4.60-6.00) <0.001

(Continued)
F
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lambda value within one standard error of the minimum),

respectively. Using the optimal lambda.min, LASSO regression

identified 22 significant variables with non-zero coefficients.The

Boruta algorithm, used for characteristics screening, revealed after

1000 iterations a total of 28 variables, represented by green and

yellow boxes in Figure 2C, which were found to be in front of

shadowMax and were initially selected. By intersecting the variables

derived from the two algorithms, a total of 17 variables were

ultimately utilized in the construction of the ML model. These

significant variables included age, admission weight, respiratory

rate, GCS score, SOFA score, APACHE score, CHF, blood urea

nitrogen, ALP, glucose, AST, total bilirubin, total protein, albumin,

lactate, red cell distribution width and WBC.
Frontiers in Cellular and Infection Microbiology 06
3.3 Model performance comparisons

Based on the evaluation results presented in Table 2 and

Figure 3, we conducted a comprehensive analysis of the

performance of five machine learning algorithms across various

metrics on both the training and validation datasets. The LightGBM

algorithm demonstrated superior performance on the training set,

achieving an AUC of 0.950, accuracy of 0.882, sensitivity of 0.892,

specificity of 0.871, recall of 0.892, and an F1 score of 0.644,

surpassing other algorithms across all metrics. However, its

performance on the validation set showed a notable decrease,

particularly in AUC (0.758) and sensitivity (0.562), suggesting

potential overfitting. On the other hand, the XGBoost algorithm
TABLE 1 Continued

Parameters Survivors
(n = 3996)

Non-survivors
(n = 568)

P-value

Laboratory data on day 1

Albumin, g/dL 2.50 (2.10-2.90) 2.20 (1.80-2.70) <0.001

Lactate, mmol/L 1.80 (1.10-2.80) 3.10 (1.80-5.50) <0.001

Platelets, ×109/L 178.50 (121.00-251.00) 155.00 (78.00-234.00) <0.001

Red blood cell, M/mcl 3.51 (3.02-4.01) 3.39 (2.91-3.88) 0.014

MCHC, g/dL 32.80 (31.80-33.70) 32.70 (31.60-33.70) 0.202

Hemoglobin, g/dL 10.40 (8.90-11.90) 10.10 (8.60-11.70) 0.263

Red cell distribution width, % 15.40 (14.20-17.12) 16.55 (14.97-18.52) <0.001

White blood cell count, ×109/L 13.90 (9.13-20.20) 14.55 (8.54-22.66) 0.004

Comorbidities

COPD 0.889

No 3707 (92.77%) 526 (92.61%)

Yes 289 (7.23%) 42 (7.39%)

Congestive heart failure 0.024

No 3703 (92.67%) 511 (89.96%)

Yes 293 (7.33%) 57 (10.04%)

AMI 0.279

No 3850 (96.35%) 542 (95.42%)

Yes 3850 (96.35%) 542 (95.42%)

Diabetes 0.012

No 3433 (85.91%) 510 (89.79%)

Yes 563 (14.09%) 58 (10.21%)

Pneumonia 0.004

No 2744 (68.67%) 356 (62.68%)

Yes 1252 (31.33%) 212 (37.32%)

Rhythm disturbance <0.001

No 3314 (82.93%) 438 (77.11%)

Yes 682 (17.07%) 130 (22.89%)
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TABLE 2 Evaluation of the performance of the five algorithm.

Algorithm Data set AUC Accuracy Sensitivity Specificity Recall F1 score

LR Train 0.795 0.724 0.767 0.681 0.767 0.389

Validation 0.806 0.727 0.794 0.660 0.794 0.363

DT Train 0.736 0.869 0.857 0.880 0.857 0.135

Validation 0.764 0.820 0.750 0.891 0.750 0.136

XGBoost Train 0.821 0.751 0.703 0.798 0.703 0.457

Validation 0.817 0.742 0.700 0.784 0.700 0.420

SVM Train 0.720 0.663 0.556 0.770 0.556 0.356

Validation 0.716 0.647 0.537 0.756 0.537 0.318

LightGBM Train 0.950 0.882 0.892 0.871 0.892 0.644

Validation 0.758 0.683 0.562 0.804 0.562 0.370
F
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FIGURE 2

Features selection by LASSO regression and Boruta. (A) The variation characteristics of the LASSO coefficient. Selection of the optimal parameter
Lambda (l) in LASSO involved plotting log (l) on the X-axis and regression coefficients on the Y-axis. The different colored lines represented the
different variables. (B) Optimization parameters (l) of the LASSO model were selected by 10-fold cross-validation. The left dashed line represents
lmin (minimum cross-validated error), while the right dashed line indicates l1se (the largest l within one standard error of lmin). (C) Feature
identification via Boruta algorithm. The X-axis represented all features, and the Y-axis was the Z-value of each feature. The green boxes represented
the initial 26 significant variables, while the yellow ones denoted tentative, and the red ones indicated unimportant.
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showed relatively stable performance on both the training and

validation sets, with AUC values of 0.821 (Figure 3A) and 0.817

(Figure 3B) respectively. The model demonstrated a strong capacity

for generalization, as it attained the highest validation AUC while

also striking a balanced compromise between accuracy (0.742),

sensitivity (0.700), and specificity (0.784) on the validation set. The

LR algorithm also showed stable performance across datasets, with

a validation AUC of 0.806 and an accuracy of 0.727. The DT

algorithm achieved a high accuracy (0.869) on the training set, but

its performance decreased on the validation set, particularly in

sensitivity, which dropped from 0.857 to 0.750. The SVM algorithm

performed relatively weakly on both datasets, with AUC values of

only 0.720 and 0.716. Considering the balance between model

performance and generalizability, we proposed that the XGBoost

algorithm was the most suitable candidate for further

interpretability analysis.
3.4 Model interpretation

The XGBoost model was ultimately used to predict 28-day all-

cause mortality in sepsis patients, along with conducting an analysis

of model interpretability. Based on SHAP analysis (Figures 4A, B),

the APACHE score demonstrated the highest predictive importance

(mean SHAP value > 0.40), followed by the serum lactate level and

AST (SHAP value ≥ 0.20). The respiratory rate showed a moderate

influence (SHAP value > 0.15), with red cell distribution width and

SOFA score exhibiting comparable impacts. Other clinical features,

including albumin, age, blood urea nitrogen, and total protein, also

significantly contributed. These variables demonstrated substantial

contributions to the model’s predictive performance. Higher values

of APACHE score, lactate level, and AST were associated with

increased mortality risk, while elevated albumin and total protein

levels were protective factors. The SHAP dependence plots

(Supplementary Figure S1) revealed the relationship between
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feature values and their impact on model predictions. When the

SHAP values turned positive, these variables were found to enhance

the predicted outcomes.

To elucidate the model’s decision-making process at the

individual level, we performed local interpretability analysis using

SHAP waterfall plots on two randomly selected representative cases

from the training set (Figures 4C, D). For one case (Figure 4C), the

model predicted a markedly decreased mortality risk (final

prediction f(x) = -3.25 compared to the base value E[f(x)] =

-1.97) for this 61-year-old patient. The most substantial

protective factor was the notably low APACHE score (29, SHAP

value: -0.625), indicating relatively mild disease severity, followed

by low serum lactate (1.0 mmol/L, SHAP value: -0.24) suggesting

adequate tissue perfusion, and a low SOFA score (2, SHAP value:

-0.193) reflecting minimal organ dysfunction. Notably, the

respiratory rate remained stable (24 breaths/min, SHAP value:

-0.168). Despite elevated AST levels (146 U/L, SHAP value:

+0.173) indicating some degree of hepatic dysfunction, other

parameters remained favorable. In contrast, Case 2 (Figure 4D)

presented a 51-year-old patient, with the model suggesting an

increased mortality risk (final prediction f(x) = -1.24 compared

to the base value E[f(x)] = -1.97). The significant risk factors

included notable hepatic dysfunction (AST: 237 U/L, SHAP

value: +0.218), a high APACHE score (82, SHAP value: +0.115),

and an increased red cell distribution width (17.8%, SHAP value:

+0.135). The patient presented with significant organ dysfunction

(SOFA score: 8, SHAP value: +0.142), elevated serum lactate (4.1

mmol/L, SHAP value: +0.138), and markedly elevated blood urea

nitrogen (114 mg/dL, SHAP value: +0.172). The elevated

respiratory rate (34 breaths/min, SHAP value: +0.185) suggested

respiratory distress. Despite these risk factors, the total protein

remained within the normal range (7.3 g/dL, SHAP value: -0.111).

The SHAP values quantify each feature’s contribution, with

positive values (yellow bars) indicating risk-increasing factors

and negative values (magenta bars) representing protective effects.
FIGURE 3

Receiver operating characteristic curve and of the five models. (A) ROC of the training set. (B) ROC of the validation set. DT, decision tree; LGBM,
light gradient boosting machine; LR, logistic regression; SVM, support vector machine; XGBoost, extreme gradient boosting.
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4 Discussion

This study developed and validated a machine learning model to

predict 28-day all-cause mortality in ICU patients with sepsis using data

from the eICU Collaborative Research Database. Among the five

algorithms tested (logistic regression, decision tree, extreme gradient

boosting, support vector machine, and light gradient boosting machine),

the XGBoost model demonstrated the most stable and balanced

performance, with an AUC of 0.821 on the training set and 0.817 on

the validation set. The model identified APACHE score, serum lactate

levels, and AST as the top three predictors of mortality risk, followed by

other important factors such as respiratory rate, red cell distribution

width, SOFA score, albumin, age, blood urea nitrogen, and total protein.

Through SHAP analysis, the study emphasized model interpretability,

clarifying the specific contribution of each feature to the prediction

results, thereby enhancing themodel’s potential for clinical application in

sepsis management.

By combining LASSO regression with the Boruta algorithm, we

were able to greatly improve the reliability of risk factor

identification. LASSO effectively reduced model complexity and

mitigated overfitting (McNeish, 2015), while Boruta provided a
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comprehensive evaluation of feature importance, considering

potential variable interactions (Maurya et al., 2023). This method

enabled us to identify key predictors that are both statistically

significant and clinically relevant.

The XGBoost algorithm showed optimal performance in

analyzing complex eICU data, as the model identified the

combination of predictors reflecting the multi-system nature of

sepsis. The prominence of APACHE and SOFA scores as top

predictors reaffirmed the value of these comprehensive scoring

systems in assessing disease severity (Huang et al., 2022). While

the APACHE-IV scoring system has demonstrated satisfactory

discriminative capability in predicting 30-day mortality among

patients with ischemic stroke or intracerebral hemorrhage (van

Valburg et al., 2024), its performance in predicting intensive care

unit length of stay among sepsis patients has been notably limited

(Zangmo and Khwannimit, 2023). In addition, our study found that

a higher level of lactate was a major risk factor for 28-day mortality

in the ICU. Previous studies found that lactate levels, both at

admission and after 24 hours, were valuable predictors of in-

hospital mortality in sepsis patients (Baysan et al., 2022). Lactate

played a dual role in inflammatory processes, acting as both a pro-
FIGURE 4

The SHAP analysis of the XGBoost model. (A) A bar plot displaying the mean SHAP value for the top ten variables. (B) The beeswarm plots displayed
the distribution of the top ten variables, with variable values represented by different colors. Each sample was represented by a colored point. The x-
axis represented the SHAP value, while the color coding indicated the feature values. (C) SHAP waterfall plot for case 1. (D) SHAP waterfall plot for
case 2.
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inflammatory mediator by activating inflammatory pathways and

cytokine release, and as an anti-inflammatory agent by modulating

immune cell function and promoting tissue repair (Manosalva et al.,

2021). Sepsis-associated microcirculatory dysfunction leads to

tissue hypoperfusion and oxygen deficit, resulting in increased

lactate production through anaerobic glycolysis and impaired

oxygen utilization (Gattinoni et al., 2019). The inclusion of

biochemical indicators such as AST, albumin, and total protein

highlights the critical role of liver function, nutritional status, and

overall metabolic state in sepsis prognosis. Furthermore, the

identification of unusual predictors, such as red cell distribution

width (RDW), demonstrated our model’s ability to detect subtle but

important signs of inflammation in sepsis and predict 28-day

mortality. A multicenter study found that RDW was associated

with mortality in sepsis patients, proposed 16% as the optimal RDW

cutoff for predicting in-hospital mortality (Dankl et al., 2022). In

hospitalized patients over 60 years old, RDW was significantly

associated with higher in-hospital mortality, increased 30-day

readmission rates, and longer hospital stays (Kim et al., 2022). In

sepsis, systemic inflammation marked by elevated cytokines like IL-

6 and TNF-a impairs erythropoiesis, leading to increased RDW,

which correlates with disease severity and poor outcomes (Pierce

and Larson, 2005; Salvagno et al., 2015). Oxidative stress damaged

red cell membranes and reduced erythrocyte lifespan when

suffering from sepsis, leading to increased production of new red

blood cells of varying sizes, which resulted in elevated RDW

(Friedman et al., 2004; Salvagno et al., 2015).

The selection of performance metrics in our study was carefully

considered to provide a comprehensive evaluation of the model’s

clinical utility. Among all the algorithms, LightGBM demonstrated

the strongest performance in the training set with an AUC of 0.950,

though its performance in the validation set (AUC = 0.758) suggests

some degree of overfitting. XGBoost showed the most consistent

performance between the training and validation sets (AUC = 0.821

and 0.817, respectively), indicating robust generalizability. The

XGBoost achieved a sensitivity of 0.700 in the validation set,

meaning it correctly identified 70% of high-risk patients who may

require immediate intensive intervention. Its specificity of 0.784

indicated good capability in identifying lower-risk patients.

To address the interpretability challenge of ML models, we

employed SHAP values to provide transparent insights into the

XGBoost model’s decision-making process. SHAP analysis revealed

that APACHE score, lactate level, and AST were the top three

predictors of 28-day all-cause mortality in ICU sepsis patients. The

combination of elevated APACHE scores and high lactate levels

showed a synergistic effect in predicting poor outcomes, while

normal AST levels combined with low APACHE scores were

associated with better survival probability. Furthermore, our case

analysis validated these findings, demonstrating the model’s

practical application in clinical settings.

This study had several strengths and limitations. Our use of

advanced machine learning techniques, including XGBoost, allowed

for the construction of complex models with powerful computational

and fitting capabilities. The application of the SHAP analysis

enhanced model interpretability, providing clinicians with insights

into the decision-making process. The inclusion of 4,564 patients from
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multiple centers in the eICU database helped to increase the

generalizability of our results. However, the study’s retrospective

nature introduced potential biases. The lack of prospective

validation in clinical trials limited our ability to determine the

model’s exact real-world performance. Additionally, while we

included a comprehensive set of variables, some potentially

important factors, such as pre-ICU immobilization status, were not

available in the database and thus not incorporated into our model. To

address this limitation, we are currently carrying out a multicenter

study that includes pre-ICU immobilization status among its

assessment indicators. Additionally, our team is working on an

intelligent prediction platform designed to help clinicians accurately

predict the 28-day mortality risk for ICU sepsis patients. External

validation through this ongoing research and future prospective

studies will help confirm the model’s generalizability and clinical

utility across diverse settings.
5 Conclusion

Machine learning models effectively predicted 28-day ICU

mortality in sepsis patients. Among the five constructed models,

the XGBoost model proved to be the most stable and effective,

enabling early identification of high-risk sepsis mortality patients

and facilitating individualized interventions to alleviate

patient burden.
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