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Interactions between the tumor
microbiota and breast cancer
Hua Guo*

The Nursing Department, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
Breast cancer is the most commonmalignancy in women worldwide. Changes in

the microbiota and their metabolites affect the occurrence and development of

breast cancer; however, the specific mechanisms are not clear. Gut microbes

and their metabolites influence the development of breast cancer by regulating

the tumor immune response, estrogen metabolism, chemotherapy, and

immunotherapy effects. It was previously thought that there were no

microorganisms in breast tissue, but it is now thought that there are

microorganisms in breast cancer that can affect the outcome of the disease.

This review builds on existing research to comprehensively analyze the role of

gut and intratumoral microbiota and their metabolites in the development and

metastasis of breast cancer. We also explore the potential function of the

microbiota as biomarkers for prognosis and therapeutic response, highlighting

the need for further research to clarify the causal relationship between the

microbiota and breast cancer. We hope to provide new ideas and directions for

the development of new methods for breast cancer treatment.
KEYWORDS

breast cancer, tumor microbiome, intestinal microbiota, intratumoral microbiota,
microbial metabolites
1 Introduction

Global cancer statistics for 2022 indicate that breast cancer will be the most commonly

diagnosed cancer among women, with an estimated 2.3 million new cases every year,

representing 11.6% of all cancer cases (Bray et al., 2024). With the continuous increase in

research on breast cancer and the tumor microenvironment, treatment methods for the

disease have become increasingly targeted, typically involving a combination of traditional

therapy and novel immune therapy guided by the cancer molecular subtype. Although

treatment regimens for breast cancer have been continuously optimized, the therapeutic

effect for highly malignant breast cancer is still not ideal, with challenges such as drug

resistance, recurrence, and distant metastasis. Therefore, identifying new treatment

directions is helpful for the clinical selection of more effective treatment plans.

The large microbiota, composed of bacteria, viruses, and eukaryotes that inhabit the

human body, play an important role in maintaining health and disease development. In a

healthy human body, the microbiota coexists peacefully with the organism and assists in

maintaining health. However, when the composition of the microbiota is unbalanced,
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diseases, including tumors, may occur (Lynch and Pedersen, 2016;

Fan and Pedersen, 2021). These microbial organisms indirectly

influence cancer through mechanisms, such as metabolite

production and immune system modulation, which affect both

distant and proximal tumor tissues (Yang et al., 2023a).

Currently, research on tumor-related microorganisms mainly

focuses on intestinal microorganisms. These microorganisms and

their metabolites are crucial for maintaining the integrity of the

intestinal mucosa, nutrient metabolism, immune regulation, and

other functions (Li S. et al., 2024). This is particularly evident in

colorectal cancer (CRC), where the gut microbiota directly affects

the tumor microenvironment (TME) by regulating the immune

system, thereby influencing CRC prognosis (Garrett, 2015; Xavier

et al., 2020).

Relatively few studies have addressed the involvement of

microbiota in breast cancer progression, particularly the impact of

intratumoral microorganisms. Significant alterations in the breast

microbiota have been detected in patients with malignancy, with

notable differences between cancerous tissues and healthy controls,

and between benign and malignant breast tissues (Bobin-Dubigeon

et al., 2021; Ma et al., 2022). Microbial dysbiosis in other organs may

also contribute to breast cancer development. For example, oral

dysbiosis-mediated periodontal disease is involved in the

development of breast cancer (Jia et al., 2020; Zheng et al., 2022).

This indicates that both intratumoral microorganisms and

microorganisms in other parts of the body can affect the

progression of breast cancer.

This study systematically summarizes the roles of intestinal and

intratumoral microorganisms in the development of breast cancer

and seeks new ideas for the prevention and treatment of

breast cancer.
2 Detection methods for
tumor microorganisms

Advancements in high-throughput sequencing technology have

continuously improved the sequencing accuracy of microorganisms

while reducing costs. 16S rRNA and metagenomic sequencing are

the most widely employed approaches for detecting the distribution

and characteristics of microorganisms in patients (Clarridge, 2004;

Goodrich et al., 2014; Knight et al., 2018; Liu et al., 2021b). The 16S

rRNA gene, which is common to both bacteria and archaea, consists

of nine variable regions (V1-V9) and 10 conserved regions arranged

alternately. Conserved regions facilitate primer design for gene

amplification, whereas variable regions reflect evolutionary

differences between species, making the 16S rRNA gene a widely
Abbreviations: CRC, colorectal cancer; TME, tumor microenvironment; MAGs,

metagenome-assembled genomes; TLRs, Toll-like receptors; F. nucleatum,

Fusobacterium nucleatum; HFD, High-fat diet; ICB, immune checkpoint

blockade; DC, deoxycholate; TNBC, triple-negative breast cancer; SCFAs,

short-chain fatty acids; ETBF, enterotoxigenic Bacteroides fragilis; PRRs, pattern

recognition receptors; EMT, epithelial-mesenchymal transition.
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used molecular marker for prokaryotic identification, classification,

phylogenetic analysis, and diversity studies.

Compared to 16S rRNA gene sequences, metagenomics

provides a broader spectrum of microbial information. An

effective approach in metagenomics is the recovery of

metagenome-assembled genomes (MAGs), which allow the

reconstruction of microbial genomes from metagenomic data

(Zhou et al., 2022). Additionally, novel microbiome analysis

methods, such as machine learning-based multiomics analysis,

have shown promise in predicting the characteristics of the

human microbiome related to complex host diseases (Asnicar

et al., 2024).

Other sensitive microbial detection techniques, including

immunohistochemistry (IHC), fluorescence in situ hybridization

(FISH), D-alanine labeling, and tissue isolation culture, can also be

used to detect intratumoral bacterial biomass (Xue et al., 2023). IHC

detects bacterial samples using antibodies against bacteria-derived

lipopolysaccharides (LPS) or lipoteichoic acid (LTA). FISH can

identify bacterial DNA in tissues using fluorescent dye-labeled

probes that target the 16S rRNA gene (Lin et al., 2021).

Furthermore, most bacteria exhibit alanine racemase activity,

which is essential for D-alanine biosynthesis and peptidoglycan

formation in bacterial cell walls, making D-alanine labeling a useful

method for detecting live bacteria in situ.
3 Influence of the intestinal
microbiota on breast cancer

Alterations in the intestinal microbial diversity can lead to

intestinal microecological dysbiosis, thereby promoting the onset

of various diseases (Sekirov et al., 2010). Intestinal microecological

dysbiosis can affect the prognosis of diseases, including tumors,

through multiple mechanisms, such as activating innate immune

responses, pro-inflammatory responses, changes in metabolites,

regulation of estrogen levels, and alteration of drug metabolism

(Goedert et al., 2018; Arnone and Cook, 2022; Niekamp and Kim,

2023; Wang et al., 2023; Bernardo et al., 2023a; Giampazolias et al.,

2024). Compared with healthy people, the diversity of intestinal

microorganisms in patients with breast cancer is reduced,

characterized by a depletion of Bacteroidetes, Odoribacter,

Butyricimonas, and Coprococcus and an enrichment of Firmicutes,

Acidaminococcus, Tyzzerella, Hungatella, Porphyromonas, and

Peptoniphilus (Bobin-Dubigeon et al., 2021; Ma et al., 2022; Song

et al., 2022; Altinok Dindar et al., 2023; Amaro-da-Cruz et al.,

2024). These studies indicated that intestinal microecological

dysbiosis may affect the occurrence, development, and therapeutic

effects of breast cancer through multiple pathways.
3.1 Intestinal microbiota regulates the
immune response of breast cancer

Alterations in anti-tumor immune responses and chronic

inflammation are important factors influencing the occurrence of

various tumors. Microbial dysbiosis (gut microbiota that express the
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enzyme b-glucuronidase), characterized by chronic inflammation

and immune evasion, can promote tumorigenesis in breast cancer

(Buchta Rosean et al., 2019; Arnone and Cook, 2022). Gut

microorganisms (e.g. Proteobacteria and Firmicutes) can modulate

the immune system through regulating lymphocyte proliferation via

bacterial metabolites and influencing chronic inflammation and

estrogen metabolism (Van der Merwe et al., 2021; Zhang et al.,

2021). Furthermore, commensal bacteria (e.g. Helicobacter hepaticus)

also promotes the occurrence and distant metastasis of breast cancer

by influencing the anti-tumor immune functions of IL-6 and

neutrophils in the tumor microenvironment (Lakritz et al., 2015;

Rutkowski et al., 2015). These studies indicate that immune system

disorders induced by intestinal microecological dysbiosis play an

important role in the development of breast cancer.

Toll-like receptors (TLRs) are essential components of innate

immune responses. They serve as pattern recognition receptors

(PRRs) that detect various pathogens, including commensal

microbiota. TLR4/MyD88 stimulation by Fusobacterium

nucleatum (F. nucleatum) promotes tumor development via NF-

kB activation in CRC (Yang et al., 2017; Yu et al., 2017; Zhang et al.,

2019). Similar TLR4 and NF-kB activation has been reported in

breast cancer cells stimulated by bacterial LPS, leading to the

expression of inflammatory factors and apoptotic proteins (Rajput

et al., 2013). Moreover, microorganisms can drive malignant

progression at extra-mucosal sites via TLR5-dependent signals to

increase the expression of systemic IL-6 and immunosuppressive gd
T cells to regulate tumor-promoting inflammation (Rutkowski

et al., 2015). These studies indicate that intestinal microorganisms

and their metabolites promote the growth and metastasis of breast

cancer cells by regulating TLR-mediated innate immune responses.
3.2 Intestinal microbiota affects
estrogen metabolism

Estrogen exposure is an important factor that affects the

occurrence and development of breast cancer. The “estrobolome”

refers to the collection of intestinal bacterial genes whose

metabolites can metabolize estrogen (Plottel and Blaser, 2011).

Estrogen is mainly produced by the ovaries, adrenal glands, and

adipose tissues, circulates in the blood in the form of free or

conjugated estrogen, and combines with its metabolites in the

liver to form conjugated estrogen. Conjugated estrogen is

metabolized into water-soluble molecules and excreted in urine or

bile. The conjugated estrogen in bile can be decomposed by bacteria

with b-glucuronidase activity in the intestine, and after

reabsorption and re-entry into the circulation, it increases the

bioavailability of estrogen. Circulating estrogen stimulates growth

and proliferation of breast cells (Kwa et al., 2016). Therefore, the

enterohepatic circulation of estrogen can affect the levels of estrogen

and its metabolites in the circulatory system and may ultimately

contribute to the risk of hormone-driven breast cancer.

The process by which the intestinal “estrobolome” regulates the

enterohepatic circulation and reabsorption of estrogen is also

influenced by host factors, such as age, diet, and antibiotics. The

effects of antibiotics and diet are discussed below.
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3.2.1 Antibiotics
The use of antibiotics can affect the diversity and quantity of the

flora in the body. Improper use can lead to dysbiosis of the intestinal

flora and various diseases, including breast cancer (Velicer et al.,

2004; Garcia Rodriguez and Gonzalez-Perez, 2005; Sorensen et al.,

2005; Friedman et al., 2006). Ampicillin and oxytetracycline can

increase the content of conjugated estrogen in the feces of women and

men, respectively, while reducing estrogen in the urine (Adlercreutz

et al., 1975; Martin et al., 1975; Hamalainen et al., 1987). Increased

antibiotic exposure may also increase the risk of breast cancer

(Velicer et al., 2004; Friedman et al., 2006). These studies indicate

that certain antibiotics ultimately affect the risk of breast cancer by

regulating estrogen excretion and influencing the deconjugative

activity of intestinal bacteria. However, the mechanism by which

antibiotics affect the development of breast cancer through the

intestinal flora remains unclear and requires further research.

3.2.2 Diet
Although factors such as lifestyle, exercise, and supplements can

affect estrogen levels, diet remains a major factor influencing the

overall estrogen concentration, potentially through the modulation

of gut microbiome composition and function (Muegge et al., 2011).

As early as 1982, Goldin et al. found that vegetarians excreted

higher levels of conjugated estrogens in feces than non-vegetarians,

resulting in lower plasma estrogen levels (Goldin et al., 1982).

Adiposity has been linked to higher serum estrogen levels in

postmenopausal women, which are correlated with an increased

risk of multiple malignancies (Keum et al., 2015). High-fat diet

(HFD) disrupts gastrointestinal metabolism and immune

homeostasis and contributes to disease states. Soto-Pantoja et al.

found that HFD mice and mice that received fecal transplantation

from HFD-fed mice exhibited an increased Firmicutes/

Bacteroidetes (F/B) ratio (Soto-Pantoja et al., 2021). Microbiota

changes observed in genetically obese mice are consistent with those

observed in obese humans (Ley et al., 2005, 2006). This altered ratio

increases the abundance of harmful bacteria, leading to the release

of enterotoxins and chronic low-grade inflammation (Mikó et al.,

2019; Parida and Sharma, 2019). The HFD promotes cancer

progression by inducing gut microbiota-mediated leucine

production and polymorphonuclear myeloid-derived suppressor

cell differentiation (Chen et al., 2024b). The above studies indicate

that the gut-breast signaling axis is involved in regulating the

influence of diet on breast cancer risk, which provides a reference

for guiding the daily dietary intake of breast cancer patients and

women at a high risk of breast cancer.
3.3 Effects of intestinal microbiota on
breast cancer treatment

The gut microbiome plays a significant regulatory role in

modulating responses to both traditional and immune therapies

(Battaglia et al., 2024). They can regulate local inflammation and

gut barrier function by targeting drug metabolism, modulating

immune responses, and secreting different metabolites, ultimately

affecting chemotherapy outcomes (Alexander et al., 2017; Sampsell
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1499203
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Guo 10.3389/fcimb.2024.1499203
et al., 2020). Chemotherapy drugs may also affect chemotherapy-

induced weight gain and neurological side effects by regulating

microbial diversity (Terrisse et al., 2021).

HER2 inhibitors such as trastuzumab have a good therapeutic

effect on HER2-positive breast cancer. However, antibiotic treatment

changes the composition of the intestinal flora, reduces dendritic cell

activation and IL12p70 secretion, leads to changes in anti-tumor

immunity in the tumor microenvironment, and ultimately reduces

the therapeutic activity of trastuzumab (Di Modica et al., 2021). This

study indicates that intestinal microbial dysregulation can regulate the

host immune system and ultimately affect the therapeutic effects of

chemotherapeutic drugs.

The immune checkpoint blockade (ICB) is a new-generation

immunotherapeutic strategy for various cancers. Commensal gut

bacteria can suppress inflammation, reshape primary and acquired

immune responses, and reprogram the TME in murine models and

patients, thereby influencing ICB efficacy (Xue et al., 2024). Jia et al.

reported that the gut microbial metabolite indolepropionic acid

(IPA) enhances immunotherapy efficacy by modulating T cell

stemness in cancers (Jia et al., 2024). Additionally, using a murine

model of gut microbiota dysbiosis, Shi et al. found that Lactobacillus

and its metabolite lactic acid promote breast cancer progression,

particularly triple-negative breast cancer (TNBC), by affecting the

anti-tumor activities of immune cells in the TME (Shi et al., 2023).

These results indicate that intestinal microbiota is expected to

become a potential target for breast cancer treatment.
3.4 Microbial metabolites affect tumor
immune microenvironment and
therapeutic response in breast cancer

A large part of the physiological regulatory function of

microorganisms is exerted through their metabolites such as

short-chain fatty acids (SCFAs), bile acids, and inosine. These

metabolites enter blood circulation, serve as significant

modulators of the TME, and influence immune cell differentiation

signals and the release of substances from both immune cells and

tumors (Jaye et al., 2022a; Yang et al., 2023b).
3.4.1 Short-chain fatty acids
SCFAs, primarily butyrate, propionate, and acetate, are

produced by microbiotal dietary fiber digestion. They are tumor

suppressors in various cancer types, particularly colon cancer.

SCFAs are the most common gut microbial metabolites and are

mainly produced by intestine-colonizing species, such as

Eubacterium rectale, Clostridium leptum, and Faecalibacterium

prausnitzii (Williams et al., 2017; Jaye et al., 2022b). The total

concentration of SCFAs exceeding 100 mM in the intestine include

propionate, acetate, and butyrate (Mirzaei et al., 2021). Butyrate,

one of the most abundant SCFAs, has a dual effect on cancer cell

proliferation, which is largely dependent on its concentration; low

concentrations may promote carcinogenesis, whereas higher

concentrations may inhibit tumorigenesis (Jaye et al., 2022b).

Butyrate has demonstrated strong inhibitory effects on various

breast cancer cell lines (Rodrigues et al., 2015; Semaan et al.,
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2020; Jaye et al., 2023). For example, sodium butyrate suppresses

breast cancer cells by inducing cell cycle arrest at the G2/M phase,

increasing caspase-10 levels, promoting apoptosis, and initiating

intracellular calcium influx (Jaye et al., 2022a). Microbiota-derived

butyrate can influence tumor progression by reshaping the TME.

Butyrate’s interaction with its receptor Gpr109a exerts anti-

inflammatory effects on colonic macrophages and dendritic cells,

inducing regulatory T cell (Treg) differentiation and T cell

production of IL-10, thereby suppressing colonic inflammation

and cancer progression (Singh et al., 2014). Additionally, butyrate

enhances ICB efficacy by modulating T cell receptor signaling in

CD8+ T cells, indicating its potential as a therapeutic biomarker

(Zhu et al., 2023). Despite butyrate’s considerable anti-tumor

effects, low bioavailability and dose-dependent side effects have

limited its clinical application. Nanoparticle-based delivery systems

for butyrate may overcome these challenges (Yu et al., 2023).

3.4.2 Bile acids
Most primary bile acids are reabsorbed in the small intestine,

returned to the liver via the portal vein, and secreted back into the

bile through enterohepatic circulation. Primary bile acids can also

be metabolized by gut microbiota into secondary bile acids through

deconjugation and dehydrogenation. Because breast cells do not

produce bile acids, the presence of secondary bile acids in breast

cancer tissues likely results from minimal leakage from the

enterohepatic circulation or local production by the microbiome

within the breast tissue. Wu et al. analyzed the transcriptomic and

clinical case information of three large open primary breast cancer

cohorts as well as the microbiome data of 16S rRNA gene sequences

in TCGA breast cancer tissues. They found that breast tumors with

low bile acid metabolism were more aggressive, and that there were

a large number of microorganisms related to aggressive tumor

biology in the TME. In breast tumors with high bile acid

metabolism, oxidative stress-induced apoptosis leads to a

significant increase in survival rate (Wu et al., 2022). This study

indicates that bile acid metabolism usually inhibits tumor growth in

breast cancer.

3.4.3 Sodium deoxycholate
Sodium deoxycholate (DC), synthesized by intestinal bacteria,

typically maintains a serum concentration of 5-10 mmol/L.

However, in breast cyst fluid, DC levels can increase to more than

50 mmol/L. Although DC has been implicated in the promotion of

colon carcinogenesis (Debruyne et al., 2002), its effects on breast

cancer are complex.

DC plays a dual role in breast cancer epithelial cells, with lower

concentrations promoting cell proliferation, likely through AKT

phosphorylation and cyclin D1 expression, and higher

concentrations inducing apoptosis and sustained activation of p38

and AKT (Gándola et al., 2020). This study suggests that the effects

of bile salts on breast cancer cells are concentration-dependent. In a

metastatic murine breast cancer model, DC act as natural tumor

promoters by increasing Flk-1 and reducing ceramide-mediated

progenitor cell apoptosis (Krishnamurthy et al., 2008).

Moreover, DC has been implicated in paclitaxel treatment-

related peripheral neuropathy in patients with breast cancer.
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Paclitaxel treatment leads to the ingrowth of Clostridium species

and increased DC levels. DC appear to elevate serum levels of

CCL5/CCR5 in the dorsal root ganglion through the bile acid

receptor TGR5, contributing to neuronal hyperexcitability and

neuropathic pain (Zhong et al., 2023).
4 Intratumoral microbiota and
breast cancer

Breast tissue was once considered a sterile environment.

However, with an increasing number of studies focusing on the

relationship between microorganisms and breast diseases, it has

been found that breast tissue contains a variety of microbiota. The

breast is primarily composed of adipose tissue with a rich vascular

and lymphatic network, creating a conducive environment for

bacterial growth, particularly of the phyla Proteobacteria and

Firmicutes. Streptococcus, Enterococcus, and Staphylococcus can be

isolated from both breast cancer and normal breast tissues, but the

relative abundance at the genus level is very different, the expression

of these microbiota in breast cancer tissue is significantly increased

(Urbaniak et al., 2014, 2016; Thompson et al., 2017; Nejman et al.,

2020; Fu et al., 2022). At the phylum level, Proteobacteria is

predominant, followed by Firmicutes, Bacteroidetes, and

Actinobacteria. The breast microbiome maintains healthy breast
Frontiers in Cellular and Infection Microbiology 05
tissues by stimulating the resident immune cells (Xuan et al., 2014).

Although the biomass of the intratumoral microbiota is very low, it

plays an important role in promoting breast cancer progression.
4.1 Origin and colonization of breast
cancer intratumoral microbiota

The origin and colonization of intratumoral microbiota remain

uncertain. Microbiota may colonize tumor tissues through three

primary mechanisms: mucosal destruction, hematogenic invasion,

and adjacent tissue migration (Cao et al., 2024; Guo et al., 2024).

Additionally, the immunosuppressive, hypoxic, and nutrient-rich

environments in tumors may facilitate microbial colonization and

reproduction (Figure 1).

F. nucleatum primarily presented in the oral cavity and

gastrointestinal tract, has been implicated in various cancers,

including breast cancer. This bacterium may promote

tumorigenesis by affecting the infiltration and function of

immune cells. Transient bacteremia during periodontal disease

can facilitate oral F. nucleatum invasion into the bloodstream,

leading to its translocation to the mammary glands. F. nucleatum

can dock to tumor tissues via its surface-exposed lectin, Fap2, which

recognizes the host Gal-GalNAc and enhances breast tumor growth

and metastatic progression (Abed et al., 2016; Parhi et al., 2020). In
FIGURE 1

The potential origins and colonization of intratumoural microbiota in breast cancer. (A) Hematogenic invasion: Microorganisms from distant organs
may reach breast tissue through the blood. (B) Adjacent tissue migration: Microorganisms from adjacent tissues may migrate to breast tissue (e.g.,
skin surface microorganisms). (C) Tumor microenvironment: tumor microenvironment (e.g., hypoxia, immunosuppression) may contribute to the
colonization of microorganisms in the tumor tissue.
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addition, Bacteroides have been detected in canine breast tumors, as

well as in the oral and gut microbiomes, suggesting a potential route

of dissemination from the mouth to the gastrointestinal tract and

ultimately to distant mammary tissue (Zheng et al., 2022). These

studies indicate that oral microorganisms are a source of colonizing

microorganisms in the breasts.

Adjacent normal tissues may also serve as potential sources of

the intratumoral microbiota. The skin-related bacteria

Staphylococcus epidermidis and Micrococcus luteus have been

identified in mammary tumors, suggesting that these microbes

may access the mammary duct through the nipple and

disseminate to the mammary gland via the lobules and ducts

(Urbaniak et al., 2014; Bernardo et al., 2023a). The similarities

between the microbiome communities in tumors and adjacent

normal tissues support the possibility of adjacent tissue invasion.
4.2 Differences between the microbiota in
normal breast and breast cancer tissues

Methylobacterium radiotolerans, Bacillus, Enterobacteriaceae,

Staphylococcus, Ralstonia, Bacillaceae, and Burkholderiaceae are

more abundant in breast cancer and their adjacent tissues, whereas

Sphingomonas yanoikuyae, Acetobacter aceti, Lactobacillus vini, and

Lactobacillus paracasei are more abundant in healthy breast tissues

(Xuan et al., 2014; Urbaniak et al., 2016; Hoskinson et al., 2022;

German et al., 2023). Analysis of microbiome-immune networks in

the breast has revealed that Anaerococcus, Caulobacter, and

Streptococcus are crucial hubs in benign tissues but are absent in

tumor tissues (Tzeng et al., 2021). Taken together, these studies

indicate that both healthy breast tissues and breast cancer tissues have

unique microbial environments.

The intratumoral microbiota of patients with breast cancer also

varies according to race and sex. Metagenomic analyses have

identified race-associated microbial biomarkers, such as

Pseudomonas and Methylobacter in tumors from Asian women,

and Amycolatopsis in tumors from black women (Siddharth et al.,

2021; Parida et al., 2023b). Notably, Ralstonia was most enriched in

non-Hispanic Black patients, whereas Xanthomonadales were more

prevalent in non-Hispanic white patients (Smith et al., 2019).

Differences in the breast microbiomes of men and women have

also been reported. Tenericutes, particularly Mesoplasma and

Mycobacterium, are implicated in breast carcinogenesis in both

sexes (Niccolai et al., 2023). Dysbiosis extends throughout the breast

tissue in females and is more localized to the tumor site in males.

Microbial signatures differ among breast cancer subtypes.

Actinomyces signatures have been detected across all breast

cancer types, with higher signal intensities observed in patients

with HER2+ breast cancer (Banerjee et al., 2018). A larger cohort

analysis revealed that each subtype had unique microbial signatures,

with ER+ breast cancer showing the most diverse tumor

microbiome and TNBC exhibiting the least diversity. Notably,

higher abundances of Bacillus, Mucor, Nodaviridae, Toxocara,

and Trichophyton in TNBC samples were significantly correlated

with a better prognosis (Banerjee et al., 2021).
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4.3 Role of intratumoral microbiota in
breast cancer development

Although the direct effects of the intratumoral microbiota on

breast cancer have been less frequently reported, evidence suggests

that the intratumoral microbiota may regulate the development of

breast cancer through inducing genomic instability and DNA

mutations, activating carcinogenic pathways, promoting

inflammatory responses, and modulating the local immune

microenvironment to facilitate invasion (Xie et al., 2022; Yang

et al., 2023a; Cao et al., 2024) (Figure 2).

4.3.1 Induce DNA damage
Certain carcinogenic bacteria, such as pks+ Escherichia coli and

Staphylococcus aureus, encode and secrete cytolytic toxins (e.g.,

colibactin, PSMa1-4) that cause ROS-mediated DNA damage and

accelerate tumor onset (Dejea et al., 2018; Krueger et al., 2022).

These bacteria, which belong to the Enterobacteriaceae and

Staphylococcus genera, are enriched in breast cancer tissues. Guo

et al. found that F. nucleatum, abundant in the human breast cancer

microbiome, secretes adhesin FadA to activate the E-cadherin/b-
catenin pathway, upregulate Chk2 levels and induce DNA damage

(Guo et al., 2020a). Moreover, the gut-colonizing bacterium

enterotoxigenic Bacteroides fragilis (ETBF) in the mammary gland

increases the expression of spermine oxidase in intestinal epithelial

cells, leading to ROS production and g-H2A activation that causes

DNA damage (Goodwin et al., 2011; Parida et al., 2021).

4.3.2 Regulation of the inflammatory response
Dysregulated innate immunity in cancer often causes persistent

chronic inflammation, which promotes cancer progression and

anti-tumor immune resistance. Intratumoral microbiomes can

activate inflammatory signals by interacting with pattern

recognition receptors (PRRs) such as TLRs in the TME. The

intratumoral microbiota in breast cancer significantly influence

TLR signaling, particularly through the LPS/TLR4 pathway

cascade (Afroz et al., 2022; Wilkie et al., 2022). F. nucleatum and

A. actinomycetemcomitans also activate diverse TLRs and NF-kB in

bone marrow-derived macrophages, increasing IL-6 production

(Park et al., 2014). Untreated murine mammary tumors display

increased Staphylococcus abundance, of which isolated

Staphylococcus epidermidis demonstrates significant inflammatory

activity (Bernardo et al., 2023b). Moreover, bioinformatics analysis

revealed that Propionibacterium and Staphylococcus, which are

decreased in tumors, correlate negatively with oncogenic immune

signatures, whereas Streptococcus and Propionibacterium correlate

positively with T cell activation (Tzeng et al., 2021). Mammary

metabolism-related microbiota are related to T cell exclusion and

immunotherapy responses (Chen et al., 2023).
4.3.3 Promoting invasion and metastasis
Intratumoral microorganisms influence both intercellular

interactions and the external microenvironment, facilitating

distant metastasis (Cao et al., 2024). Fu et al. demonstrated that
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in mouse models of spontaneous breast tumors (MMTV-PyMT),

the intratumoral bacteria, carried by circulating tumor cells, can

modulate RhoA/ROCK signaling pathways, alternate the actin

cytoskeleton, enhance resistance of host cells to fluid shear stress,

and promote lung metastasis in breast cancer, thereby promoting

the survival and metastasis of host cells (Fu et al., 2022).

The colonic oncogenic microorganism ETBF, found in

carcinogenic breast tissues, secretes a toxin that induces

hyperplasia in breast epithelial cells (Parida et al., 2021). ETBF is

not present in normal breast tissues. Compared with non-toxigenic

Bacteroides fragilis, ETBF colonizing in the breast and intestinal

ducts can affect epithelial-mesenchymal transition (EMT) by

activating the b-catenin and Notch1 signaling pathways,

significantly promoting tumor growth and metastasis. ETBF

infection can also trigger systemic inflammation in breast cancer,

increasing the levels of proinflammatory and tumorigenic cytokines

such as IL-17A and IL-6 (Parida et al., 2023a). These inflammatory

changes reshape the TME, create a pre-metastatic niche in the target

organs, and promote metastasis to the lungs and liver. F.

nucleatum-derived outer membrane vesicles also promote lung

metastasis in tumor-bearing mice by altering EMT-related protein

levels and activating intracellular autophagy pathways (Chen et al.,

2024a). Small extracellular vesicles derived from F. nucleatum in

breast cancer facilitate tumor growth and metastasis via TLR4

signaling (Li et al., 2023). Thus, extracellular vehicles play a role

in modulating communication between cancer cells and the

surrounding microenvironment and distant organs.
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4.4 Influence of intratumoral
microorganisms on the chemotherapy of
breast cancer

A study by Gao et al. demonstrated that F. nucleatum can

induce PD-L1 expression through activating STING signals, leading

to accumulation of IFN-g+ CD8+ lymphocytes (Gao et al., 2021).

This could potentially improve the efficacy of ICBs in the treatment

of CRC. Similarly, the pathogenic bacterium Salmonella

typhimurium exerts potent anti-tumor effects by activating the

immune system (Zheng et al., 2017; Guo et al., 2020b). These

studies indicate that symbiotic microorganisms play important

roles in regulating host immune responses and therapeutic effects.

Tumor-resident intracellular microbiome (TRIM) can enhance

tumor cell proliferation and metastatic colonization while

decreasing chemotherapy efficacy (Sears et al., 2014; Geller et al.,

2017; Fu et al., 2022). ETBF-secreted toxins enhance cancer cell

s temness and chemores i s tance by act iva t ing NUMB

phosphorylation, which leads to lysosomal degradation and

Notch1 activation (Ma et al., 2024). In CRC, F. nucleatum

induces resistance to oxaliplatin and 5-fluorouracil (5-FU) by

upregulating autophagy through TLR4/MYD88-dependent signals

and preventing apoptosis via the upregulation of ANO1/BIRC3 (Yu

et al., 2017; Zhang et al., 2019). In addition, F. nucleatum is involved

in promoting chemotherapy resistance in esophageal squamous cell

carcinoma (Liang et al., 2022) and oral squamous cell carcinoma

(Liu et al., 2021a). In an animal model of breast cancer, F.
FIGURE 2

Intratumoral microbiota affect tumor development through several proposed mechanisms, such as DNA damage, promoting immune and
inflammation, activating invasion and metastasis.
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nucleatum colonization was linked to reduced chemotherapy

efficacy by activating autophagy-related pathways in cancer cells

(Su et al., 2024).

Combining targeted antibacterial treatments with chemotherapy

can suppress both TRIM and tumor cells, promoting M2-to-M1-like

tumor-associated macrophage repolarization and achieving long-term

survival in animal models with no recurrence (Wang et al., 2024). F.

nucleatum-mimicking nanovehicles, which fuse cytoplasmic

membranes with antibiotic-loaded liposomes, have been shown to

selectively target and eradicate tumor-resident bacteria, thereby

significantly restoring the effectiveness of chemotherapy (Chen et al.,

2024c). The biomimetic nanocarriers improve the immunosuppressive

TME induced by intratumoral F. nucleatum and enhance the

therapeutic effect of PD-L1 (Geng et al., 2024). These studies indicate

that targeting pathogenic microorganisms in tumors may help improve

the efficacy of chemotherapy and prevent recurrence.

Additionally, nanoparticles coated with bacteria-derived outer

membrane vesicles (OMVs) convert intratumor F. nucleatum into

immunopotentiators, releasing pathogen-associated molecular

patterns (PAMPs) and enhancing immunochemodynamic therapy

efficacy in TNBC (Liu et al., 2023). Encapsulating bacteria-derived

extracellular vesicles (BEVs) in nanocloaks can increase

immunogenicity and facilitate DC maturation by activating

cGAS-STING signaling. This approach, in combination with anti-

PD-L1 antibodies, elicits a potent immune response and

synergistically inhibits tumor progression and lung metastasis

(Zhang et al., 2024). Therefore, bacteria-derived vesicles can

effectively improve the immunosuppressive state of the TME, and

represent a potential treatment method.
4.5 Prognostic value of microbiomes
and miRNA

Intratumoral microbiome profiles may serve as valuable tools

for predicting patient prognosis and assessing the clinical efficacy of

specific drugs. A recent study by Li et al. identified four immune-

related intratumor microbiomes (IRIM; e.g., Acidibacillus and

Succinimonas) that have potential prognostic value (Li J. et al.,

2024). These microbiomes were correlated with immune gene levels

and sensitivity to chemotherapeutic agents, particularly tamoxifen

and docetaxel.

Microbiota dysbiosis can trigger various immune-mediated

diseases by regulating the derived metabolites and host

environmental factors. miRNAs have emerged as critical mediators

of host-microbiome interactions, with bidirectional effects observed

between the microbiome and miRNAs in carcinogenesis (Yang et al.,

2017; Yuan et al., 2019; Wang et al., 2021).Yang et al. Found that

patients with both high amount of tissue Fusobacterium nucleatum

DNA and miR21 had a higher risk of poor prognosis (Yang et al.,

2017). Laborda-Illanes et al. revealed an increase in the expression of

miR-149-5p, miR-20b-5p, andmiR-342-5p inmetastatic breast cancer

(Met-BC) patients, compare with non-metastatic breast cancer

(nonMet-BC) patients (Laborda-Illanes et al., 2024). The Met-BC

group exhibited an increase in several pathogenic and pro-

inflammatory species, including Streptococcus epidermidis,
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Haemophilus influenzae, Corynebacterium aurimucosum, and

Corynebacterium kroppenstedtii, while the NonMet-BC group

displayed higher levels of probiotic bacteria, such as Parabacteroides

distasonis, Lactobacillus iners, Blautia obeum, and Faecalibacterium

prausnitzii (Laborda-Illanes et al., 2024). These studies suggest that

consideration of both intratumoral miRNA expression andmicrobiota

changes could aid in precision treatment for breast cancer.
5 Future outlook and conclusion

In summary, the influence of the gut and local microbiota on breast

cancer development requires further investigation to elucidate the

underlying mechanisms and identify key microbial players (Bernardo

et al., 2023a). Challenges such as lowmicrobial biomass, environmental

contamination from non-microbial genomes, and antibiotic

perturbations persist. Additionally, animal models used in bacterial

research may not fully represent the human microbiome owing to

differences in diet, genetics, and age. Co-culturing specific bacterial taxa

(e.g., Streptococcus, Lactobacillus, Salmonella, Bifidobacterium) with

pluripotent stem cells or organoids may be a promising approach for

studying host-microbe interactions (Puschhof et al., 2021; Kim et al.,

2022; Morelli et al., 2023). Regarding microbiota-related metabolites,

patient-derived tumor spheroids could provide insights into the

potential therapeutic use of these metabolites; however, effective

therapeutic doses need to be determined. Beneficial bacterial or

microbiota-based therapies may enhance hormonal, metabolic, and

immune regulation in hormone receptor-positive cancers. Strategies

such as the administration of prebiotics, probiotics, and fecal FMT

could be beneficial (Zitvogel et al., 2008; Terrisse et al., 2023). Microbes

that promote tumors can be eradicated using antibiotics or

phage therapies.

Future research involving human subjects is crucial to unravel

the complex interactions among the microbiome, disease, and the

host. The goal is to explore new therapeutic avenues that modulate

the gut and/or local microbiota to create a more favorable TME

(Fessler et al., 2019; Laborda-Illanes et al., 2020). Personalized

assessment of a patient’s gut and tumor microbiome composition

could serve as a diagnostic and prognostic tool, potentially

improving treatment outcomes and patient prognosis.
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