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Inflammation and immune
response in the development of
periodontal disease: a
narrative review
Nansi López-Valverde*, Norberto Quispe-López
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Department of Surgery, University of Salamanca; Biomedical Research Institute of Salamanca (IBSAL),
Salamanca, Spain
We present this critical review with the aim of highlighting the current status

of periodontal diseases, focusing on the relevance of host modulating agents

and immune pathways, in addition to new complementary therapeutic

approaches for the treatment of these pathologies. Periodontal diseases are

prevalent pathologies worldwide and the main cause of edentulism in the adult

population. Their pathogenesis seems to be based on a dysbiosis of the oral

microbiota that interacts with the host’s immune defenses and is responsible for

the inflammatory/immune response, which would be modified by a number of

conditions such as individual susceptibility, environmental and sociodemographic

factors, certain systemic pathologies and the individual’s genetic condition, among

others. Numerous studies have reported on the complex web of inflammatory

mediators in periodontal disease and their role in tissue destruction as well as in

homeostatic imbalance. Precisely, the role of epigenetics as a modifier of the host

genetic condition has captured research attention in recent years. Therefore, this

mini-review first discusses an updated etiological hypothesis of periodontal disease

and the roles of certain cytokines in the immune response. In addition, the latest

therapeutic trendswith newdevelopments and future perspectives are summarized.
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1 Introduction

Periodontal diseases are considered a group of pathologies of inflammatory origin.

Unlike periodontitis in which the lesions produced by the alteration of the dental

supporting tissues are irreversible, gingivitis is reversible after resolutive treatment of

gingival inflammation (Chapple et al., 2018).
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Polymicrobial aggression, together with the host response and

bacterial imbalance or dysbiosis, would be ultimately responsible

for the establishment of the pathology (Hajishengallis et al., 2020

2000; Kinane et al., 2017); however, although more than 800

pathogens have been identified in different human biofilms

(bacteria, archaea, protozoa, fungi and viruses) (Mosaddad et al.,

2019; Antezack et al., 2023), it is still unknown which species cause

the disease. This dysbiotic state, together with an exaggerated

immune reaction, are major drivers of the inflammation and

tissue damage detected in periodontal disease (Lamont and

Hajishengallis, 2015). Additionally, individual susceptibility can

be dictated by modifiers of the inflammatory response like

environmental and sociodemographic factors, certain systemic

pathologies, and the genetic condition of the host, among others,

should be added (Scapoli et al., 2005; Shapira et al., 2005; Alawaji

et al., 2022). This last situation is an interesting and intense focus of

research trying to identify polymorphisms associated with different

periodontal pathologies, and currently, it is considered that certain

genes could be involved in periodontitis and that their genotypes

could vary in different individuals or ethnic groups (Loos and Van

Dyke, 2020 2000; Imamura et al., 2008). Another important aspect

to consider would be epigenetic variants as modifiers of gene

expression, acquired throughout life or inherited (Schulz et al.,

2016; Jurdziński et al., 2020), although possible epigenetic

implications in inflammatory pathologies have not been shown to

be clinically relevant, and the role of epigenomic drugs is considered

“potentially” novel in improving periodontal disease status (Barros

et al., 2018 2000).

Bacterial dysbiosis induces exaggerated levels of inflammatory

mediators, such as IL-1, prostaglandin E2 and tumor necrosis factor

a (TNF-a) in subjects suffering from the disease, and initiates a

cycle of exaggerated inflammatory response, aggravating tissue

destruction (Gasmi Benahmed et al., 2022). Certain studies have

shown that colonization by Porphyromona gingivalis, even at low

levels, can alter the oral microbial homeostatic balance and trigger

periodontal disease through inflammation and bone loss, produced

by the dysbiotic state (Maekawa et al., 2014; Gasmi Benahmed et al.,

2023). On the other hand, this homeostatic imbalance may undergo

variations throughout the individual’s existence and be affected by

conditions such as aging, epigenetic conditions and certain

comorbidities that modify immune function (Abdulkareem

et al., 2023).

The existence of dental biofilms (dental plaque) on the tooth

surface is considered a natural phenomenon that helps to maintain

the oral microbiota, preventing the invasion of exogenous species

(Epsley et al., 2021), but dental plaque around the dental neck

generates gingival inflammation and increased crevicular fluid,

which is an excellent medium for the development of

immunoglobulins, collagen degradation products, cytokines,

serum proteins, etc. and above all of immune cells and

desquamation of the internal epithelium of the periodontal

pocket, together with the remains of gingival collagen

degradation. In addition, the anoxic state of the environment,

contribute to an increase in prevalence of anaerobic pathogens

(Peng et al., 2024).
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This mini-review aims to give a high-level overview on the

current knowledge of the pathogenesis of periodontal disease, and

the current evolution of its treatment, through new advances and

emerging concepts, exposing different controversies and future

perspectives. For more in-depth analyses of the literature, we

direct readers to recent rigorous reviews (Marsh, 2010; Ray and

Yung, 2018; Suárez et al., 2020).
2 Recently discovered inflammatory
pathways in periodontitis

2.1 Resolvins

Granulocyte neutrophils or polymorphonuclear neutrophils

(PMNs) are abundant in inflamed tissues and resolution of

inflammation involves their elimination (Ariel et al., 2006);

therefore, many therapeutic approaches are based on blocking the

activation of inflammation, such as nonsteroidal anti-inflammatory

drugs and tumor necrosis factor (TNF) inhibitors. Cyclooxygenase

inhibitor drugs are a clear example of anti-inflammatory drugs that

block prostaglandin synthesis (Kantarci et al., 2006 2000; Kirkwood

et al., 2007 2000; Schonfeld, 2010). The lipoxins released by

acetylsalicylic acid (ASA) and its synthetic derivatives, despite

their toxic effect, favor the resolution of inflammation, especially

by reducing the influx of neutrophils (Serhan, 2005). Precisely, a

certain w-3 fatty acid (eicosapentaenoic acid) is metabolized by

cyclooxygenase-2 modified by ASA, giving rise to a small molecule

(RvE1) capable of favoring the resolution of inflammation (Schwab

and Serhan, 2006).

Resolvins are bioactive products of w-3 fatty acids that

counteract proinflammatory signals by retaining leukocyte

recruitment. Hasturk et al. in an in vivo study suggested that

RvE1, in topical application in rabbits with periodontitis,

protected against inflammation-induced bone and soft tissue loss

(Hasturk et al., 2006). Similarly, Lee et al (Lee et al., 2016).

demonstrated in a rat model with ligation periodontitis that

topical treatment with RvE1 prevented bone loss by reducing

osteoclast density and inflammation-related gene expression,

along with modifications in subgingival microbiota and bacterial

growth conditions. This is despite the important role of

inflammation in this regard. Hasturk et al. reported in an in vivo

study, regeneration of hard and soft tissues, destroyed by

inflammatory diseases by monotherapy of activation of

inflammation resolution pathways with RvE1, obtained from w-3,
demonstrating the role of local inflammation in tissue destruction

(Hasturk et al., 2007).
2.2 Inflammasomes, pyroptosis and their
role in periodontal pathology

Inflammasomes are protein complexes located in the cell

cytoplasm that act as sensors and mediate the development of

inflammation (Paerewijck and Lamkanfi, 2022). More and more
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studies are investigating biomarkers of periodontitis (Isaza-Guzmán

et al., 2017; Isola et al., 2022) and there is increasing evidence that

inflammasomes are involved in the periodontal immune response,

controlling invading microorganisms (Li et al., 2021b; Sordi et al.,

2021). It is known that excessive activation of inflammasomes leads

to inflammatory dyscontrol (by the release of proinflammatory

cytokines IL-1b, IL-18), cytokine storm and tissue damage, and that

patients with periodontal pathologies present elevated levels of

certain inflammasomes in saliva, proportional to the severity of

the disease. On the other hand, the oral microbiota deregulates the

tissue expression of the NLRP3 inflammasome, which aggravates

periodontal inflammation (Zhao et al., 2022; Didilescu et al., 2024).

Polymerase chain reaction (PCR), used for the detection of

periodontal pathogens in aggressive periodontitis, showed an

increase of IL-1b, produced by macrophages and monocytes, in

early stages of inflammation, which would signify the important

role of local inflammation on systemic inflammation (Noack et al.,

2001; Ebersole et al., 2002; Salzberg et al., 2006; Lopez-Castejon and

Brough, 2011).

Periodontal pathogens, such as P. gingivalis and Fusobacterium

nucleatum, are known to activate the canonical NLRP3

inflammasome (Aral et al., 2020). Activated canonical NLRP3

directly stimulates caspase-1 (a protein mediating the processes of

programmed cell death, or apoptosis), leading to maturation and

secretion of proinflammatory cytokines (Man et al., 2017).

The cytokine IL-1b is instrumental in the development of

periodontal pathology and it is well known that NLRP3 is

involved in its maturation (Chen Y. et al., 2021; Li et al., 2021b).

Thus, the abnormal activation or overexpression of NLRP3 in

osteoclasts, osteoblasts, fibroblasts, and immune cells is

considered to play a critical role in the pathogenesis of

periodontal disease (Zhao et al., 2022).
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Osteoclasts play an important role in bone loss processes and

excessive osteoclastic activity leads to bone destructive pathologies.

IL-1b has been observed to potentiate osteoclastogenesis through

extracellular matrix degradation (Zhou et al., 2022; Otsuka et al.,

2023) (Figure 1).

Using a mouse model of induced periodontitis, Chen et al (Chen

Y. et al., 2021), were able to suppress alveolar bone loss using a

specific NLRP3 inhibitor, which also reduced IL-1b activation and

osteoclast differentiation. The NLRP3 inflammasome has also been

observed to play an important role in osteoclastogenesis during aging

(Zang et al., 2020). A recent review conducted by Bakhshi et al

(Bakhshi and Shamsi, 2022). reported that the NLRP3 inflammasome

may be involved in the pathogenesis of several inflammatory and

autoimmune diseases such as type 2 diabetes mellitus, and that

inhibition of this inflammasome could be a useful treatment option

for inflammatory diseases, by reducing the production of the cytokine

IL-1b. Together, this supports targeting the inflammasome to treat

multiple inflammatory diseases.

Osteoblasts participate in bone mineralization (Zhao et al.,

2014) but, when infected by certain gram-negative pathogens,

such as Aggregatibacter actinomycetemcomitans, they generate IL-

1b and programmed cell death, mediated by NLRP3 activation

(Herbert et al., 2016; Wang et al., 2017). Reactive oxygen species

(ROS) are a determining factor in NLRP3 activation and certain

research has demonstrated the role of oxidative stress (OS) in the

pathogenesis of periodontal disease and periodontal tissue damage,

as well as the beneficial role of antioxidant therapies (Sczepanik

et al., 2020 2000; Liu et al., 2020; López-Valverde et al., 2024). Bone

regeneration is a complex process in which, in addition to

metabolism, differentiation and cell migration, the immune

system is involved (Ye et al., 2021). This system is associated with

bone loss and it has been shown that inflammatory stimuli, due to
FIGURE 1

Diagram of causative-predisposing agents and the role of inflammasomes in pyroptosis, osteoclastogenesis and bone loss in periodontal disease.
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an immune imbalance, can cause an alteration of bone turnover

through osteoclastic differentiation, together with a slowing of

osteoblastic differentiation, which could generate different bone

metabolic pathologies (Xiong et al., 2022). The bone formation/

resorption balance goes through the regulation of pyroptosis and it

is known that NLRP3 is able to produce IL-1b and trigger

pyroptosis in response to molecular patterns associated with

periodontal pathogens; however, an inappropriate activation of

the inflammasome, may generate an environment prone to

inflammation and massive cell destruction, as occurs in the bone

destruction characteristic of periodontitis (Chen Q. et al., 2021).

Thus, pyroptosis and certain cytokines, such as IL-1b, are

maintainers of homeostasis and drivers of the individual’s innate

immune response, shaping his or her adaptive immunity (Li and

Jiang, 2023).

On the other hand, the important role of periodontal ligament

fibroblasts in the regenerative functions of alveolar bone and in

inflammation through the production of proinflammatory

cytokines that damage the periodontal ligament is noteworthy

(Isaka et al., 2001). Gram-negative bacterial lipopolysaccharide

(LPS) is a major component of the outer membrane and plays a

key role in host-pathogen interactions with the innate immune

system. In vitro studies in human periodontal ligament cells have

shown that LPS would be able to trigger pyroptotic cell death in

periodontal ligament cells and promote the generation and

secretion of proinflammatory cytokines (Zhang et al., 2021).

Zhang et al. in a recent study in a rat model reported a potent

virulence factor secreted by certain periodontal pathogens, such as

F. nucleatum and P. gingivalis, that would be involved in the

damage of gingival epithelium, periodontal ligament, alveolar

bone and other peripheral tissues and would be able to trigger the

activation of NLRP3, the neutralization of which would be

instrumental in the treatment of periodontitis (Zhang et al., 2024).

However, there are few studies linking NLRP3 to periodontal

ligament fibroblasts, which would warrant further study. PMNs are

the most abundant leukocyte species in inflamed periodontal tissues

(Ginesin et al., 2023). Dysfunction of PMNs is determinant in

periodontitis and related comorbidities. Inflammatory persistence

of periodontitis can lead to aberrant neutrophil activation and

sustained release of proinflammatory mediators, resulting in

tissue damage, bone resorption, and progression of periodontal

disease (Bassani et al., 2023). The infiltration of PMNs at the

periodontal lesion site is dependent on the expression of NLRP3

(Han et al., 2022). Surlin et al. in a study of 62 participants to

evaluate the impact that periodontal disease and chronic hepatitis C

might have on NLRP3 levels, along with increased local

inflammatory reaction with periodontal clinical consequences,

found significantly elevated levels for NLRP3 in the hepatitis C

and periodontitis group compared to the non-periodontitis groups.

Furthermore, they found a positive correlation of NLRP3 levels,

together with certain metabolic parameters, including glucose,

aspartatetransferase and alaninetransferase levels, demonstrating

that chronic hepatitis C and periodontal disease could
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significantly influence the up-regulation of NLRP3 and its

components, possibly contributing to an increased local

inflammatory reaction (Surlin et al., 2021).

Cellular self-destruction contributes to homeostasis and to the

defense of the human organism against pathogen aggression. One of

the mechanisms of self-destruction, apoptosis, is described as a

programmed and active process that prevents inflammation, unlike

necrosis, and is characterized as a passive and accidental cell death

(Fink and Cookson, 2005). Another mechanism of programmed cell

death, pyroptosis, is characterized by cell swelling and subsequent

rupture of the cytoplasmic membrane, releasing a large number of

molecules that trigger a strong inflammatory response, with

subsequent recruitment of immune system cells (Yu et al., 2021).

In inflammatory pathologies, such as periodontal diseases, the

responsible pathogens can trigger pyroptosis of host cells through

NLRP3 activation. This would result in the subsequent release of

proinflammatory cytokines, increasing the host immune response

and thus tissue destruction (Chen et al., 2024).

Several studies have highlighted the role of pyroptosis in

periodontal disease, demonstrating that LPS from P. gingivalis

would be able to induce gingivitis, destroy the epithelial

connection and increase the expression of pyroptosis-associated

proteins (Li et al., 2021a; Li YY. et al., 2021; Lv et al., 2021; Yang

et al., 2021). Pan et al. found bidirectionality in the up-regulation of

IL-1b in PMNs as a mechanism of cell death in periodontitis,

underlining the importance of this finding in the pathogenesis of

the disease (Pan et al., 2023).
3 Periodontal therapeutics

Although periodontal diseases are highly prevalent and

functionally and esthetically disabling, there is a lack of unified

criteria for their diagnosis. Understanding the pathognomonic

mechanisms that cause them is key to developing preventive

measures and effective treatments, as traditional surgical

treatments are often ineffective, especially in patients with

exaggerated immune responses.
3.1 Inflammasome inhibitor drugs

NLRP3 is known to be involved in a wide variety of infections

directly related to inflammatory and degenerative pathologies

(Stout-Delgado et al., 2016; Shen et al., 2020; Liu et al., 2022; Ye

et al., 2023), but drugs directed against NLRP3 are scarce. Recently,

Ye et al (Ye et al., 2023). have proposed peptides as more suitable

remedies against small molecules, with the advantage of being more

potent, less toxic and having fewer unwanted effects. Coll et al (Coll

et al., 2015). proposed a specific small molecule inhibitor of NLRP3,

at reduced doses, which has a potent action in numerous

pathologies of inflammatory origin. Subsequently, other studies
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have shown that MCC950 would enhance neuroinflammation-

related neurogenesis by disrupting NLRP3 activation (Gordon

et al., 2018). All this would lead one to believe that MCC950

could suppress NLRP3 (Tang et al., 2017); however, despite

undergoing phase II clinical trials, the research was abandoned

due to liver damage in some cases (Mangan et al., 2018). Although

not evaluated in periodontal disease models, Jiang et al (Jiang et al.,

2017), in autoinflammatory syndrome mouse models, identified a

small molecule, CY-09, capable of specifically inhibiting NLRP3 and

suppressing IL-1b production.
3.2 Systemic antibiotics

Systemic antibiotics such as metronidazole, amoxicillin or

ciprofloxacin are still used in the treatment of periodontitis and

are capable of eliminating or greatly reducing the main periodontal

pathogens (Slots, 2020 2000), but the adverse reactions and side

effects of this type of treatment make it necessary to develop new

therapies that do not have these drawbacks.
3.3 Semi-synthetic derivatives
of Artemisinin

Artesunate, a natural peroxide, derived from the herb Artemisia

Annua, has been proposed for its demonstrated anti-inflammatory

and immunomodulatory effects in different bone pathologies (Zhang,

2020). Huang et al (Huang et al., 2022). demonstrated its efficacy in

an osteoporotic murine model, in which it produced a marked

increase in alkaline phosphatase activity and osteogenesis-related

molecules. Recently, a study by Wang et al (Wang et al., 2023). in

rats with ligation-induced periodontitis, showed that artesunate was

able to reduce alveolar bone loss generated by periodontitis and

suppress osteoclastogenesis, as well as stimulate osteogenic potential

and reduce cytokine expression under inflammatory conditions.

Other investigations have also highlighted the therapeutic potential

of artesunate on inflammatory destruction, due to its endoperoxide

group (Su et al., 2021; Wang et al., 2022).
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3.4 Sulfonylureas

Glyburide is a hypoglycemic sulfonylurea used for the treatment

of type 2 diabetes mellitus that has also demonstrated anti-

inflammatory capacity, both in humans and in animal models.

While its ability to suppress IL-1b activation and release is unclear,

it seems likely that this ability would only be present in the absence

of pyroptosis (Roglic and Norris, 2018; Zahid et al., 2019). In

addition, its ability to inhibit inflammatory cell infiltration,

osteoclast formation and bone resorption has been demonstrated

in rats with experimental periodontitis, suggesting that glyburide

may be therapeutically useful as a treatment for periodontal diseases

(Kawahara et al., 2020).

These therapeutic targets against inflammasomes are promising

candidates, but further research must be conducted to ensure

efficacy against periodontal disease and safety in humans.
4 Control of immune response;
new therapies

The role of cell destruction and cell death in periodontitis

remains largely unknown and therefore, necessary to further

explore this aspect to clarify its implications.

It has been reported that both periodontitis and rheumatoid

arthritis may share the presence of periodontal pathogens that

promote protein shedding, resulting in anti-citrullinated protein

antibodies, a typical trigger for autoimmune pathologies (Corrêa

et al., 2019). A meta-analysis by Zamri and de Vries (2020)

investigated the duration of anti-TNF-a treatment on periodontal

clinical parameters, finding that treatments of less than 6 months

were beneficial, whereas those of more than 6 months were associated

with higher gingival indices and bleeding on probing, possibly due to

the development of anti-drug antibodies. Similarly, another recent

review (Inchingolo et al., 2023) that investigated the effect of

antirheumatic drugs on periodontal indices and cytokine levels in

periodontitis demonstrated beneficial effects of these drugs on clinical

and immunological parameters of the periodontium. It is known that
FIGURE 2

Representative diagram of future therapeutic targets in periodontal disease.
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B lymphocytes are present in areas of chronic periodontal

inflammation, stimulating osteoclasts through the genesis of IL-6,

IL-17 and Receptor Activating Nuclear Factor k B Ligand (RANKL)

and that patients treated with B-lymphocyte blocking drugs

presented less aggressive forms of periodontitis (Coat et al., 2015);

however, the use of this type of drugs is associated with a number of

side effects, such as skin reactions, cardiac failure and hepatotoxicity,

which limits their usefulness in the treatment of periodontal

pathologies (Zamri and de Vries, 2020).

Probiotics and w-3 fatty acid supplements are being promoted

as potential therapeutic candidates in the treatment of

inflammatory pathologies. An extensive review by Homayouni

et al (Homayouni Rad et al., 2023). highlighted the important role

of probiotics as antioxidant producers and plaque formation

preventive agents. Allaker and Stephen (2017) advocated them as

modulators of host dysbiosis and immune-inflammatory pathways,

thus reducing the destructive capacity of periodontal disease.

However, attention has been drawn to the potential risks of

prolonged consumption in subjects with a weakened immune

system (Tegegne and Kebede, 2022).

The reduction of periodontal inflammation with w-3 fatty acids,
as a modulatory therapy and observing its effects on pocket probing

depth and clinical attachment level, has been carried out in different

studies as an adjunct to surgical therapy, demonstrating its efficacy,

despite scarce clinical evidence (Van Ravensteijn et al., 2022).

Statins are cholesterol-lowering drugs with anti-inflammatory,

anticoagulant and antioxidant effects (Biasucci et al., 2010), in

addition to other benefits on endothelial cell function and

modulation of the inflammatory response. In the treatment of

periodontitis, they have been used in preclinical studies, locally in

periodontal pockets, observing an increase in antioxidants, together

with an increase in anti-inflammatory mediators and a reduction in

bone resorption (Sousa et al., 2016).

The use of bisphosphonates in the treatment of periodontitis,

despite their inhibitory effect on bone destruction, is controversial,

mainly due to the side effect of mandibular osteonecrosis (Aguirre

et al., 2021) (Figure 2).
5 Conclusions and perspectives

Although dysbiosis is the primary driver of periodontal disease,

the NLRP3 inflammasome, which mediates the maturation of the
Frontiers in Cellular and Infection Microbiology 06
cytokine IL-1b, plays a crucial role in its pathogenesis. The limited

efficacy of traditional surgical treatments in some cases highlights

the potential of alternative therapies, including systemic antibiotics,

NLRP3 inhibitors and anti-inflammatory drugs. However, their use

is often hampered by adverse reactions and other drawbacks.

Although treatments such as w-3 fatty acid supplements,

probiotics, statins and bisphosphonates offer some immune

modulation, their long-term use carries potential risks. These

challenges underscore the need for further research and

development of new therapeutic options.
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