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Background: SAKI is a common and serious complication of sepsis, contributing

significantly to high morbidity and mortality, especially in patients requiring RRT.

Early identification of high-risk patients enables timely interventions and

improvement in clinical outcomes. The objective of this study was to develop

and validate a predictive model for in-hospital mortality in patients with SAKI

receiving RRT.

Methods: Patients with SAKI receiving RRT from the MIMIC-IV database were

retrospectively enrolled and randomly assigned to either the training cohort or

the testing cohort in a 7:3 ratio. LASSO regression and Boruta algorithm were

utilized for feature selection. Subsequently, three machine learning models—

CART, SVM and LR—were constructed, and their predictive efficacy was assessed

using a comprehensive set of performance indicators. Feature importance

analysis was performed to determine the contribution of each feature to a

model’s predictions. Finally, DCA was employed to evaluate the clinical utility

of the prediction models. Additionally, a clinical nomogram was developed to

facilitate the interpretation and visualization of the LR model.

Results: A total of 1663 adults were ultimately enrolled and randomly allocated

into the training cohort (n = 1164) or the testing cohort (n = 499). Twenty-eight

variables were evaluated for feature selection, with eight ultimately retained in

the final model: age, MAP, RR, lactate, Cr, PT-INR, TBIL and CVP. The LR model

demonstrated commendable performance, exhibiting robust discrimination in

both the training cohort (AUROC: 0.73 (95% CI 0.70–0.76); AUPRC: 0.75 (95% CI

0.72–0.79); accuracy: 0.66 (95% CI 0.63–0.68)) and the testing cohort (AUROC:

0.72 (95% CI 0.68-0.76); AUPRC: 0.73 (95% CI 0.67–0.79); accuracy: 0.65 (95% CI
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0.61–0.69)). Furthermore, there was good concordance between predicted and

observed values in both the training cohort (c2 = 4.41, p = 0.82) and the testing

cohort (c2 = 4.16, p = 0.84). The results of the DCA revealed that the LR model

provided a greater net benefit compared to other prediction models.

Conclusions: The LR model exhibited superior performance in predicting in-

hospital mortality in patients with SAKI receiving RRT, suggesting its potential

utility in identifying high-risk patients and guiding clinical decision-making.
KEYWORDS

sepsis, acute kidney injury, renal replacement therapy, in-hospital mortality, predictive
model, microbial infection
Introduction

Sepsis is a life-threatening condition characterized by multiple

organ failure due to the host’s excess response to microbial

infection, and is associated with high morbidity and mortality

worldwide (Singer et al., 2016). The kidney is one of the most

frequently affected organs during sepsis, resulting in the onset of

sepsis-associated acute kidney injury (SAKI). Previous studies have

shown that up to 50% of patients with sepsis suffer from acute

kidney injury in intensive care units (ICU) (Peerapornratana et al.,

2019; Poston and Koyner, 2019). The mortality rate in patients with

SAKI is estimated to be 30%-45% (Poston and Koyner, 2019; See

et al., 2019). Despite recent advances in the management of SAKI,

in-hospital mortality remains notably high (Oh et al., 2012; Oh

et al., 2014), especially in patients requiring renal replacement

therapy (RRT) (Rosner, 2013). Therefore, accurate prognosis

prediction is essential for disease understanding, patient-centered

care, and shared decision-making.

Several novel biomarkers, such as tissue inhibitor of

metalloproteinases-2 (TIMP-2), neutrophil gelatinase-associated

lipocalin (NGAL), and insulin-like growth factor binding protein-

7 (IGFBP-7), have been recognized as reliable indicators for early

diagnosis, adverse outcomes and even mortality of SAKI. However,

their sensitivity has yet to be validated in comprehensive

multicenter studies (Bellomo et al., 2017). Many traditional

scoring systems, including the Sequential Organ Failure

Assessment (SOFA) score and the Simplified Acute Physiology

Score II (SAPS-II), have been introduced to predict mortality in

SAKI patients. Unfortunately, these scoring systems are unable to

provide precise predictive estimates for specific disease processes

and require laborious data collection and score calculation

(Demirjian et al., 2011).

This study aims to develop a predictive model for in-hospital

mortality in patients with SAKI receiving RRT, using readily

available clinical information.
02
Methods

Study design

We conducted a retrospective observational study using data

from the Marketplace for Medical Information in Intensive Care

(MIMIC-IV) (Johnson et al., 2023), a publicly available database

containing de-identified clinical data from patients admitted to the

ICU of Beth Israel Deaconess Medical Center (BIDMC) in Boston,

Massachusetts, USA, from 2008 to 2019.

As the MIMIC-IV database has obtained ethical approval from

the Institutional Review Boards (IRBs) at BIDMC and MIT,

additional ethical consent was waived for this study. Since all

protected health information was de-identified, individual patient

consent was not required. After completing the Collaborative

Institutional Training Initiative (CITI) Examination, one author

of our study (Caifeng Li) was granted access to the MIMIC-IV

database (certification number: 33047414). This study was reported

according to the Transparent Reporting of a multivariable

prediction model for Individual Prognosis or Diagnosis

(TRIPOD) statement (Collins et al., 2015).

Data extraction was performed using Structured Query

Language (SQL), and the corresponding codes are openly

available on GitHub (https://github.com/MIT-LCp/mimic-code).

To facilitate the practical implementation and generalization of

the predictive model, variables were collected based on the

principles of early and easy acquisition.
Study population

Patients with SAKI receiving RRT were identified retrospectively

from theMIMIC-IV database based on the following inclusion criteria

(Singer et al., 2016): adult patients who met the Sepsis 3.0 criteria,

defined by a SOFA score ≥ 2 and had a suspected or confirmed
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infection (Singer et al., 2016) (Peerapornratana et al., 2019); patients

who received RRT for AKI, defined as an increase in serum creatinine

(Cr) by ≥ 0.3 mg/dL (26.5 µmol/L) within 48 hours, or an increase in

Cr to ≥ 1.5 times of baseline within 7 days, or urine output < 0.5 mL/

kg/h for 6 hours (Kellum and Lameire, 2013). When pre-admission Cr

was not available, the first Cr measured on ICU admission was used as

the baseline Cr for analysis (Angeli et al., 2015).

The exclusion criteria were as follows (1): patients aged < 18

years were excluded from the study (2); for patients with multiple

ICU admissions, only the first admission record was included

for analysis.

All eligible patients who met the inclusion and exclusion criteria

were enrolled in the study and randomly assigned to either the

training cohort for model development or the testing cohort for

model evaluation.
Data extraction

Data for each patient within the first 24 hours of ICU admission

were extracted from the MIMIC-IV database using SQL. The

following variables were collected (1): patient demographics,

including age, gender, BMI and ethnicity (2); comorbidities,

including heart failure, chronic pulmonary diseases, diabetes and

cancer (3); vital signs, including heart rate (HR), mean arterial

pressure (MAP), respiratory rate (RR) and temperature (4); severity

scores, including SOFA score, Acute Physiology Score III (APS-III),

Charlson comorbidity index and AKI-stage (5); laboratory and

monitor parameters, including lactate, hemoglobin, platelet, WBC,

Cr, calcium, sodium, potassium, prothrombin time-international

normalized ratio (PT-INR), alanine aminotransferase, alkaline

phosphatase, aspartate aminotransferase, total bilirubin (TBIL) and

central venous pressure (CVP) (6); medications, including diuretics

and vasopressors (7); in-hospital death record.

Missing values in exposure and risk factor variables were

imputed using the mice algorithm. Subsequently, the model

development and validation were performed on the imputed

datasets using machine learning techniques.
Feature selection

Feature selection was performed in the training cohort. We

employed a rigorous feature selection approach to include the most

relevant predictors for model construction, while avoiding any

potential omissions. Therefore, we used the Boruta algorithm

(Speiser et al., 2019) and the Least Absolute Shrinkage and

Selection Operator (LASSO) algorithm (Vasquez et al., 2016),

respectively, to obtain two sets of significant predictors. To ensure

that only the most relevant and robust variables were included in

the predictive model, we include the intersection of the two sets of

predictors as the final features in the model. This strategy aimed at

enhancing model accuracy and generalizability while minimizing

the risk of overfitting or incorporating irrelevant predictors. As

collinearity complicates the assessment of the unique contribution

of each feature to the outcome, we employed a pairwise Pearson
Frontiers in Cellular and Infection Microbiology 03
correlation matrix to evaluate the collinearity of clinical features,

establishing a threshold of r > 0.8.
Model development

The selected features were then used to build the model. Three

machine learning classifiers—Classification and Regression Tree

(CART), Support Vector Machine with Radial Kernel (SVM), and

Logistic Regression (LR)—were employed for the development of

predictive models. For consistency, each model included the same

input features. Simultaneously, random hyperparameter searches

were used to determine optimal hyperparameters for each model in

the training cohort, using the area under the receiver operating

characteristic curve (AUROC) as the optimization metric.
Model validation

Model performance was estimated in the testing cohort. A

variety of metrics were used to assess model performance,

including the area under the precision-recall curve (AUPRC),

AUROC, calibration curve, Brier score, and Hosmer-Lemeshow

test. In addition, accuracy, sensitivity, specificity, positive predictive

value (PPV), and negative predictive value (NPV) were also

calculated to provide a comprehensive assessment. Furthermore,

decision curve analysis (DCA) (Vickers et al., 2016) was performed

to assess the models’ utility in decision-making by quantifying the

net benefit at different threshold probabilities. Finally, feature

importance analysis was performed to understand the

contribution of each feature to model predictions, and a

nomogram was developed to interpret and visualize the LR model.
Comparison of the best model with
traditional scoring systems

To determine whether the predictive model outperformed the

traditional scoring system in predicting in-hospital mortality, we

compared the best model with the traditional scoring system using

the same dataset.
Sample size calculation

To avoid overfitting and ensure accuracy, it is imperative to have a

sufficient sample size when developing the predictive model. The

sample size is calculated using the formula n = ( 1:96d )2 f(1 − f) where
f represents the expected outcome ratio (f = 0.46), d is the set margin

of error ( d = 0.05) (Riley et al., 2020). According to this formula, the

minimum sample size required for the model development process

was 382 patients. The training cohort was adequate for model

development. According to Collins’s recommendation for external

validation of prognostic model, a minimum of 100 events is required,

ideally 200 or more (Collins et al., 2016). The internal testing cohorts,

with 230 events, met this criterion.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1488505
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Li et al. 10.3389/fcimb.2024.1488505
Statistical analyses

The normality of data distribution was assessed using the Shapiro-

Wilk test. Normally distributed continuous variables were reported as

mean ± standard deviation (SD), while non-normally distributed

continuous variables were reported as median (interquartile range,

IQR). Continuous variables were analyzed using either the Student’s t-

test or the Mann-Whitney U-test, depending on data distribution.

Categorical variables were presented as absolute numbers

(percentages) and compared using the Chi-square (c2) test or the

Fisher’s exact test, depending on the sample sizes. All data were

analyzed using R software (version 4.0.3, R Foundation). A two-tailed

p < 0.05 was considered statistically significant.
Results

Patient characteristics

A total of 1663 patients were included in the final analysis

according to predetermined inclusion and exclusion criteria. The

process of patient recruitment and model development is illustrated

in Figure 1, and the baseline characteristics are presented in Table 1.

Preliminary statistical analysis revealed significant differences in

several baseline characteristics between survivors and non-survivors.

Compared with survivors, non-survivors were significantly older and

showed statistical differences in ethnicity proportions. Regarding

comorbidities, non-survivors exhibited a higher prevalence of

cancer than survivors. Furthermore, non-survivors had higher BMI,

HR, RR, APS-III, lactate, hemoglobin, WBC, PT-INR, TBIL and CVP,

but lower MAP, temperature, platelet and Cr than survivors.

Additionally, non-survivors exhibited a higher frequency of

vasopressor use and a lower frequency of diuretic use.
Feature selection

All patients in the training cohort were used for feature selection

and model development. A total of 28 potential prognosis-related

variables were screened using LASSO (Figures 2A, B) and Boruta

(Figures 2D, E) algorithms, respectively. Finally, eight significant

factors associated with in-hospital mortality were identified as

independent predictors by both methods, including age, MAP, RR,

lactate, Cr, PT-INR, TBIL and CVP. As shown in Supplementary

Figure S1, none of the pairwise Pearson correlation values for these

features exceeded 0.8, indicating the absence of collinearity. The

regression coefficients for the variables in the LASSO regression are

illustrated in Supplementary Table S1.
Dose relationship between features and in-
hospital mortality

Based on the outcomes of multivariate logistic regression, we

further investigated the correlation between age, MAP, RR, lactate,

Cr, PT-INR, TBIL and CVP and the in-hospital mortality. RCS is a
Frontiers in Cellular and Infection Microbiology 04
conventional method for examining potential nonlinear

relationships between the independent and dependent variables

(Smith et al., 2016). Additionally, an akaike information criterion

was employed to determine the optimal number of knots. We

adjusted for confounding variables and performed a nonlinearity

test before analyzing the dose-response relationship.

From the dose-response plot (Figure 3), we observed a

nonlinear correlation between MAP, lactate and CVP and in-

hospital mortality (overall p < 0.05, nonlinear p < 0.05). It was

noted that the risk of in-hospital mortality increased rapidly when

lactate was higher than 15.89 mmol/L and MAP was lower than

70.84 mmHg. Regarding the J-shaped relation between CVP and in-

hospital mortality, the plot showed a reduction of the risk within the

lower range, which reached the lowest risk around 11.67 mmHg and

then increased rapidly thereafter. However, the relationship

between age, RR, Cr, TBIL, PT-INR and in-hospital mortality

appeared to be linear (overall p < 0.05, nonlinear p > 0.05), with

the risk threshold value being 64.14 years, 26.95 bpm, 3.73 mg/dL,

21.57 mmol/L and 7.62, respectively.
Hyperparameter tuning

To ensure that each machine model achieved the best

performance, we further optimized their hyperparameters.

Figures 2C, F, illustrates the process of random hyperparameter

searching for the CART model and the SVM model. The CART

model was optimized with a cost complexity pruning (CP) value of

0.007561437. The optimal parameters for the SVM model were

sigma = 0.1285088 and C = 0.5. As the LR model does not have

hyperparameters, it was adjusted to the training data once, based on

the stepwise procedure.
Development of predictive models

The eight aforementioned predictors, along with the optimal

hyperparameters, were integrated into the predictive models. After

500 bootstrap resamples in the training cohort, the AUROCs for the

CART model, SVM model, and LR model were 0.77 (95%

confidence interval CI 0.74–0.80), 0.79 (95% CI 0.76–0.82) and

0.73 (95% CI 0.70–0.76), respectively (Figure 4A). The AUPRCs for

the CART model, SVM model, and LR model were 0.77 (95% CI

0.70–0.82), 0.80 (95% CI 0.76–0.84) and 0.75 (95% CI 0.72–0.79),

respectively (Figure 4B). In the CART model, SVM model, and LR

model, the calibration curves demonstrated good concordance

between predicted and observed outcomes (Figure 4C). The Brier

scores for the CART model, SVMmodel, and LR model were 0.19 ±

0.20, 0.03 ± 0.02, and 0.21 ± 0.17, respectively. Hosmer-Lemeshow

tests for the CART model, SVM model, and LR model were (c2 =

9.95E-30, p = 1), (c2 = 25.27, p = 0.001), and (c2 = 4.41, p = 0.82),

respectively. The accuracy for the CART model, SVM model, and

LR model were 0.72 (95% CI 0.69–0.75), 0.71 (95% CI 0.68–0.73)

and 0.66 (95% CI 0.63–0.68), respectively. The F1 scores for the

CART model, SVM model, and LR model were 0.74 (95% CI 0.72–

0.77), 0.75 (95% CI 0.72–0.78) and 0.71 (95% CI 0.68–0.74),
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respectively. Sensitivity, specificity, PPV, and NPV for the CART

model were 0.74 (95% CI 0.71–0.77), 0.70 (95% CI 0.66–0.74), 0.75

(95% CI 0.71–0.78), and 0.69 (95% CI 0.65–0.73), respectively. The

SVM model exhibited sensitivity, specificity, PPV, and NPV of 0.80

(95% CI 0.76–0.83), 0.61 (95% CI 0.57–0.66), 0.71 (95% CI 0.68–

0.75), and 0.72 (95% CI 0.67–0.76). Sensitivity, specificity, PPV, and

NPV for the LR model were 0.76 (95% CI 0.72–0.79), 0.56 (95% CI

0.52–0.60), 0.67 (95% CI 0.64–0.71), and 0.66 (95% CI 0.61–0.70).

The SVMmodel demonstrated the best performance in the training

cohort for predicting in-hospital mortality (Figures 4D–F).
Validation of predictive models

In the testing cohort, the AUROCs for the CART model, SVM

model, and LR model were 0.66 (95% CI 0.62–0.71), 0.71 (95% CI

0.67–0.76), and 0.72 (95% CI 0.68–0.76), respectively (Figure 5A).

The AUPRCs for the CART model, SVM model, and LR model

were 0.56 (95% CI 0.43–0.60), 0.74 (95% CI 0.67–0.79), and 0.73

(95% CI 0.67–0.79), respectively (Figure 5B). Calibration curves

(Figure 5C) and Hosmer-Lemeshow goodness-of-fit test

demonstrated good concordance between predicted and observed

outcomes in the SVMmodel (c2 = 8.91, p = 0.35) and LR model (c2
= 4.16, p = 0.84), but poor concordance in the CART model (c2 =

37.44, p = 1.45E-06). The Brier scores for the CART model, SVM

model, and LR model were 0.24 ± 0.22, 0.21 ± 0.18, and 0.21 ± 0.19,

respectively. The accuracy for the CART model, SVM model, and

LR model were 0.62 (95% CI 0.58–0.67), 0.64 (95% CI 0.59–0.68)

and 0.65 (95% CI 0.61–0.69), respectively. The F1 scores for the

CART model, SVM model, and LR model were 0.66 (95% CI 0.61–
Frontiers in Cellular and Infection Microbiology 05
0.71), 0.69 (95% CI 0.64–0.73) and 0.69 (95% CI 0.64–0.73),

respectively. Sensitivity, specificity, PPV, and NPV for the CART

model were 0.67 (95% CI 0.62–0.73), 0.57 (95% CI 0.51–0.64), 0.65

(95% CI 0.59–0.71), and 0.60 (95% CI 0.53–0.67), respectively. The

SVMmodel had sensitivity, specificity, PPV, and NPV of 0.73 (95%

CI 0.68–0.78), 0.54 (95% CI 0.48–0.61), 0.65 (95% CI 0.60–0.71),

and 0.63 (95% CI 0.56–0.70). Sensitivity, specificity, PPV, and NPV

for the LR model were 0.72 (95% CI 0.66–0.77), 0.58 (95% CI 0.51–

0.64), 0.67 (95% CI 0.61–0.73), and 0.64 (95% CI 0.57–0.70). As

shown in (Figures 5D–F), the LR model exhibited superior

performance to the other models, indicating good generalization

and strong stability.
Clinical utility of predictive models

In the training cohort, DCA revealed that when the threshold

probability exceeded 20%, the mean net benefits of the CART

model, SVM model and LR model for predicting in-hospital

mortality were superior to the strategies of treating all or none of

the patients (Figure 6A). This indicates that our predictive models,

especially the LR model, provide significant clinical value by

improving decision-making in identifying patients at higher risk

for in-hospital mortality.

Likewise, in the testing cohort, the LR model demonstrated

higher net benefits than the CART model and SVM model

(Figure 6B). This highlights the robustness and reliability of the

LR model, not only in the training cohort but also in external

validation settings, reinforcing its potential as a practical tool for

clinical decision-making.
FIGURE 1

(A) Flowchart of patient selection. (B) Flowchart of model development and validation. ICU, Intensive Care Unit; RRT, Renal Replacement Therapy;
KDIGO, Kidney Disease Improving Global Outcome; LASSO, Least Absolute Shrinkage and Selection Operator.
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Feature importance of predictive models

Permutation feature importance analysis revealed the key

predictors for prediction. The results varied across the three

models. In the CART model, CVP was the most influential factor,

followed by Cr, lactate, TBIL, age, RR, MAP, and PT-INR

(Figure 7A). In the SVM model, Cr was the top predictor, with

TBIL, age, MAP, INR, lactate, RR, and CVP coming next

(Figure 7B). In the LR model, Cr emerged as the most crucial

predictor, followed by age, lactate, RR, CVP, MAP, TBIL, and PT-

INR (Figure 7C). To synthesize the significance of these features

across all three models, we introduced the concept of a rank score.

The most important feature in each model received a full score of 8,

decreasing sequentially to 1 for the least significant feature. Cr

achieved a rank score of 23, ranking it at the top. This underscores

Cr’s substantial predictive value for predicting in-hospital mortality

risk in SAKI patients receiving RRT. Other top features were age,

lactate, TBIL, CVP, RR, MAP and PT-INR, with a rank score of 17,

15, 14, 13, 10, 10 and 6, highlighting their importance in predictive

models for this clinical scenario.
Frontiers in Cellular and Infection Microbiology 08
The best model and its explainability

By comparing the model’s performance across the training

cohort, testing cohort and clinical usage, we concluded that the LR

model exhibited superior total performance but minimal overfitting.

The advantages of the LR model also lie in its simplicity,

interpretability, and no need for tuning. The result of the logistic

regression analysis is showed in Supplementary Figure S2.

The SHapley Additive exPlanations (SHAP) summary plot

(Figure 8A) and dependence plot (Figures 8B–I) illustrate the

contributions of the eight predictors within the LR model. SHAP

values above zero indicate an increased risk of in-hospital mortality,

whereas values below zero suggest a decreased risk. For instance,

lower lactate (blue) generally yields SHAP values below zero,

indicating a reduced risk of in-hospital mortality in patients with

low lactate. Moreover, Figure 9A portrays the feature rankings based

on the average absolute SHAP value in the LR model. Lactate, Cr, and

CVP emerged as the three most influential features in predictive

power. Higher lactate levels, Lower Cr levels, and increased CVP

indicated a greater likelihood of death onset. Then, the SHAP
FIGURE 2

Feature selection and hyperparameter tuning. (A, B) Feature selection by using the Lasso regression. (D, E) Feature selection by using the Boruta
algorithm. (C) Determination of optimal hyperparameters for the CART model. (F) Determination of optimal hyperparameters for the SVM model.
LASSO, Least Absolute Shrinkage and Selection Operator; CART, Classification and Regression Tree; SVM, Support Vector Machine with
Radial Kernel.
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waterfall plot explains the effect each feature on individual predictions

in the LR model. The SHAP waterfall plots display explanations for

individual patients, with the weight of each feature represented in

either blue or red depending on whether it favors the outcome or not.

In case 1, the LR model showed a probability of death (69.88%),

which may be attributed to the likelihood that an elder patient with

lower MAP possesses a greater probability of death, despite the

presence of favorable indicators, such as a relatively normal lactate,
Frontiers in Cellular and Infection Microbiology 09
RR, INR, and CVP (Figure 9B). In Case 2, the LR model forecasted a

mortality probability of 50.25%. The interpreter algorithm discerned

that a patient with increased CVP, elevated RR, and higher Cr might

be predisposed to an unfavorable outcome, despite the presence of

negative prognostic factors, such as lower INR, lactate, and a younger

age, as well as normal MAP and TBIL (Figure 9C). The SHAP

decision plot (Figure 9D) shows how features influence the models’

decision-making for individual samples.
FIGURE 3

Dose-response relationships between features and in-hospital mortality. (A) Age; (B) MAP, Mean Arterial Pressure; (C) RR, Respiratory Rate; (D)
Lactate; (E) Cr, creatinine; (F) PT-INR, Prothrombin Time-International Normalized Ratio; (G) TBIL, Total Bilirubin; (H) CVP, Central Venous Pressure.
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Visualization of the best model

Finally, a clinical nomogram was constructed to interpret and

visualize the LR model (Figure 10). By assigning a weighted point

to each independent risk factor on the point scale, the total point
Frontiers in Cellular and Infection Microbiology 10
for each patient can be calculated, and the corresponding

probability of in-hospital mortality can be determined by

drawing a vertical line from the Total Points value to the Risk

axis. A higher total point of all risk factors refers to a higher in-

hospital mortality rate.
FIGURE 4

Model performance in training cohorts. (A) AUROCs. (B) AUPRCs. (C) Calibration plots. (D–F) Confusion matrix plots. AUROC, Area Under the
Receiver Operating Characteristic curve; AUPRC, Area Under the Precision-Recall Curve; Classification and Regression Tree; SVM, Support Vector
Machine with Radial Kernel; LR, Logistic Regression.
FIGURE 5

Model performance in testing cohorts. (A) AUROCs. (B) AUPRCs. (C) Calibration plots. (D–F) Confusion matrix plots. AUROC, Area Under the
Receiver Operating Characteristic curve; AUPRC, Area Under the Precision-Recall Curve; CART, Classification and Regression Tree; SVM, Support
Vector Machine with Radial Kernel; LR, Logistic Regression.
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Comparing the best model with traditional
scoring systems

We also compared the performance of the LR model with

traditional scoring systems. AUROC of the LR model in the

training and testing cohort was 0.73 (95% CI 0.70–0.76) and 0.72

(95% CI 0.68-0.76), which significantly outperformed the SOFA

score (training cohort: 0.51 (95% CI 0.47-0.54); testing cohort: 0.52

(95% CI 0.47-0.57)), and the APS-III (training cohort: 0.67 (95% CI

0.64-0.70); testing cohort: 0.62 (95% CI 0.57-0.67)). The LR model

exhibited superior discrimination in predicting in-hospital

mortality in patients with SAKI receiving RRT when compared

with the SOFA score, and the APS-III (Figures 11A, D). The

calibration curves (Figures 11B, E) showed that the apparent line

and the bias-corrected line deviated slightly from the ideal line,

indicating good concordance between the predictions and

observations in both the training and testing cohort. DCA

indicated that the LR model could provide a superior net clinical

benefit over previously reported scoring systems. As illustrated in

Figures 11C, F, the LR model-directed medical intervention could

provide higher net benefits than other scoring systems when the

probability threshold (PT) exceeded 0.2.
Frontiers in Cellular and Infection Microbiology 11
Discussion

Mortality prediction for ICU patients is crucial for

improvement of outcomes and efficient utilization of resources.

The SOFA score, APS-III and AKI-stage are the most commonly

used ICU severity scores for predicting short-term mortality in

patients with sepsis (Lambden et al., 2019; Hu et al., 2021).

However, research showed that the performance of these non-

specific scoring systems was disappointing in patients with SAKI

(Le Gall et al., 1993). OHNUMA T et al. also examined and

compared the performance of traditional scoring systems among

patients with SAKI requiring RRT, but none of them achieved an

AUC greater than 0.70 (Ohnuma et al., 2015).

A simplified and applicable risk model represents a practical

tool that can be easily used in the early stages. Benefiting from the

10-year data collection of the MIMIC-IV database and the rapid

development of machine learning algorithms, we have developed

the LR model and constructed a simple nomogram based on eight

easily available features. Elderly patients were more likely to develop

AKI and experience poorer prognoses following an AKI episode, as

demonstrated in numerous clinical studies (Ishani et al., 2009; Chao

et al., 2015; Rhee et al., 2016; Fabbian et al., 2019). Given its
FIGURE 6

DCAs for models in training and testing cohorts. (A) Training cohort. (B) Testing cohort. DCA, Decision Curve Analysis; CART, Classification and
Regression Tree; SVM, Support Vector Machine with Radial Kernel; LR, Logistic Regression.
FIGURE 7

Feature importance of predictive models. (A) CART model. (B) SVM model. (C) LR model. MAP, Mean Arterial Pressure; RR, Respiratory Rate; PT-INR,
Prothrombin Time-International Normalized Ratio; TBIL, Total Bilirubin; CVP, Central Venous Pressure; Cr, creatinine.
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simplicity and ease of observation, the respiratory rate usually

serves as a valuable indicator for identifying high-risk patients

(Wang et al., 2021). According to classical theories, hypotension

and associated ischemia were considered the primary lesion in SAKI

(Poston and Koyner, 2019). Another study also demonstrated that

low blood pressure during AKI may contribute to increased

mortality (Khalil et al., 2018). CVP was identified as an

independent predictor of short-term mortality in critically ill

patients with AKI, with this effect being more pronounced in

those with severe AKI (Huang et al., 2021). Therefore, intensivists

must maintain appropriate blood pressure and volume status to

mitigate the complications and mortality associated with AKI in

older patients (Darden et al., 2021). Lactate, a marker that reflects

arterial perfusion and oxygen supply, has been demonstrated to

independently predict mortality in patients with SAKI (Shen et al.,

2022). Both lactate clearance and lactate levels after 24 hours of

continuous renal replacement therapy (CRRT) were found to be

independently associated with mortality in patients with SAKI

undergoing CRRT (Passos et al., 2016). Serum Cr is a commonly

used marker for the assessment of renal function in severity scores,
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such as SOFA and APACHE-II scores. However, changes in serum

Cr are delayed due to renal reserve and the kinetics of AKI (Poston

and Koyner, 2019). Our study showed that higher Cr levels

exhibited a protective effect for SAKI, consistent with the findings

of Cerdá et al (Cerdá et al., 2007) and da Hora Passos et al (da Hora

Passos et al., 2017). in critically ill patients with AKI requiring

CRRT. This can be attributed to the fact that severe AKI can lead to

oliguria and fluid accumulation, which in turn dilute Cr

concentrations and thus underestimate the severity of AKI

(Macedo et al., 2010). In previous research, the MELD score and

its components, including TBIL and PT-INR, were found to be

associated with AKI development following liver transplantation,

indicating TBIL and PT-INR were independent predictive

predictors for AKI (Guo et al., 2020).

We compared the performance of our LR model with

traditional scoring systems, specifically the SOFA and APS-III

scores, for predicting in-hospital mortality in patients with SAKI

undergoing RRT. Results showed that the LR model significantly

outperformed traditional scoring systems in both the training and

test cohorts. The AUROC for the LR model was 0.73 (95% CI 0.70-
FIGURE 8

SHAP-based interpretation for the LR model. (A) The Beeswarm plot depicts the influence of the eight features across all samples. Combining
feature importance and feature effect, Beeswarm ranks the features according to the sum of the SHAP across all samples (y-axis). One row in the
plot represents one feature, and each dot represents the feature Shapley value for one sample; colors represent feature values (red for high, blue for
low). The x-axis represents the influence on the model’s output, with positive values increasing risk and negative values decreasing risk. (B-I) SHAP
dependence plots show the effect of a single feature across the whole dataset. MAP, Mean Arterial Pressure; RR, Respiratory Rate; PT-INR,
Prothrombin Time-International Normalized Ratio; TBIL, Total Bilirubin; CVP, Central Venous Pressure; Cr, creatinine.
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0.76) in the training cohort and 0.72 (95% CI 0.68-0.76) in the

testing cohort, which was significantly higher than the SOFA score

(training cohort: 0.51; testing cohort: 0.52) and the APS-III score

(training cohort: 0.67; testing cohort: 0.62). The superior

discrimination of the LR model highlights its ability to predict

mortality risk more accurately than the traditional systems,

particularly the SOFA score, which showed poor discriminatory

power. This improved performance can be attributed to the

inclusion of more relevant and comprehensive variables in the LR

model, which better captures the complexity of the SAKI patient’s

condition. The calibration curves further supported the robustness
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of the LR model, showing good agreement between predicted and

observed outcomes in both the training and test cohorts, despite

minor deviations from the ideal line. This suggests that our model

not only predicts well, but also maintains consistency across

different data sets. In addition, DCA indicated that the LR model

provided superior net clinical benefit over traditional scoring

systems, especially when the probability threshold exceeded 0.2.

This means that when the predicted probability of mortality exceeds

20%, the LR model provides greater clinical utility and guides

medical intervention more effectively than the SOFA or APS-III

scores. This reinforces the clinical relevance of the LR model, as it
FIGURE 9

(A) Feature ranking according to the mean absolute Shapley values. (B, C) The SHAP waterfall plots for explanations of individual predictions. (D) The
SHAP decision plot shows how the LR model arrives at its prediction.SHAP, SHapley Additive exPlanations; MAP, Mean Arterial Pressure; RR,
Respiratory Rate; PT-INR, Prothrombin Time-International Normalized Ratio; TBIL, Total Bilirubin; CVP, Central Venous Pressure; Cr, creatinine.
FIGURE 10

Nomogram for predicting in-hospital mortality in patients with SAKI receiving RRT. MAP, Mean Arterial Pressure; RR, Respiratory Rate; PT-INR,
Prothrombin Time-International Normalized Ratio; TBIL, Total Bilirubin; CVP, Central Venous Pressure; Cr, creatinine.
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enables more accurate risk stratification and informed decision-

making, potentially leading to better patient outcomes in this high-

risk population.

The potential strength of the LR model lies in its simplicity,

which significantly reduces the computational time while

maintaining high accuracy. This model is based on eight easily

available variables in clinical practice, allowing for rapid

stratification of patients into different severity levels with different

mortality rates. The LR model exhibited robust discrimination and

satisfactory calibration in the training cohort and the testing cohort.

Both the Hosmer-Lemeshow test and calibration curve confirmed

the excellent calibration of our model. In addition, DCA curves

demonstrated that the nomogram yielded greater net benefits across

a broad range of threshold probabilities in the training and

testing cohort.

The LR model is helpful in multiple ways. First, it serves as a

valuable tool for clinicians to identify high-risk patients with SAKI

undergoing RRT. By accurately identifying those at greater risk of

adverse outcomes, the model enables healthcare providers to

implement targeted interventions tailored to the specific needs of

these patients. This approach not only promotes personalized

medicine, but also increases the overall effectiveness of treatment
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strategies, leading to improved patient outcomes. Second, the LR

model empowers patients and their families by providing clear and

accurate predictive information essential for informed decision

making. By understanding potential risks and expected outcomes,

patients and their families can become more actively involved in

their care, fostering a collaborative relationship with healthcare

providers. This transparency not only helps reduce anxiety and

uncertainty, but also empowers families to make decisions that align

with their values and preferences. Overall, the LR model plays a

critical role in improving both clinical decision-making and patient

engagement, ultimately contributing to a higher standard of care in

the management of SAKI patients.

Despite the strengths of this study, several limitations must be

acknowledged. First, the retrospective observational design

inherently introduces the possibility of selection bias and the

presence of unknown confounders, which cannot be completely

eliminated. To mitigate this, we implemented strict inclusion and

exclusion criteria to ensure that only representative cases were

analyzed. Second, although there were some missing values in the

dataset, we used multiple imputation methods to address these gaps,

striving to produce unbiased estimates that more accurately reflect

the true values. In addition, we must consider the potential
FIGURE 11

Comparison between the LR model and Traditional Scoring Systems. (A) AUROCs in training cohort. (B) Calibration plot for LR model in training
cohort. (C) DCAs in training cohort. (D) AUROCs in testing cohort. (E) Calibration plot for LR model in testing cohort. (F) DCAs in testing cohort.
AUROC, Area Under the Receiver Operating Characteristic curve; DCA, Decision Curve Analysis; SOFA, sequential organ failure assessment; APS-III,
acute physiology scores III; LR, Logistic Regression.
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influence of feature selection methods, which can lead to overfitting

and thus affect the generalizability of the model. Finally, although

we have conducted a thorough internal validation of the model’s

performance, it is imperative to pursue external validation using

diverse data sources. Future steps include plans for prospective

validation in clinical settings, which will further enhance the

robustness and applicability of our findings.
Conclusions

By combining eight risk factors, we developed a simplified LR

model to predict in-hospital mortality in patients with SAKI

receiving RRT with satisfactory performance. Nonetheless,

external validation using a new cohort is necessary for

future research.
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The Spearman or Pearson correlation matrix of continuous features. MAP,
Mean Arterial Pressure; RR, Respiratory Rate; PT-INR, Prothrombin Time-

International Normalized Ratio; TBIL, Total Bilirubin; CVP, Central Venous
Pressure; Cr, creatinine.

SUPPLEMENTARY FIGURE 2

The result of the logistic regression analysis.
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RRT Renal Replacement Therapy
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AKI Acute Kidney Injury
MIMIC-IV Medical Information Mart for Intensive Care IV
OR Odds Ratio
SAKI Sepsis-induced Acute Kidney Injury
ICU Intensive Care Unit
LASSO Least Absolute Shrinkage and Selection Operator
AUC Area Under the Curve
DCA Decision Curve Analysis
MAP Mean Arterial Pressure
PT-INR Prothrombin Time-International Normalized Ratio
TBIL Total Bilirubin
CVP Central Venous Pressure
NGAL Neutrophil Gelatinase-Associated Lipocalin
IGFBP-7 Insulin-like Growth Factor Binding Protein-7
TIMP-2 Tissue Inhibitor of Metalloproteinases-2
BIDMC Beth Israel Deaconess Medical Center
IRBs Institutional Review Boards
CITI Collaborative Institutional Training Initiative
SOFA Sequential Organ Failure Assessment
KDIGO Kidney Disease Improving Global Outcome
IQR Interquartile Range
SMD Standardized Mean Difference
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SD Standard Deviation
EGDT Early Goal-Directed Therapy
CKD Chronic Kidney Disease
BMI Body Mass Index
Cr Creatinine
SQL Structured Query Language
APS Acute Physiology Score
SAPS Simplified Acute Physiology Score
WBC White Blood Cells
PT Probability Threshold
MELD Model for End-Stage Liver Disease
RR Respiratory Rate
HR Heart Rate
LR Logistic Regression
CART Classification and Regression Tree
SVM Support Vector Machine with Radial Kernel
AUROC Area Under the Receiver Operating Characteristic curve
AUPRC Area Under the Precision-Recall Curve
PPV Positive Predictive Value
NPV Negative Predictive Value
CP Complexity Pruning
CI Confidence Interval
SHAP SHapley Additive exPlanations
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