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DegS regulates the aerobic
metabolism of Vibrio cholerae
via the ArcA-isocitrate
dehydrogenase pathway
for growth and
intestinal colonization
Jiajun Zhao1,2†, Xiaoyu Huang1,2†, Qingqun Li3†, Fangyu Ren1,2,
Huaqin Hu1,2, Jianbo Yuan1,2, Kaiying Wang1,2, Yuanqin Hu1,2,
Jian Huang1,2* and Xun Min1,2*

1Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi,
Guizhou, China, 2School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China,
3Department of Laboratory Medicine, Kweichow Moutai Hospital, Zunyi, Guizhou, China
Aerobic respiration is the key driver of Vibrio cholerae proliferation and

infection. Our previous transcriptome results suggested that degS knockout

downregulates a few genes involved in NADH and ATP synthesis in the aerobic

respiratory pathway. In this study, non-targeted metabolomics results showed

that the differential metabolites affected by degS knockout were associated with

aerobic respiration. Further results suggested that the key products of aerobic

respiration, NADH and ATP, were reduced upon degS deletion and were not

dependent on the classical sE pathway. The two-component system response

factor aerobic respiration control A (ArcA) is involved in regulating NADH and ATP

levels. qRT-PCR demonstrated that DegS negatively regulates the transcription

of the arcA gene, which negatively regulates the expression of isocitrate

dehydrogenase (ICDH), a key rate-limiting enzyme of the tricarboxylic acid

cycle. NADH and ATP levels were partially restored with the knockout of the

arcA gene in the DdegS strain, while levels were partially restored with

overexpression of ICDH in the DdegS strain. In a growth experiment, compared

to the DdegS strain, the growth rates of DdegSDarcA and DdegS-overexpressed
icdh strains (DdegS+icdh) were partially restored during the logarithmic growth

period. Colonization of the intestines of suckling mice showed a significant

reduction in the colonizing ability of the DdegS strain, similar colonizing ability of

the DdegS::degS strain and the wild-type strain, and a partial recovery of the

colonizing ability of the DdegS+icdh strain. Overall, these findings suggest that

the DegS protease regulates the expression of ICDH through ArcA, thereby

affecting the NADH and ATP levels of V. cholerae and its growth and intestinal

colonization ability.
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Introduction

Vibrio cholerae is a facultative anaerobic bacterium capable of

both aerobic and anaerobic respiration (Reen et al., 2006). Bacteria

produce chemical energy through aerobic-mediated energy

metabolism, which is stored in the form of ATP to power the

cellular processes required for growth. Both aerobic and anaerobic

metabolisms are essential for the growth of V. cholerae in vivo

(Bueno et al., 2020; Van Alst and DiRita, 2020). Aerobic respiration

acts as a powerful driver of replication during infection with the V.

cholerae gastrointestinal pathogen (Harris et al., 2012). In one

study, V. cholerae incapable of aerobic respiration was strongly

attenuated (105 times) in young mice, whereas strains lacking

anaerobic respiration showed no colonization defects (Van Alst

et al., 2022). In a suckling mouse model, a related study reported

that defects in the pyruvate dehydrogenase aerobic respiration

gene of V. cholerae resulted in a significant decrease in

colonization rates (Van Alst and DiRita, 2020). In vitro, V.

cholerae undergoes aerobic respiration, which produces the

metabolic intermediates succinate and pyruvate, resulting in

increased motility (Kiiyukia et al., 1993). In addition, aerobic

respiration promotes the transcription of the virulence factor toxT

in V. cholerae during pathogenesis. Consequently, aerobic

respiration plays a vital role in the pathogenicity of V. cholerae

(Medrano et al., 1999; Fan et al., 2014). Concerning the control of

cholera, it would be desirable to identify mechanisms that regulate

aerobic respiration in V. cholerae and establish methods that can

attenuate its effects.

The tricarboxylic acid (TCA) cycle is an important intermediate

link in aerobic respiration and is regarded as the energy-generating

engine of aerobic respiration for ATP synthesis. This function

connects glycolysis and the electron transport chain and is a

central part of cellular energy metabolism (MacLean et al., 2023).

Aerobic respiration control A (ArcA) is a response factor in the

two-component Arc system that acts as a global inhibitor of the

aerobic respiratory pathway (particularly the TCA cycle), thereby

promoting the bacterial fermentation pathway (Wang et al., 2018).

Recently, a study demonstrated that overexpression of ArcA under

aerobic conditions leads to downregulation of the respiratory

pathway in E. coli (Basan et al., 2017). Hence, it is important to

investigate the regulatory mechanisms of aerobic respiration in V.

cholerae in terms of the global inhibitors of the TCA cycle.

Serine protease DegS is commonly recognized as an initiator of

the sE (rpoE) stress response pathway (de Regt et al., 2015), which
affects V. cholerae motility, chemotaxis and antioxidant capacity

(Wang et al., 2023a; Zou et al., 2023). Our previous results by RNA

sequencing (RNA-seq) showed that the knockout of degS resulted in

the downregulation of genes associated with aerobic respiration,

which are focused on the TCA cycle (Huang et al., 2019), but the

mechanisms involved are not clear. In the current study,

metabolomics analysis revealed that the differential metabolites of

the DdegS mutant were mainly enriched in purine metabolism and

glutathione metabolism associated with aerobic respiration,

suggesting that DegS may regulate aerobic respiration in V.
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cholerae. This study investigated the influence of DegS on the key

products of aerobic respiration, NADH, and ATP. Our results

suggest that DegS affects isocitrate dehydrogenase (ICDH)

expression through the regulation of ArcA, thereby affecting

aerobic respiration in V. cholerae, which in turn affects NADH

and ATP production.
Materials and methods

Bacterial strains and growth conditions

Non-O1/non-O139 V. cholerae HN375 from the China Center

for Type Culture Collection (CCTCCAB209168) was used as the

wild-type (WT) strain (Luo et al., 2011). Cloning was carried out

using Escherichia coli DH5 and DH5-lpir, and conjugation were

carried out using WM3064. Each strain was grown on Luria-Bertani

(LB) medium at 37°C until the stationary phase was achieved unless

otherwise indicated. The culture medium was modified by adding

0.1% arabinose and 100 g/mL ampicillin depending on the

situation. Details of all plasmids and strains used are presented in

Supplementary Table 1.
DNA manipulations and genetic techniques

From the WT HN375 strain, deletion mutants were constructed

with pWM91, a suicide plasmid (Wu et al., 2015). A list of the

primers used can be found in Supplementary Table 2. To construct

complementary mutants, the entire arcA encoding region by

cloning into the pBAD24 plasmid vector, which was then

transformed into DdegSDarcA by electroporation to obtain

DdegSDarcA:arcA. A similar method was used to construct DdegS-
overexpressed icdh strains (DdegS+icdh). As previously described,

we used the pBAD24-arcA plasmid as a template and constructed a

point mutation in D54E of arcA using site-directed mutagenesis

(Fisher and Pei, 1997). The pBAD24-arcAD54E plasmid vector was

then transformed into DdegSDarcA by electroporation to obtain

DdegSDarcA:arcAD54E. The complement and overexpression strains

were grown in LB liquid medium with 0.1% arabinose for gene

expression induction.
Untargeted metabolomic analysis

The WT and DdegS strains were added into sterile LB liquid

medium and shaken at 220 rpm and incubated at 37°C until the

logarithmic growth phase (optical density at 600 nm [OD600] = 0.6).

Both cultures were centrifuged at 10,000 g during 10 min at 4°C.

After collection, the pellets were washed twice with 50 mM PBS, and

used for untargeted metabolomic analysis. This analysis was

performed by Biotech-Pack Scientific Co., Ltd. (Beijing, China).

The Analysis Base File (ABF) converter software was used to

convert the liquid chromatography-mass spectrometry (LC-MS)
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raw data into the ABF format (Zhang et al., 2021). The ABF format

file was imported into MS-DIAL 4.10 software for preprocessing

(D'Oria et al., 2022), including peak extraction, noise removal,

inverse convolution, and alignment. The three-dimensional (3D)

data matrix was exported in the CSV format (raw data matrix).

Finally, the extracted peak information was searched against the

MassBank, Respect, and Global Natural Product Social Molecular

Networking (GNPS), for a full library comparison.
Quantitative RT-PCR

All strains were grown to the stationary phase (OD600 = 1.2) in

an LB liquid medium. Bacterial cultures were collected via

centrifugation at 8000 rpm for 5 min. Total RNA was extracted

with TRIzol reagent and reverse-transcribed into cDNA. qRT-PCR

was performed using the TB Green Premix Ex TaqII (TaKaRa Bio,

Shiga, Japan) (Huang et al., 2019). The 2-DDct method was used to

calculate mRNA levels relative to each other (Livak and Schmittgen,

2001). For each qRT-PCR, two independent experiments were

performed, each with three technical replicates.
Assay of bacterial NADH levels

To examine the NADH levels of bacteria grown in LB liquid

medium or M9 liquid medium (containing 0.4% glucose) to

stationary phase (OD600 = 1.2), the concentration of bacteria was

adjusted to approximately 1 × 108 CFU/mL. The bacteria were

ultrasonically lysed. NADH levels were measured using the

Amplite™ Colorimetric NADH Assay Kit (AAT Bioquest,

Pleasanton, CA, USA). Briefly, equal volumes of bacterial

suspension and Amplite™ Colorimetric NADH Assay Kit

working solution were mixed and dispensed in wells of a clear

96-well plate, followed by incubation at 26°C for 15 min to 2 h. Read

the absorbance at 460 nm using an enzyme marker and construct a

standard curve using the kit’s NADH standard (Xia et al., 2021).

The experiment was repeated three times.
Bacterial ATP levels assay

ATP levels were determined using an ATP Assay Kit (Beyotime,

Shanghai, China) following the manufacturer’s instructions. Briefly,

the bacteria were cultured to stationary phase in LB liquid medium

or M9 liquid medium (containing 0.4% glucose) and the bacterial

concentration was adjusted to 1 × 108 CFU/mL. The bacteria were

ultrasonically lysed. Equal volumes of the bacterial suspension and

the working solution in the ATP reagent were mixed in a black

opaque 96-well plate and incubated at 26°C for 5 min (Janet-Maitre

et al., 2023). Luminescence was detected using a multifunctional

enzyme labeler (Thermo Fisher Scientific Inc, Waltham, MA, USA).

A standard curve was plotted using the standards provided in the

kit. The experiment was repeated three times.
Frontiers in Cellular and Infection Microbiology 03
Recombinant protein expression,
purification, and preparation of
polyclonal antisera

The His-tagged recombinant ArcA protein was constructed as

previously described (Wang et al., 2023b). Briefly, primers were

used to amplify the full-length ArcA-encoded open reading frames.

The PCR product was ligated into the pET28a vector and

transformed into E. coli BL21 (DE3). Transformed bacteria

expressing ArcA were grown to OD600 = 0.6 at 37°C and induced

with 0.5 mM isopropyl b-D-1-thiogalactopyranoside (IPTG) at 18°
C for 16 h in LB liquid medium. Recombinant proteins labeled with

His were purified by nickel-nitrilotriacetic acid affinity

chromatography. Eight 6-week-old CD1 female mice, provided by

the animal center of Zunyi Medical University (Zunyi, China), were

housed in a specific pathogen-free environment and used to prepare

anti-ArcA serum for western blot analysis. Mice were

subcutaneously inoculated with 30 µg of recombinant ArcA on

days 0, 14, and 28, along with the same volume of aluminum

adjuvant. Anti-ArcA antiserum was prepared from blood collected

2 weeks after the last immunization.
Western blot

All strains were grown to stationary phase (OD600 = 1.2) in an

LB liquid medium. To prepare whole bacterial proteins, the culture

was subjected to centrifugation, resulting in the separation of a

supernatant layer. The precipitate was resuspended with 100 mL of

distilled deionized water and 25 mL of 5× sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) protein sampling

buffer was added and boiled. The bacterial proteins were resolved by

SDS-PAGE and transferred to a polyvinylidene fluoride membrane.

After blocking, the membrane was incubated with a primary

antibody (anti-ArcA serum at a dilution of 1:1000, prepared in

our laboratory) overnight at 4°C. The membrane was incubated

with a 1:5000 dilution of horseradish peroxidase-conjugated sheep

anti-mouse IgG as a secondary antibody for 2 h after three washes

with 1× Tris-buffered saline containing 0.1% Tween-20 (TBST).

Finally, the membrane was washed three times with TBST, and

color developed after the addition of chemiluminescent reagents

(Epizyme Biomedical Technology Co. Ltd, Shanghai, China). The

experiment was repeated three times.
Bacterial growth curves

Growth curves were generated as described previously (Kovač

et al., 2021) with certain modifications. Briefly, the bacteria were

cultured in LB liquid medium at 37°C until the stationary phase

(OD600 = 1.2). Aliquots of the culture were inoculated (1:500 v/v)

into M9 liquid medium containing 0.4% glucose and incubated at

37°C with shaking at 200 rpm. Measurements were taken hourly for

absorbance at 600 nm. The experiment was repeated three times.
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Suckling mouse colonization assay

Six-day-old CD1 suckling mice which were randomized into the

experimental and control groups (n = 8 per group). All animal

experiments were approved by the Ethics Committee of Zunyi

Medical University (No. ZMU21-2301-069). All strains were grown

at 37°C to stationary phase (OD600 = 1.2), and the bacteria were

collected by centrifugation at 1,200 × g for 5 min. The bacterial

concentration was adjusted to 1 × 107 CFU/mL with PBS. Each

suckling mouse in the experimental group was gavaged with 50 mL
of the bacterial suspension. The same volume of 1× PBS was used in

the negative control. In the 18th hour following gavage, mice were

euthanized. The small intestinal tissue was subsequently dissected,

weighed, and homogenized (Zou et al., 2023). After 100-fold dilution

of this preparation, 100 mL aliquots were added to 0.5mg/L gentamicin

agar plates, and the colonies were counted after 18 h of incubation at

37°C. The final results are presented as the logarithm CFU/g.
Statistical analyses

Data are expressed as mean ± standard deviation. Non-paired

two-tailed t-tests were used to analyze differences between two

groups, and a one-way analysis of variance was used to analyze

differences between multiple groups. SPSS version 29.0 (IBM Corp.,

Armonk, NY, USA) was used for the analyses. P<0.05 indicated

statistical significance.
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Results

Non-targeted metabolomic analysis of the
degS mutant

Our previous RNA-seq data suggested that the knockout of degS

results in the downregulation of genes related to the TCA cycle of

the aerobic respiration pathway (Huang et al., 2019). The finding

implies that DegS may affect aerobic respiration in V. cholerae. To

further test this hypothesis, we conducted untargeted metabolomics

on degS knockout mutants (DdegS). The analysis identified a total of
109 metabolites (Figure 1A; Supplementary Table 3). Significantly

(P<0.05) differentially expressed metabolites were screened

according to fold changes >2 or <0.5. A combination of

multidimensional and unidimensional analyses identified 19

significantly differentially expressed metabolites (Table 1). One-

dimensional statistical analyses were performed using multiplicity

and t-tests. The resulting data were plotted as volcano plots

(Figure 1B). Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analysis of enriched genes mainly revealed

genes involved in purine and glutathione metabolism (Figure 1C).

Glutathione metabolism is an important component of aerobic

respiration and provides important redox buffers (Lushchak, 2012;

Hatem et al., 2014). Purine metabolism provides purine nucleotides

that are essential for ATP production from aerobic respiration

(Gessner et al., 2023). These findings indicate that DegS has an

impact on aerobic respiration in V. cholerae.
FIGURE 1

Non-targeted metabolomic analysis of the degS mutant. (A) Heatmap showing the abundance of 109 metabolites identified in the WT and DdegS
strains. (B) Volcano plot depicting the identified metabolites in the WT and DdegS strains. The red dots represent significantly differentially expressed
metabolites (fold change>2 or fold change<0.5, P<0.05). (C) Differentially metabolites were enriched in ten KEGG pathways.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1482919
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhao et al. 10.3389/fcimb.2024.1482919
DegS positively affects NADH and ATP
levels in V. cholerae

Given the transcriptome and metabolome results, we

hypothesized that DegS may affect the production of the aerobic

respiration pathway products NADH and ATP. To test this

hypothesis, we determined the levels of NADH in WT and DdegS
strains. The NADH levels of the WT strain were approximately

twice as high as those of the DdegS mutants, whereas the NADH

levels of the complemented strain DdegS::degS were able to

restore NADH levels close to those of the WT strain (Figure 2A).

The pBAD24 null plasmid was unable to recover the NADH

levels of DdegS. Subsequently, we investigated ATP levels in

the above strains, which is the final energy product of the

aerobic respiration pathway. The ATP level of the WT strain

was approximately thrice that of DdegS, whereas the ATP levels

of DdegS::degS were partially restored, with no restoration using

the pBAD24 empty plasmid (Figure 2B). The above data suggest

that DegS influences positively NADH and ATP levels in

V. cholerae.
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DegS positively affects NADH and ATP
levels in V. cholerae independent of sE

DegS regulates stress response and motility through sE and DegS
deficiency significantly reduces sE activity (Ades et al., 1999). To

investigate whether DegS affects V. cholerae NADH and ATP levels

via sE, we first examined the transcript levels of rpoE. The qRT-PCR

results showed that the rpoE gene transcript level in the WT strain

was approximately four times higher than that of DdegS, while the

transcript level of the rpoE gene in DdegS::degS was almost the same

as that of the WT strain (Figure 3A). Next, we performed

experiments for the detection of NADH and ATP levels using the

rpoE deletion mutant (DrpoE) and corresponding complemented

strain (DrpoE::rpoE). The NADH level of the DrpoE mutant was

not statistically different from the WT and DrpoE::rpoE strains

(Figure 3B). The ATP levels of the rpoE mutation did not differ

from that of the WT and DrpoE::rpoE strains (Figure 3C). We used

qRT-PCR to screen for changes in the expression of some aerobic

respiratory genes in different strains, and the expression levels of

genes encoding type I glyceraldehyde-3-phosphate dehydrogenase
TABLE 1 Significantly differentially expressed metabolites of WT and DdegS strains.

Compounds Log2 Fold
Change (DdegS/WT)

-Log10 (P value)

9-methoxy-7-[4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]-[1,3]
dioxolo[4,5-g]chromen-8-one

-5.82 6.74

(4R)-3-methylidene-4-[(E)-3-methyl-4-(4-methyl-5-oxooxolan-2-yl)but-2-enyl]oxolan-2-one -6.08 4.87

(E)-8-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1H-2-benzofuran-5-yl)-2,6-dimethyloct-6-enoic acid -1.74 4.63

(2S,6R,8aS)-6-(2-hydroxypropan-2-yl)-8a-methyl-4-methylidene-1,2,3,4a,5,6,7,8-octahydronaphthalen-
2-ol-

1.41 4.56

Leupeptin 0.90 3.47

L-5-Oxoproline 1.50 3.46

Lenacil -2.09 3.14

Falcarindiol 1.83 2.94

Glycine-Betaine -1.25 2.64

DL-Coniine 0.84 2.53

Glycerophosphate(2) -1.54 1.98

5-pentyl-2-furannonanoic acid 0.99 1.96

Tectorigenin 0.76 1.87

2-[2-(3,4-dimethoxyphenyl)ethyl]-4-methoxy-2,3-dihydropyran-6-one 0.76 1.79

Norharman 0.90 1.71

8-Prenylnaringenin 0.71 1.59

(3S)-5-[(1S,8aR)-2,5,5,8a-tetramethyl-4-oxo-4a,6,7,8-tetrahydro-1H-naphthalen-1-yl]-3-
methylpentanoic acid

0.65 1.54

5-(1,2,4a,5-tetramethyl-7-oxo-3,4,8,8a-tetrahydro-2H-naphthalen-1-yl)-3-methylpentanoic acid 1.78 1.42

2’-Deoxyadenosine 2.05 4.87
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1482919
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhao et al. 10.3389/fcimb.2024.1482919
FIGURE 2

DegS positively affects NADH and ATP levels in V. cholerae. (A) Detection of NADH levels in wild type (WT), DdegS, DdegS::degS, and DdegS
+pBAD24. (B) Assay of ATP levels in each strain. Data are expressed as the mean and standard deviation of biological replicates (n = 3). One-way
analysis of variance (ANOVA) was employed for the analysis of the data. *, P<0.05; **, P<0.01; ****, P<0.0001; ns indicates no statistical significance.
FIGURE 3

DegS positively affects NADH and ATP levels in V. cholerae independent of sE. (A) The mRNA levels of rpoE in the WT, DdegS, and DdegS::degS.
(B, C) Detection of NADH (B) and ATP (C) levels in WT, DdegS, DdegS::degS, DrpoE, and DrpoE::rpoE. (D) The mRNA levels of aerobic respiration-
related genes in each strain. Analyses were performed using the one-way ANOVA statistical method. The data are presented as the mean and
standard deviation of each of three biological replicates. (n = 3). *, P<0.05; **, P<0.01; ***, P<0.001; ns indicates no statistical significance.
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(GAP), isocitrate dehydrogenase (ICDH), and phosphoenolpyruvate

carboxykinase (PckA) were significantly reduced in the DdegSmutant

as compared with the WT strain (Figure 3D). However, the

expression of the above genes did not change after rpoE knockout.

These results indicate that DegS positively affects NADH and ATP

levels in V. cholerae independent of sE.
Effect of DegS on NADH and ATP levels in
V. cholerae involves ArcA

In S. typhimurium, ArcA may negatively regulate ATP and

NADH levels by inhibiting gene transcription levels of the pyruvate

dehydrogenase complex (PDH) in the TCA cycle (Morales et al.,

2013). Using qRT-PCR, we observed that the transcript level of arcA
Frontiers in Cellular and Infection Microbiology 07
in DdegS was approximately six times higher than that of the WT

strain (Figure 4A), suggesting that DegS is a negative regulator of

ArcA. Therefore, we hypothesized that DegS influences the NADH

and ATP levels in V. cholerae through ArcA. To assess the

hypothesis, we constructed DdegSDarcA and DdegSDarcA::arcA
and measured the levels of NADH and ATP. Both levels in

DdegSDarcA could be partially restored compared to DdegS
(Figures 4B, C). Next, we detected the expression level of ArcA

protein in each strain. ArcA protein expression was almost the same

in WT strains, DdegS, and DdegS::degS (Figure 4D).ArcA is a

response factor in a two-component system that can activate

downstream genes in a phosphorylated form. Meanwhile, in E.

coli, ArcA is an important inhibitor, and its phosphorylated form

directly inhibits the expression of some genes in the TCA cycle, such

as citrate synthase (GltA) and malate dehydrogenase (MDH) (Park
FIGURE 4

Effect of DegS on NADH and ATP levels in V. cholerae involves ArcA. (A) The mRNA levels of arcA in different strains. (B, C) Detection of NADH (B)
and ATP (C) levels in WT, DdegS, DdegSDarcA, and DdegSDarcA::arcA. (D) Western blot analysis of the whole bacterial proteins of WT, DdegS, and
DdegS::degS strains using anti-ArcA serum. (E, F) Detection of NADH (E) and ATP (F) levels in DdegSDarcA, DdegSDarcA::arcA, and DdegSDarcA::
arcAD54E. These values are expressed as the mean and standard error of three biological replicates (n = 3) and are subjected to one-way analysis of
variance (ANOVA) for analysis. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; ns means no statistical significance.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1482919
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhao et al. 10.3389/fcimb.2024.1482919
et al., 2013). Therefore, we speculated whether its phosphorylation

modifications are involved in this regulatory process. Next, we

constructed a point mutation model (DdegSDarcA::arcAD54E) to

mimic dephosphorylation (Jeon et al., 2001) to explore whether

ArcA phosphorylation is associated with DegS affecting NADH and

ATP levels in V. cholerae. Both NADH and ATP levels were

decreased in the DdegSDarcA::arcAD54E strain compared to the

DdegSDarcA strain. The DdegSDarcA::arcAD54E strain had a

smaller decrease in NADH and ATP levels than the DdegSDarcA::
arcA strain (Figures 4E, F). These results suggest that DegS affects

NADH and ATP levels, which are partially dependent on

ArcA phosphorylation.
Effect of DegS on NADH and ATP levels in
V. cholerae involved in expressing ICDH

ICDH is a key rate-limiting enzyme of the TCA cycle; the

knockdown of ICDH leads to a decrease in bacterial NADH and

ATP levels (Kabir and Shimizu, 2004a). Our qRT-PCR results

revealed that the transcription level of icdh in DdegS strains was

approximately five times lower than that of WT strains and that the

transcriptional level of icdh was recovered in part in the

DdegSDarcA strain (Figure 5A). These findings suggest that DegS

may control the transcription of icdh through the ArcA pathway. To

determine whether ICDH is involved in regulating V. cholerae

NADH and ATP levels in DegS, we overexpressed ICDH based

on the DdegS strain and measured NADH and ATP levels. Both

levels were partially restored in the DdegS+icdh strain, but not to the
level of the WT strain (Figures 5B, C). Collectively, these results

suggest that DegS is required for high levels of ATP and NADH

because it indirectly increases ICDH expression.
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DegS affects the growth of V. cholerae
through the ArcA-ICDH pathway

Many enzymes and metabolites associated with bacterial energy

metabolism have direct regulatory roles in bacterial growth (Kabir

and Shimizu, 2004a; Weart et al., 2007; Hill et al., 2013; Sperber and

Herman, 2017). Our experiments showed that DegS affects ATP

and NADH levels in V. cholerae through the ArcA-ICDH signaling

pathway. To confirm whether DegS affects growth in V. cholerae

through this pathway, we conducted growth curve experiments in

the M9 medium. The growth rate of the DdegS strain was lower than

that of the WT strain during the logarithmic growth phase

(Figure 6A). Compared to the DdegS strain, the DdegSDarcA
strain grew faster during the logarithmic growth period. The

DdegS+icdh strain had a faster growth rate than the DdegS strain

during the logarithmic growth phase (Figure 6B). Concurrently, the

trends of NADH and ATP levels of the DdegSDarcA strain and the

DdegS+icdh strain in M9 medium corresponded to the trends of

their growth rates in the logarithmic growth phase (Figures 6C, D).

These evidences demonstrate that DegS affects the growth of V.

cholerae through the ArcA-ICDH pathway.
DegS affects V. cholerae
intestinal colonization

Inhibition of NADH and ATP production in bacteria affects

their colonization (Jones et al., 2007; Schurig-Briccio et al., 2020).

To examine whether the regulation of V. cholerae NADH and ATP

levels mediated by DegS is critical for bacterial colonization, we

used a suckling mouse model of intestinal colonization. The in vivo

results showed that compared with the WT strain, the colonization
FIGURE 5

Effect of DegS on NADH and ATP levels in V. cholerae involved in the expression of ICDH. (A) The mRNA levels of icdh in WT, DdegS, DdegS::degS,
DdegSDarcA, and DdegSDarcA::arcA strains. (B, C) Detection of ATP (B) and NADH (C) levels in WT, DdegS, and DdegS+icdh. Data are expressed as
mean and standard deviation of three biological replicates (n = 3) and were analyzed using one-way ANOVA. *, P<0.05; **, P<0.01; ***, P<0.001;
****, P<0.0001.
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capacity of the DdegS strain was significantly reduced, while the

colonization capacity of the DdegS::degS strain was similar to that of

the WT strain, and the colonization ability of the DdegS+icdh strain

was partially restored (Figure 7). However, the colonization ability

of DdegSDarcA was comparable to that of DdegS, and the

colonization ability of DdegSDarcA::arcA was stronger than that of

DdegSDarcA strain.
Discussion

Aerobic respiration is a major driver of V. cholerae proliferation

during infection. V. cholerae require energy from aerobic

respiration for subsequent proliferation and infection (Van Alst

and DiRita, 2020). Here, we observed that DegS protease plays a

vital role in NADH and ATP levels, growth, and colonization of V.

cholerae. We propose a model whereby DegS positively regulates

ATP and NADH levels to promote the growth of V. cholerae, which

is in part dependent on the ArcA-ICDH pathway. In addition, there

may be other factors (X) involved in the effects of DegS on V.

cholerae NADH and ATP levels, and growth (Figure 8).

The DegS serine protease is located within the bacterial

periplasm. The protein is thought to be involved in initiating the

sE stress response pathway, where active DegS catalyzes the

cleavage of RseA, releasing active sE, which activates sE-regulated
gene expression (Sohn et al., 2007; Chaba et al., 2011). Although sE

is involved in a variety of biological processes, such as stress

response, biofilm formation, and motility (Liang et al., 2021), its

relevance to aerobic respiration has remained unclear. Our study

reveals that the levels of NADH and ATP, which are key products of
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aerobic respiration, decreased upon deletion of degS (Figure 2A, B).

However, deletion of rpoE had little effect on NADH and ATP levels

(Figures 3B, C). In addition, qRT-PCR results revealed no

statistically significant changes in any of the relevant aerobic

respiration genes in the DrpoE strain (Figure 3D). Given these

results, we speculate that the effect of DegS on V. cholerae NADH

and ATP levels is independent of sE. This suggests that DegS may

have a different pathway than the previous dependence on sE.
Further investigating the mechanism by which DegS affects

NADH and ATP levels in V. cholerae, we observed using RNA-seq

that deletion of degS mainly inhibits the TCA cycle, carbon

metabolism, and pyruvate metabolism (Huang et al., 2019).

Meanwhile, qRT-PCR results showed that aerobic respiratory-

related genes were altered in the DdegS mutant (Figure 3D).

Among them, the expression of the gap gene, which is a key

enzyme involved in glycolysis, was significantly reduced. Expression

of the pckA gene, which is involved in gluconeogenesis, was also

reduced. Notably, the expression of the icdh gene, a key gene in the

TCA cycle, was significantly reduced. Since the TCA cycle is a major

biochemical hub in most heterotrophic organisms, it is essential for

aerobic respiration (Brandenburg et al., 2021; Jiang et al., 2023).

Therefore, we chose icdh to further investigate the mechanism by

which DegS affects NADH and ATP levels in V. cholerae.

ArcA acts as a response factor in a two-component system to

directly or indirectly inhibit the TCA cycle, thereby reshuffling

bacterial metabolic pathways and optimizing energy conversion

(Gunsalus and Park, 1994; Liu and De Wulf, 2004; Brown et al.,

2023). ArcA as a global transcription factor responds to NADH and

ATP (Holm et al., 2010). In addition, the DarcA strain of Salmonella

enterica displays higher levels of NADH (Morales et al., 2013). In
FIGURE 6

DegS affects the growth of V. cholerae through the ArcA-ICDH pathway. (A, B) Growth curves of WT, DdegS, DdegS::degS, DdegSDarcA,
DdegSDarcA::arcA, and DdegS+icdh strains in M9 medium with 0.4% glucose added at 37°C. (C, D) Detection of NADH (C) and ATP (D) levels of WT,
DdegS, DdegSDarcA, DdegSDarcA::arcA, and DdegS+icdh strains in M9 medium. The values are shown as mean and standard deviation of three
biological replicates (n = 3) and were analyzed using one-way ANOVA. **, P<0.01; ***, P<0.001; ****, P<0.0001.
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this study, we observed that an increase in transcript levels of arcA

after knockout of degS (Figure 4A) and knockout of the arcA gene

partially restored the low levels of NADH and ATP levels in the

DdegS strain (Figures 4B, C). At the protein level, western blot

experiments revealed no difference in ArcA protein expression in

the DdegS strain (Figure 4D). Therefore, we speculate that the post-

translational modification of ArcA may be involved in the

regulation of NADH and ATP by DegS. ArcA can be activated as

a transcription factor via phosphorylation to regulate the expression

of downstream genes (Yan et al., 2021). Therefore, suspecting that

ArcA may play a role in phosphorylation, we constructed a model

of dephosphorylation by point mutation (DdegSDarcA::arcAD54E).

Both NADH and ATP levels were lower significantly in the point

mutant strain compared to the DdegSDarcA strain, but not as much

as in the DdegSDarcA::arcA strain (Figures 4E, F). Thus, we

speculated that DegS affects NADH and ATP levels is partially

dependent on ArcA phosphorylation. This phenomenon is similar

to the EnvZ/OmpR two-component system in Klebsiella

pneumoniae, where the DompR mutant completely loses

mucoviscosity compared to the wild-type strain, while the

unphosphorylated ompRD55A mutant reduces mucoviscosity only
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to a lesser extent, suggesting that phosphorylation only partially

affects its phenotype (Wang et al., 2023b). Brown et al. show that the

conserved metabolic regulator ArcA responds to host-mediated cell

envelope damage (Brown et al., 2023). Meanwhile, DegS is a serine

protease that mediates the cell envelope stress response, so we

hypothesized that they might be linked through the cell envelope

stress response pathway.

ICDH is one of the vital rate-limiting enzymes in the TCA cycle

(Krebs and Johnson, 1980; Cronan and Laporte, 2005) and its

transcription is dependent on ArcA (Chao et al., 1997). In addition,

knockout of icdh in the TCA cycle results in changes in the central

metabolism of E. coli, such as a decrease in intracellular NADH and

ATP levels and a decrease in the rate of glucose consumption (Kabir

and Shimizu, 2004a). In the current study, qRT-PCR showed that

DegS positively regulated icdh, and ArcA negatively regulated the

icdh gene (Figure 5A). Overexpression of ICDH partially restored

NADH and ATP levels in the DdegS strain (Figures 5B, C). Based on

these results, we suggest that DegS affects NADH and ATP levels in

V. cholerae via ArcA, in relation to ICDH.

Bacteria require energy to grow, and a decrease in the energy

supply can inhibit their growth (Orellana et al., 2022; Ren et al., 2022).
FIGURE 7

DegS affects V. cholerae intestinal colonization. Approximately 107 cells of different strains were gavaged into suckling mice. The results obtained
after 18 h are expressed as the logarithm of colony-forming units/g intestine (CFU/g; mean± SD, n = 8). Values were analyzed by one-way ANOVA,
****, P<0.0001.
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ATP and NADH are important components of the energy supply and

are essential for bacterial growth. Previous studies demonstrated that

ArcA affects bacterial NADH levels and growth (Xie et al., 2021; Yan

et al., 2021). In addition, deletion of E. coli icdh leads to alterations in

NADH and ATP levels, thereby affecting specific growth (Kabir and

Shimizu, 2004a). Here, we observed that the trends in NADH and

ATP levels of the DdegSDarcA and DdegS+icdh strains in the M9

medium (Figure 6C, D) were consistent with the same growth rate

trends in the logarithmic growth phase (Figures 6A, B). Therefore, we

propose that DegS regulates V. cholerae NADH and ATP levels

through the ArcA-ICDH pathway, thereby affecting V. cholerae

growth. Given that the DdegSDarcA strain and the DdegS+icdh strain

only partially restored the growth rate of DdegS in the logarithmic

growth phase, NADH and ATP levels were not fully restored in the

DdegS+icdh strain, we speculate that DegS regulation of V. cholerae

growth and the levels of ATP and NADH may involve other factors.

Energy is an important driver of bacterial colonization

(Chandrashekhar et al., 2018). We observed a highly significantly

reduced colonization ability in the DdegS mutant, consistent with

our previous study (Zou et al., 2023). However, the colonization

ability of DdegSDarcA was not restored to a certain extent. This

result may be due to the fact that arcA is required for V. cholerae

biofilm formation (Xi et al., 2020), which is important for intestinal

colonization (Silva and Benitez, 2016). Compared to the

DdegSDarcA strain, the DdegS+icdh strain are directly

overexpressing the icdh gene and do not involve the knockout of

the arcA gene, so their colonization ability can be partially restored.
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Conclusion

In summary, we demonstrate that deletion of degS leads

to a decrease in NADH and ATP levels in V. cholerae and

is independent of sE, thus inhibiting V. cholerae growth.

Furthermore, our findings indicated that DegS may be a

prospective mechanism for regulating ICDH expression through

ArcA. These findings enhance the knowledge of the biological

functions of DegS and offer new perspectives on the regulation of

NADH and ATP levels in V. cholerae. The role of DegS in ICDH

regulation through ArcA independent of sE needs to be

further investigated.
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