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The issue of antimicrobial resistance (AMR) in pathogenic microorganisms has

emerged as a global public health crisis, posing a significant threat to the modern

healthcare system. The advent of Artificial Intelligence (AI) and Machine Learning

(ML) technologies has brought about revolutionary changes in this field. These

advanced computational methods are capable of processing and analyzing

large-scale biomedical data, thereby uncovering complex patterns and

mechanisms behind the development of resistance. AI technologies are

increasingly applied to predict the resistance of pathogens to various

antibiotics based on gene content and genomic composition. This article

reviews the latest advancements in AI and ML for predicting antimicrobial

resistance in pathogenic microorganisms. We begin with an overview of the

biological foundations of microbial resistance and its epidemiological research.

Subsequently, we highlight the main AI and ML models used in resistance

prediction, including but not limited to Support Vector Machines, Random

Forests, and Deep Learning networks. Furthermore, we explore the major

challenges in the field, such as data availability, model interpretability, and

cross-species resistance prediction. Finally, we discuss new perspectives and

solutions for research into microbial resistance through algorithm optimization,

dataset expansion, and interdisciplinary collaboration. With the continuous

advancement of AI technology, we will have the most powerful weapon in the

fight against pathogenic microbial resistance in the future.
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1 Introduction

The global pandemic of antimicrobial resistance (AMR) has

claimed approximately five million lives, posing a significant health

threat worldwide. Research forecasts suggest that by 2050, AMR-

related mortality could rank third globally, with an estimated ten

million deaths annually (de Kraker et al., 2016; Bombaywala et al.,

2021; Murray et al., 2022). AMR arises when microorganisms such as

bacteria, fungi, and viruses develop resistance to drugs that were

previously effective in treating infections they cause. Addressing the

threat of AMR and adopting preventive measures and appropriate

antibiotic strategies is a crucial health care event for the future global

health domain. However, identifying antibiotic resistance genes

(ARGs) presents significant challenges, necessitating highly accurate

treatment plans and technologies for rapid identification of current

issues (Public Health Agency of Canada; in participation with the

Canadian Food Inspection Agency; Canadian Institutes of Health

Research; Health Canada; Agriculture and Agri-Food Canada, 2014;

Hoque et al., 2020). Pathogen detection and molecular typing assays

are insufficient for effective AMR monitoring. Nonetheless, high-

throughput sequencing technologies offer a valuable data source for

studying genetic variations in AMR.

The concept of Artificial Intelligence (AI) was initially proposed by

John McCarthy, aimed at extending human intelligence and

developing theoretical methods, technologies, and application

systems (Hamet and Tremblay, 2017; Haug and Drazen, 2023). As

an innovative, rapid, and cost-effective approach, AI demonstrates

significant potential in addressing this challenge. It leverages computer

science and vast datasets to simulate human intelligence and its

problem-solving and decision-making capabilities (Paul et al., 2021).

Machine Learning (ML), a crucial subfield of AI, involves designing

algorithms focused on accurately predicting outcome variables. ML

algorithms are trained on datasets and assessed for their predictive

performance on test datasets, thereby enhancing their accuracy

(Greener et al., 2022). The application of ML technology in AMR

research includes sequence-based AI analysis, the design of new

antibiotics, and the generation of synergistic effects in drug

combinations (Anahtar et al., 2021). ML algorithms predict which

microorganisms may develop resistance to specific drugs by analyzing

patterns in antimicrobial drug use and resistance data, assisting

healthcare professionals in making the most accurate decisions

(Sakagianni et al., 2023). Furthermore, ML models play a vital role in

monitoring antibiotic resistance, analyzing vast amounts of data to

identify new resistance patterns and potential hotspots, aiding public

health departments inmore effectively addressing outbreaks of resistant

infections. Deep Learning (DL), a branch of ML, represents a further

deepening of AI technology in simulating complex data processing

procedures. DL can more swiftly identify chemicals within large

chemical libraries, aiding researchers in finding suitable antibiotic

drugs (Talat and Khan, 2023). This review explores the analytical

processes of ML and DL and their evolution in the era of big data. We

highlight the roles of ML and DL in combating AMR, improving the

development and use of antibiotics, and investigating drug-target

interactions. Future AI technologies could become the most powerful

weapon in the development of the antibiotic domain (Figure 1).
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2 The basic process of ML in AMR

The main process of ML in AMR application should be: firstly,

data collection and preprocessing. The data used mainly contain

whole genome sequences (WGS) and single nucleotide

polymorphisms (SNPs) with specific phenotypes (Liu et al., 2020;

Ren et al., 2022a). Data preprocessing: Data preprocessing refers to

the process of cleaning and formatting raw data before feature

extraction, such as removing noise, handling missing values, etc.

Feature extraction: Feature extraction refers to extracting useful

information from the preprocessed data for model training, such as

the construction of the SNP matrix. Machine learning can learn the

mechanisms of AMR from DNA sequence data. There are some key

features that we usually extract for subsequent analysis. These

features include nucleotide k-mers, amino acid k-mers, gene

content, SNP (single nucleotide polymorphism) detection, and

combinations of gene content and SNP detection. Below we outline

the specific steps of each feature extractor method: 1. Nucleotide k-

mers: tool and parameter settings: Nucleotide k-mer counts were

performed on the genome of each strain using the KMC3 tool. The

minimum count of the output k-mer was set to 1 and the maximum

count to 4,294,967,295. k-mer length selection: k-mer lengths of 8, 9,

10, and 11 were tested. longer k-mers were not attempted due to

memory constraints. canonical conversion: Two scenarios were

tested: one was to convert all non-canonical k-mers to their reverse

complements to get the canonical form and compute only canonical

k-mer; the other is to compute all k-mer. results show that conversion

to canonical form performs better. 2. Amino acid k-mers: tool and

parameter setting: use MerCat tool to count amino acid k-mers from

protein FASTA sequences downloaded from PATRIC database, and

set the minimum frequency of output k-mer to 1. Selection of k-mer

length: count 3-mers, 4-mers and 5-mers of amino acids of each

strain genome, equivalent to 9-mers, 4-mers and 5-mers. counts,

equivalent to 9-mers, 12-mers, and 15-mers of nucleotides. 3. Gene

content: target and method selection: predict MIC based on gene

content of the strain, including all genes as features, and clustering on

training data to avoid pre-training bias. Clustering and feature

extraction: use MMseqs2 to cluster the amino acid sequences of all

genomes in the training set, extract gene clusters and create a gene

cluster feature matrix. 4. SNP: detection tools and parameter settings:

use Snippy to extract SNPs by matching each genome to a reference

sequence. reference sequence selection: select specific NCBI reference

genomes for different species. Data Representation and Storage: One-

time encoding of SNP features and storing the data in a sparse row

matrix to save memory. 5. Combination of Gene Content and SNP:

Feature Concatenation: Concatenation of features extracted based on

the SNP detection and gene content methods described above into a

vector. Data representation and storage: Due to the sparse nature of

the data, the same sparse representation as for SNP detection is used.

These methods identify and quantify genomic features through

different bioinformatics data extraction techniques aimed at

improving the prediction accuracy of microbial resistance (e.g.,

antimicrobial drug resistance, AMR).

Feature extraction methods for nucleotide k-mer’s can cause

problems later on that are difficult to interpret due to the fact that the
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number of features grows exponentially as k increases. While Gene

content, SNP, Combination of Gene Content and SNP, which are

several feature extraction methods will be the application to a specific

dataset. In order to alleviate the problems associated with k-mer

length for interpretability and at the same time increase its

generalizability. A viable alternative is to count amino acid k-mer

in protein sequences (i.e., oligopeptide sequences). Amino acid k-mer

counting utilizes the biological redundancy of nucleotide sequences to

provide a more compact representation of the data. Compared to

nucleotide k-mer, amino acid k-mer provides easier model

interpretation and requires less computational complexity while

having comparable accuracy to other feature extraction methods:

(e.g., calculating nucleotide k-mer of different lengths, identifying

deletions/presences of gene clusters and obtaining SNPs.) In addition,

by comparing the RF, SVM, AdaBoost and XGBoost’s models to
Frontiers in Cellular and Infection Microbiology 03
quantitatively predict AMR. Several models were compared in terms

of accuracy with different feature extraction methods using XGBoost

at 0.95 (other models extracted features with accuracies ranging from

0.55 to 0.80). XGBoost typically employs extreme gradient boosting

regression to train the data and evaluate the model. In XGBoost, after

training, each tree computes an output by comparing inputs to a

series of thresholds in a hierarchical manner. Each tree attempts to

correct the errors of the previous tree. The final output is the sum of

the predictions of all the trees. Thus, in XGBoost, a strong learner is

constructed by combining the decisions of several weak learners. And

a few specific features in the XGBoost model, the amino acid k-mer

has a higher precision of 0.88 (the other four are at 0.80-0.86), and the

feature is stable at 0.999 (the other four are at 0.900-0.990).

We employ techniques like Chaotic Game Representation (CGR),

label encoding, and one-hot encoding to transform SNPs into
FIGURE 1

In AMR research, different application scenarios require the selection of targeted deep learning models. For AMR prediction, Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs, particularly LSTM or GRU) are effective in processing genetic sequence data, extracting
resistance features. The combination with CNN’s feature extraction capabilities can enhance prediction accuracy. In cross-species AMR analysis,
multi-task learning models allow the sharing of parameters across different species, while fine-tuning for specific species, making them suitable for
cross-species resistance analysis. For new antimicrobial drug development, Generative Adversarial Networks (GANs) and Variational Autoencoders
(VAEs) are proficient at generating and optimizing drug molecules by learning molecular structure data, offering potential new antimicrobial agents.
Selecting the appropriate model helps address the diverse challenges in AMR research and advances drug development and precise prediction. To
address the challenges and limitations in model interpretability, using explainable AI models such as SHAP or LIME can provide explanations for the
predictions of complex deep learning models, increasing transparency and trustworthiness.
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formats that can be understood by machine learning models. The

next important steps are data preprocessing and feature extraction,

including the extraction of reference alleles, variant alleles and their

position information, and then the construction of the final SNP

matrix. SNPs are encoded in Chaotic Game Representation (CGR),

labeled encoding, and one-time encoding to be suitable for training

the machine learning model. k-mer is also assigned with labels of the

corresponding phenotypes and encoded (Liu et al., 2020). CGR is a

graphical method for converting DNA, RNA, or protein sequences

into points on a two-dimensional plane. It iteratively maps sequences

in a two-dimensional space, where each nucleotide or amino acid

corresponds to a specific area on the plane. This representation allows

patterns and structural features within sequences to be visually

presented, facilitating feature extraction and data mining through

graphical analysis methods (Jeffrey, 1990). Label encoding is a

method of converting categorical variables into a format

understandable by models. When processing SNPs, each different

allele (including reference alleles and variant alleles) is assigned a

unique integer label. This approach simplifies the handling of

categorical data, but in some cases, it may introduce additional

ordinal information that might not be present in the original data

(Nakagawa et al., 2014). Also known as one-hot encoding, this

technique handles categorical data by creating a new binary

column for each level of the category, where one represents

presence, and zero represents absence. For SNPs analysis, this

means each allele position is transformed into a vector composed

of 0s and 1s, thus avoiding any assumptive ordinal relationships that

label encoding might introduce (Peng et al., 2021).

In conducting ML-based AMR analysis, our choice of the

aforementioned encoding techniques is based on their respective

advantages and applicability. However, it’s important to emphasize

that these techniques are not always the preferred choice in all

situations: CGR: With its ability to intuitively display the graphical

features of sequences, CGR is very useful for AMR analyses that involve

complex pattern recognition (Rekadwad and Khobragade, 2017).

However, CGR may be limited by computational resources in

scenarios that require large-scale data processing. Label Encoding

and One-time Encoding: These methods provide direct and efficient

ways to handle SNPs data. Label encoding is suitable for smaller

datasets and less complex models, whereas one-time encoding is better

suited for complex models and large-scale datasets.

Data preprocessing, coding and feature extraction are easily

implemented with different Python packages. Use of Python

Packages: In our research, to implement data preprocessing,

encoding, and feature extraction, we mainly rely on the following

(Tennesen, 2010). Python packages: Pandas: For data processing

and reading/writing CSV files, especially suitable for data cleaning,

filtering, and transformation. NumPy: For efficient operations on

multi-dimensional arrays, supporting a wide range of numerical

computing tasks (Harris et al., 2020). Biopython: Specifically for

bioinformatics, used for processing genomic sequence data,

including but not limited to parsing and manipulating WGS and

SNPs data. SciKit-learn: Provides a wide range of machine learning

algorithms, such as SVM, random forests, and logistic regression,

and also supports related functionalities for data preprocessing and

feature extraction. Keras or TensorFlow: For building and training
Frontiers in Cellular and Infection Microbiology 04
more complex deep learning models, such as convolutional neural

networks (CNNs) (Shokraei Fard et al., 2022). Although our

research primarily uses Python, the R language is another widely

used option in the fields of bioinformatics and statistics. R offers

packages such as Bioconductor for bioinformatics and genomic data

analysis (similar to Biopython), Caret or randomForest for various

machine learning algorithms (comparable to SciKit-learn), and

rTensor and keras R as substitutes for Keras and TensorFlow for

constructing and training deep learning models (Székvölgyi, 2024).

Detailed Analysis of Technical Challenges: (1). Impact of Data

Scale on Running Time and Memory: Large-scale genomic data,

such as WGS and SNPs, typically require long computation times.

For example, datasets ranging from several GBs to TBs might need

several hours to days for data preprocessing and feature extraction

stages, especially on standard personal computers or workstations.

Large datasets not only increase processing time but also

significantly raise memory requirements. Memory needs might

increase from a few GBs to tens of GBs or more when

performing complex feature extraction or training deep learning

models. (2). Model Complexity: Deep learning models, especially

CNNs, due to their multi-layer structure, demand high graphics

memory and RAM. For instance, training a CNN model with

millions of parameters might require 16GB or more of graphics

memory, along with corresponding CPU memory. The training

time for complex models is long and requires high computational

resources. Without GPU acceleration, the training process might

take days to weeks, especially on standard configurations.

(3). Hardware Configuration: Standard personal computers or

workstations have limited capabilities for processing large datasets

or training complex models. Researchers might face long wait times

and frequent memory overflow issues. High-performance

computing clusters and cloud computing services can significantly

reduce computation time and solve memory limitations. Cloud

platforms like Amazon Web Services (AWS), Google Cloud

Platform (GCP), or Microsoft Azure offer scalable computing

resources that can be dynamically adjusted according to demand,

effectively alleviating hardware constraints. Solutions: (1). Data

Dimensionality Reduction and Preprocessing: Reduce data scale

and complexity before inputting data into models through

dimensionality reduction techniques (such as PCA, autoencoders)

and effective data preprocessing methods. (2). Model Simplification

and Parameter Optimization: Reduce model complexity and lower

computational resource demands by simplifying model structures

or using parameter optimization techniques. (3). Parallel

Computing and GPU Acceleration: Use parallel computing

frameworks and GPU acceleration technologies to shorten

computation times. Modern deep learning frameworks, such as

TensorFlow and PyTorch, support automatic task distribution

across multiple GPUs, significantly speeding up training. For

large-scale data processing and complex model training, consider

using high-performance computing clusters or cloud computing

resources to obtain more computational and storage capacity.

In addition, various machine learning and statistical tools have

been used to generate key features, e.g., Convolutional Neural

Networks (CNNs) using machine learning models have been applied

for feature generation for predictive AMR (Kuang et al., 2022). After
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data processing, a variety of machine learning models are used for

predictive/classification AMR applications, such as Support Vector

Machine (SVM), Logistic Regression (LR), Random Forest (RF), and

DL (Arango-Argoty et al., 2018; Li et al., 2021). The core idea of these

models is to construct mathematical relationships between the input

features and the target labels based on the available data. Therefore, it is

particularly important to select appropriate and relevant data. After

several training sessions, these models are able to draw mapping

relationships and learn potential nonlinear relationships. After the

models are trained, they will be tested based on unseen data (i.e., test

data) to validate their performance and eventually applied to real-world

scenarios (Hicks et al., 2022). Models can be evaluated by a variety of

metrics, including accuracy, precision, mean absolute error (MSE), etc.

With the growing problem of AMR, the screening and discovery

of new drugs become especially important as there is a need to

identify new compounds that can overcome known resistance

mechanisms. The current state and trends of AMR also guide the

direction of drug discovery research, ensuring that new treatment

strategies can effectively address current and future resistance

challenges. Machine learning algorithms have been used to

predict pathogens’ resistance to known antibiotics, which is

crucial for guiding the drug discovery process and ensuring that

newly developed drugs can effectively tackle resistance issues. A

deep understanding of resistance mechanisms allows drug designers

to develop new molecular structures that may circumvent the

resistance pathways faced by existing drugs. Here, we summarize

the specific applications of different machine learning algorithms in

drug screening and discovery (Table 1). In the field of machine

learning, algorithms are extensively applied in drug screening

models, encompassing a variety of types such as Support Vector

Machines (SVM), K-Nearest Neighbors (KNN), Random Forest

(RF), Naive Bayes (NB), CNN) and Autoencoders (AE). Support

Vector Machine (SVM).In summary, these machine learning

algorithms play a crucial role in antimicrobial drug screening

models, not only enhancing screening efficiency but also

expanding the depth and breadth of research. With continuous
Frontiers in Cellular and Infection Microbiology 05
technological advancements, these methods are expected to yield

even greater potential in the biopharmaceutical field in the future.
3 The application of ML/DL in AMR

ML/DL plays a crucial role in antimicrobial resistance (AMR)

research, offering new methods and strategies to mitigate the impact

of the AMR challenge through its powerful data processing

capabilities and complex pattern recognition abilities (Figure 2).

Deep learning technologies, particularly CNN and Recurrent

Neural Networks (RNN), have shown unique advantages in

learning and extracting useful information from large-scale

biological datasets, which is vital for understanding and predicting

the resistance characteristics of pathogenic microorganisms (Leung

et al., 2014; Mongia et al., 2022).

AMR Prediction: ML/DL models are capable of processing and

analyzing high-dimensional genomic data, identifying genetic

markers and mutations related to antibiotic resistance (Liu et al.,

2022). High-dimensional genomic data refers to datasets that contain

a large number of genetic features. These datasets usually include

thousands to tens of thousands of genetic markers, for instance,

Single Nucleotide Polymorphisms (SNPs), which are variations in a

single DNA sequence position, potentially influencing the response of

microorganisms to antimicrobial agents (Uppu et al., 2018). In

addition, they may include other types of genetic information, such

as gene expression levels, epigenetic modifications, Copy Number

Variations (CNVs), and the entire genomic variation spectrum.

These data are referred to as “high-dimensional” because the

number of features (dimensions) far exceeds the number of

samples. The complexity of this data poses significant challenges to

analysis methods, with traditional biostatistical approaches often

falling short (Cai et al., 2012). In this context, machine learning

and deep learning techniques become particularly important, as they

can extract meaningful patterns and associations from these high-

dimensional data, thereby predicting which genetic variations are
TABLE 1 The different machine learning algorithms and their specific applications in the context of drug screening and discovery.

Algorithm Type Core Strategy/Principle Application in Drug Screening Ref

SVM (Support
Vector Machine)

Supervised
Learning

Margin maximization through
convex quadratic
programming optimization

Predicting active compounds and molecular properties (Huang et al., 2018;
Rodrıǵuez-Pérez and
Bajorath, 2022)

KNN (K-
Nearest Neighbors)

Supervised
Learning

Classification based on the most
similar K neighbors in feature space

Handling data scarcity and classification in early stages
of drug screening

(Xie et al., 2021; Lee
et al., 2022)

RF (Random Forest) Ensemble
Learning

Majority voting from multiple
decision trees

Predicting drug activity based on genomic characteristics
and chemical properties

(Lind and Anderson,
2019; Uddin et al., 2019)

NB (Naive Bayes) Supervised
Learning

Bayesian theorem with conditional
independence assumption
among features

Simplified and efficient virtual drug screening (Chen et al., 2007; López
Puga et al., 2015)

CNN (Convolutional
Neural Network)

Deep
Learning

Layered architecture including
convolutional, pooling, and fully
connected layers

Predicting toxicity of compounds and analyzing
experimental drug test image data

(Hofmarcher et al., 2019;
Choi et al., 2020)

AE (Autoencoder) Unsupervised
Learning

Reproducing input at output nodes
through hidden layer transformation

Predicting drug-target interactions, model initialization,
and feature dimensionality reduction for drug
similarity evaluation

(Peng et al., 2020;
Tripathi et al., 2021)
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related to resistance. These models predict the susceptibility of

microorganisms to specific antibiotics by learning the relationships

between the pathogen genome sequences and known resistance

phenotypes, thereby aiding in rapid diagnosis and treatment

selection (Waddington et al., 2022). Discovery of New

Antimicrobial Targets: ML/DL technologies also demonstrate their

potential in mining complex biological networks and metabolic

pathways, revealing new targets for antimicrobial drugs. By

analyzing the gene expression and protein interaction networks of

pathogens, deep learning models can identify potential drug targets,

providing scientific foundations for developing novel antibiotics

(Bradley et al., 2015; Melo et al., 2021). Antimicrobial Peptide

Design: ML/DL is further applied in the design and optimization of

antimicrobial peptides (AMPs). Leveraging its ability to process

sequence data, deep learning models can predict the antimicrobial

activity of peptide sequences, guiding the synthesis of new AMPs with

high antimicrobial efficacy and low toxicity (Cardoso et al., 2019;

Wang et al., 2021). This overview highlights the significant

contributions of deep learning in advancing AMR research, from

predicting microbial resistance to discovering new drug targets and

designing effective antimicrobial agents (Cao et al., 2023).
3.1 The role of ML in AMR prediction

ML has been extensively applied in the development of

antimicrobial resistance research (Patel et al., 2020; Ma et al., 2022).

The work of Macesic and colleagues demonstrates that ML methods
Frontiers in Cellular and Infection Microbiology 06
can predict and identify resistant strains based on genotypic and

phenotypic data, as well as improve treatment strategies and optimize

clinical antimicrobial susceptibility tests for multidrug-resistant

(MDR) infections (Macesic et al., 2017). Nguyen et al. utilized a

vast array of non-typhoidal Salmonella genome data and

corresponding antibiotic susceptibility spectra collected from

projects such as the National Antimicrobial Resistance Monitoring

System (NARMS) to develop ML methods that predict minimum

inhibitory concentrations (MICs) within a ±1 2-fold dilution range,

achieving an overall model accuracy of 95% (Nguyen et al., 2019).

These models are designed to predict MIC values to guide response

measures to outbreaks and inform antibiotic use decisions. In studies

on Mycobacterium tuberculosis, Yang and colleagues developed

models using ML techniques such as deep denoising autoencoders,

analyzing data from isolates collected across 16 countries to predict

their multidrug resistance (Yang et al., 2019). These studies used well-

defined single nucleotide variations (SNVs) related to antimicrobial

resistance to generate prediction models, demonstrating sensitivities

as high as 96.3% for predicting multidrug resistance (Moradigaravand

et al., 2018; Huang et al., 2023).

Moreover, ML methods have been employed to reveal

microbial mechanisms of resistance to antimicrobials through

the analysis of genomic data (Kim et al., 2020). These

investigations focus on analyzing patient data, diagnostics,

treatment, and prevention of resistance development within

clinical settings. In studies of Salmonella whole-genome

sequences (WGS), researchers developed ML models with

accuracies ranging from 91% to 98% by identifying known
FIGURE 2

Applying DL/ML Models for AMR Identification: A Detailed Process.
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antimicrobial resistance genes within WGS (Maguire et al., 2019).

They also identified major genetic drivers of resistance in

Salmonella, aligning with previously determined mechanisms of

antimicrobial resistance. Advantages of ML over WGS Method in

Predicting AMR: Improving prediction accuracy and discovering

new resistance markers and hidden features: In one study,

antibiotic resistance prediction in pathogens was enhanced by

extending the potential resistance gene pool using pan-genome-

based feature selection methods. It was found that when

constructing Support Vector Machine (SVM) models by

selecting relevant genes (features), the performance of genes

selected using XGBoost significantly outperformed the entire

genome gene set and known AMR gene set in predicting AMR

(Yang and Wu, 2022). In particular, the gene set selected using the

incremental method achieved an Area Under the Receiver

Operating Characteristic (AUROC) curve value of over 95% in

prediction performance, with the fewest number of genes

required. This underscores that selecting the most appropriate

gene set can significantly improve AMR prediction performance.

In another study on Mycobacterium tuberculosis (Mtb), genetic

variations were ranked using a phylogeny-based approach,

followed by training ML models to predict antibiotic resistance

(Yurtseven et al., 2023). This screening is crucial and helps

improve the performance of ML models. Using this approach,

researchers not only identified known resistance-associated

variations in a group of Mtb strains but also discovered new

potential resistance-associated variations. This demonstrates the

ability of ML methods to improve prediction accuracy and

discover new resistance mechanisms (Ren et al., 2022b). Kavvas

and colleagues, by integrating ML methods with genetic

interaction analyses and 3D structural mutation maps, discussed

the complex evolution of AMR in Mycobacterium tuberculosis

against 13 antibiotics, identifying key genetic drivers of AMR.

With the increase in high-quality data and the establishment of

databases focused on resistance, such as the Virulence Factor

Database (VFDB) (Chen et al., 2005), b-lactamase database

(BLDB) (Benson et al., 2017), Antibiotic Resistance Genes

Database (ARDB) (Yang et al., 2020), and the Comprehensive

Antibiotic Resistance Database (CARD) (Alcock et al., 2023),

these resources provide powerful tools in the fight against

antibiotic resistance (Serafim et al., 2020; Jukič and Bren, 2022).
3.2 ML for developing new
antimicrobial drugs

ML technology has shown tremendous potential in discovering

AMR, fundamentally transforming the drug discovery and

development process through accelerated target identification, lead

discovery, preclinical, and clinical development phases (Bollenbach

et al., 2009; Ferreira et al., 2020). In the field of antimicrobial drug

discovery, research demonstrates how ML learns structural features

of small molecules from screenings, including known antibiotics, to

design novel antimicrobials (Johnson et al., 2019; Tang et al., 2022).

Innovation in this area primarily focuses on developing new

screening strategies that enhance sensitivity through genetically
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engineered microbial strains and applying novel chemical structure

representations to improve the learning of chemical property

algorithms with ML (Stokes et al., 2020). Johnson et al. devised a

screening strategy aimed at discovering biochemical inhibitors for

essential genes in Mycobacterium tuberculosis by first creating a

genetic library composed of knockdowns of these essential genes,

followed by screening 50,000 compounds against these subtypes

(Johnson et al., 2019; Osman et al., 2022). Using known anti-

tuberculosis antibiotics as a reference, they employed supervised

ML classification analysis to identify novel chemical inhibitors for

existing drug targets (such as DNA gyrase, mycolic acid synthesis,

and folate metabolism) and new drug targets (such as the EfpA efflux

pump), which were validated in wild-type cells. Stokes et al.

conducted biochemical screenings on approximately 2,300

chemically diverse compounds to detect antimicrobial activity

against Escherichia coli, and used the resulting data to train a deep

learning ML model to predict antimicrobial activity solely from

chemical structure. These authors applied the ML model to a drug

repurposing hub, discovering SU3327 (a c-Jun N-terminal kinase

inhibitor) and validating it as an effective inhibitor against ESKAPE

pathogens and multidrug-resistant organisms (Stokes et al., 2020).

Applying this ML model to more than 107 million molecules in the

ZINC15 database, they identified eight putative antimicrobial

compounds with structures distinct from known antimicrobials,

demonstrating the potential of ML in propelling the discovery of

lead compounds. Additionally, ML methods have been utilized to

assist in the design and optimization of antimicrobial peptides

(AMPs), proving effective against resistant pathogens (Wu et al.,

2014). AMPs, being natural substrates forML algorithms due to their

complete representation by peptide sequences, are typically short

(<30 amino acids), making them amenable to oligopeptide synthesis

and enabling a comprehensive screening of chemical structure space

(Porto et al., 2018). Wu et al. designed DP7, a novel 12-amino acid

AMP with activity against Staphylococcus aureus, by training an ML

model with multiple 12-amino acid AMPs to estimate the

contribution of amino acids at each position to overall

antimicrobial activity (Wu et al., 2014; Shi et al., 2019). They

synthesized this AMP and demonstrated its in vivo efficacy against

both drug-sensitive and resistant Staphylococcus aureus. Similarly,

Porto et al. applied anML genetic algorithm to peptides derived from

the pomegranate plant to design optimized plant template AMPs

with antimicrobial activity. This analysis led to the discovery of a new

AMP, Avian Defensin 2, proving its in vivo efficacy against various

pathogens (Lluka and Stokes, 2023). As ML methods continue to

evolve and improve, the future of antimicrobial drug development is

poised for a significant leap forward, becoming a crucial tool in

combating AMR (Porto et al., 2018; Zhang et al., 2019).
4 Application of artificial intelligence
in cross-species AMR

In recent years, the application of artificial intelligence (AI)

technology in the medical field has been increasing, especially

showing great potential in the prediction of cross-species

antimicrobial resistance (AMR). This article synthesizes multiple
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studies to explore the application achievements and challenges of AI in

AMR prediction. (1) Challenges and Methods in Cross-Species AMR

Prediction: Application of Whole Genome Sequencing (WGS) in

Acinetobacter baumannii Resistance Prediction: A study analyzed b-
lactamase resistance genes and non-b-lactamase resistance genes in

isolates of A. baumannii from human and non-human sources using

WGS data and the ResFinder database. The study identified genes

associated with resistance to various antibiotics (including

aminoglycosides, tetracyclines, etc.), demonstrating the effectiveness

of WGS in predicting cross-species AMR (Wareth et al., 2021). (2)

Predicting E. coli AMR in Livestock and Companion Animals: A study

used machine learning models to enhance AMR monitoring of

pathogens such as Escherichia coli, utilizing sequencing information

to accurately predict resistance phenotypes, thereby avoiding the need

for antibiotic sensitivity testing and potentially identifying new AMR

gene determinants in the process. This study also emphasized the

complexity of genotype-phenotype relationships and their variations

with different antibiotics, host animals, and other factors (Chung et al.,

2023). (3) Rapid Antibiotic Resistance Sequence Prediction Based on

Large-Scale MALDI-TOF Data: When exploring multidrug resistance

phenomena in Staphylococcus aureus, a prediction model constructed

using XGBoost-based multi-label learning based on MALDI-TOF

mass spectrometry data enabled rapid prediction of dual resistance.

This study demonstrated the potential of AI in accurately predicting

antibiotic sensitivity of specific pathogens, which is crucial for rational

antibiotic use and treatment optimization (Zhang et al., 2022).

Despite the significant potential of AI technology in cross-

species AMR prediction, it still faces many challenges: Data Quality

and Availability: High-quality, large-scale datasets are the

foundation for training effective AI models. However, relevant

AMR data may be extremely limited for rare microbes or isolates

from atypical environments. Complexity of Genotype-Phenotype

Relationships: The relationship between AMR genotypes and

phenotypes is very complex, especially when considering the

effects of different antibiotics, host animals, and other

environmental factors.AI models need to handle this complexity

to improve prediction accuracy and reliability. Variability in Cross-

Species Biological Environments: Differences in microbial

environments between different species may lead to variations in

gene expression and resistance mechanisms, posing additional

challenges for the design and optimization of AI models.

In conclusion, AI shows significant potential in cross-species

AMR prediction, but it also faces challenges such as data quality,

complexity of genotype-phenotype relationships, and variability in

cross-species biological environments. These studies not only confirm

the effectiveness of AI technology in predicting and monitoring AMR

but also emphasize the need for future research to further explore

AMR mechanisms and optimize prediction models across different

species, highlighting the importance of interdisciplinary cooperation.

In the field of AMR, the application of ML technology is

gradually showing great potential and benefits. First of all, while

traditional antibiotic susceptibility testing is usually time-consuming

and requires specialized bioinformaticians for data processing, the

introduction of AI and ML technologies can dramatically reduce

diagnostic time and improve accuracy. For example, the combination

of flow cytometry and ML modeling has successfully reduced the
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diagnostic time for antimicrobial susceptibility testing to 3 hours,

which greatly improves the speed and accuracy of clinical decision-

making. Second, AI and ML also play an important role in genomic

data management. By optimizing the genomic data processing

process through AI technology, antibiotic resistance genes and their

mutations can be identified more quickly, providing a more accurate

basis for customized treatment strategies. And in clinical practice,

some studies have demonstrated the effectiveness of AI-based

antimicrobial drug treatment strategies, such as the use of AI to

predict the optimal antibiotic use regimen in sepsis treatment, in

order to improve treatment efficacy and reduce patient

hospitalization time. In addition, the application of AI and ML

technologies can improve the accuracy and efficiency of traditional

phenotype detection methods. By training ML models, the accuracy

of traditional phenotypic detection methods such as the Phoenix

system has been significantly improved, making it a more reliable and

efficient diagnostic tool. The application of AI and ML technologies

has also played an important role in the discovery and production of

new antibiotics. Through computer simulation and deep learning

algorithms, AI can predict the structure and efficacy of new antibiotic

molecules, accelerating the process of new drug development. In fact,

about 14 new antibiotics have been successfully developed and

approved since 2014, with the application of AI technology making

a significant contribution to this progress. Finally, in monitoring and

predicting AMR trends, AI and ML models can identify new

resistance trends and transmission patterns by analyzing genome-

wide sequence data. By monitoring known disease-causing resistance

genes, AI can rapidly identify emerging resistance variants and thus

take timely and appropriate countermeasures. A small number of

comprehensive ML studies combined with experimental validation

have demonstrated their effectiveness in confirming the accuracy of

ML predictions, as well as the ability to discover previously unknown

determinants of AMR or substrate activity. Initial ML models are

further optimized by validating gene expression and experimentally

studied gene sequences, improving predictive performance and

increasing interpretability. This depth of understanding is critical to

support the development ofMLmodels based on knownmechanisms

and to help minimize the impact of genomic variants that do not

contribute to, but are associated with, resistance phenotypes.

In summary, AI and ML technologies play an important role in

antimicrobial resistance management, but also face many

challenges such as data quality, model complexity, and

interdisciplinary collaboration. Future studies should further

explore AMR mechanisms in depth, optimize prediction models,

and enhance interdisciplinary collaboration to maximize the

benefits of these technologies in clinical practice.
5 The limitations of ML applications
in AMR

While AI technologies have shown promise in unraveling AMR,

facilitating rapid diagnostics, and more accurate treatments, they

are accompanied by significant challenges (Sunuwar and Azad,

2021; Rabaan et al., 2022; Yurtseven et al., 2023). The mechanisms

of antibiotics and drugs are not fully understood, particularly in the
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case of emerging diseases. Furthermore, understanding these

mechanisms becomes increasingly difficult with mutations and

other changes. Resistance behavior varies from the cellular level

to the microbial community level (Lau et al., 2021; Májek et al.,

2021; Wang et al., 2022). For instance, bacterial subpopulations may

persist in response to certain cellular stressors or antibiotics, and

during biofilm formation, the genomic capacity for resistance can

be rapidly enhanced through horizontal gene transfer (HGT)

(Olsen, 2015; Kherabi et al., 2024). Even with complete genome

sequences, these types of challenges are difficult to address.

Consequently, AI models may struggle to learn the underlying

mechanisms of resistance evolution.

Currently, most AI models handle individual genes or gene

sequences, i.e., univariate analysis. While these models are accurate

in prediction, some phenotypes may result from combinations of

genes or features, producing nonlinear composite effects (Tunstall

et al., 2020; Bombaywala et al., 2021). For example, the combination of

metal and antibiotic resistance genes may lead to specific

antimicrobial drug resistances. The maintenance and spread of

AMR are considered to be amplified through associations. Although

metal resistance may not directly affect antibiotic resistance, its

combination with antimicrobial drug resistance genes has shown an

enhanced response to antimicrobial drug resistance. Since most

current AI models use single, independent features, capturing these

types of synergistic or associative effects is challenging (Li et al., 2017).

Research on the combined effects of features or genes is scarce, and

designing models capable of analyzing multivariate feature

interactions faces significant hurdles. Furthermore, the classification

of antimicrobial drug resistance has traditionally been a binary

categorization of susceptibility or resistance (Aytan-Aktug et al.,

2020). Although ML/DL models have shown good accuracy in

diagnosing highly resistant or susceptible genes, including an

intermediate category could lower their precision (Li et al., 2018).

Incorporating an intermediate phenotype category into model design

could make outcomes more effective in practical applications but also

encounters challenges, such as the lack of clear standardized

boundaries between susceptible, intermediate, and resistant cases,

and the evolving definitions of susceptibility and resistance

(Dutt et al., 2022). The scarcity of intermediate isolates may lead to

imbalanced training and testing datasets, thus affecting the accuracy of

model assumptions or outcomes (Wang et al., 2022). Data availability

and quality are major challenges in AMR research. Data on AMR,

especially for less common microbes or those isolated from unusual

environments, is limited, making it difficult to train effective machine

learning models. Furthermore, the quality of data used to train

machine learning models can significantly impact performance.

Low-quality data (e.g., noisy or contaminated data) may lead to

inaccurate results (Cusack et al., 2019; Ren et al., 2022b).

Overfitting of models, especially when they are highly complex, is

another critical challenge, meaning they may performwell on training

data but poorly on unseen data. Careful tuning of model complexity

to achieve good generalization performance is crucial.

The scarcity of data in AMR research, particularly the lack of data

on rare microorganisms or strains in atypical environments,

significantly limits the generalization ability of models. In the study

of specific pathogens or rare microorganisms, there is often insufficient
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sample data, making it difficult to train models with good

generalization capabilities. To address this issue, previous studies

have proposed the use of data augmentation techniques or the

generation of synthetic data using Generative Adversarial Networks

(GANs). These methods can, to some extent, alleviate the challenge of

insufficient data. In addition to data scarcity, data quality issues (such

as noise or contamination) can also affect the accuracy of models.

AMR datasets are often poorly standardized, and measurement errors

or data contamination can lead to overfitting or bias in models. We

will explore how data preprocessing, outlier detection, and

regularization methods can address these issues, while further

emphasizing the importance of data cleaning and standardization in

improving model performance. In AMR research, data imbalance is

particularly evident, especially in the classification of intermediate

phenotypes. For example, there are more samples of highly resistant or

highly sensitive strains, while “intermediate” samples are less

common. This imbalance may cause models to favor the dominant

categories during training, neglecting minority class samples. We will

discuss how to address data imbalance issues through techniques such

as under sampling, oversampling, and SMOTE, as well as class weight

adjustment strategies. The complexity of biological systems also

presents significant challenges for AMR prediction. The mechanisms

of antibiotic action and bacterial resistance are not fully understood,

especially in the context of emerging diseases and complex resistance

conditions. As phenomena such as bacterial mutations, horizontal

gene transfer (HGT), and biofilm formation occur, models must

handle more complex environments. The formation of biofilms can

accelerate the spread of resistance genes, making it difficult for existing

models based on single genes or features to accurately predict the

evolution of resistance under multi-gene, multi-environment

conditions. Most AI models currently use univariate analysis (e.g.,

single genes or gene sequences); however, resistance may arise from

the combined effects of multiple genes or features. This non-linear

composite effect poses significant challenges for model design. For

instance, the combination of metal resistance genes and antibiotic

resistance genes may lead to specific resistance, while metal resistance

genes alone may not directly affect resistance. Additionally, bacterial

survival strategies and resistance evolution under specific pressures

may cause the same bacteria to exhibit different resistance responses in

different environments, making it difficult for models to predict global

resistance patterns. Current AI models are insufficient in addressing

these dynamic changes at the microbial community level. Aside from

the complexity of biological systems, the design limitations of existing

ML/DL models also affect their application in AMR. Most resistance

prediction models adopt binary classification (i.e., sensitive or

resistant); however, in real-world applications, the presence of

“intermediate” phenotypes complicates classification. We will

explore the practical value of intermediate classification in clinical

applications, especially in predicting and guiding antibiotic treatment.

However, due to a lack of standardized classification boundaries and

scarce data samples, existing AI models may experience performance

degradation and data imbalance issues when incorporating

intermediate classification. How to improve model architectures to

accommodate ternary classification or continuous phenotype

prediction will be a direction worth studying in the future. The

complexity of biological systems and the high dimensionality of data
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often lead to increasingly complex AI model designs, which in turn

increase the risk of overfitting. Overly complex models may perform

well on training data but perform poorly on unseen data. How to

prevent overfitting by adjusting model complexity, using

regularization techniques, and employing cross-validation will be an

important research direction.

In summary, despite the significant potential of AI in combating

AMR, overcoming these challenges to maximize the application’s

benefits requires further research and interdisciplinary collaboration.
6 Conclusion

The application ofML and deep DL in predicting AMR in disease-

causing microorganisms not only represents a major advancement in

the field of bioinformatics, but also has important implications for

drug development. These advanced techniques provide new avenues

for identifying novel resistance mechanisms and accurately predicting

microbial susceptibility to antibiotics, providing a basis for the

discovery of potential antimicrobial drug targets. ML and DL

approaches have demonstrated their unique strengths in processing

sequence data, learning complex patterns, and analyzing specific genes

and mutations, providing a tool for identifying new resistance-

associated biomarkers. The application of these technologies has

greatly advanced the understanding of AMR mechanisms and

provided a scientific basis for designing new antibiotics and

therapeutic strategies. With the increase in computational power

and optimization of algorithms, it is expected that the application of

ML and DL in the field of AMR prediction will be further expanded,

while the accuracy and reliability of models will be improved through

the integration of multiple types of data. In addition, the development

of interpretable models will help scientists better understand the

biological mechanisms of AMR, thereby facilitating the discovery

and development of new antibiotics. Through interdisciplinary

collaborations, algorithmic innovations, and dataset expansion,

more progress is expected to be made in predicting antimicrobial

drug resistance in pathogenic microorganisms.

CNN has demonstrated exceptional performance in the field of

image processing, and in recent years, its architecture has been applied

to the analysis of microbial genome data for predicting antimicrobial

resistance (AMR). Specifically, CNN can automatically extract features

from complex, high-dimensional genome data, significantly reducing

the need for manual feature engineering. Through layer-by-layer

convolution and pooling, CNN can identify and capture local

patterns in microbial genomes, such as specific antimicrobial

resistance gene fragments or sequence motifs. In the task of

automatic classification of resistance genes, CNN, trained on large-

scale genome sequence data, can accurately predict bacterial resistance

to different antibiotics. Studies have shown that deep CNN

architectures can capture long-range dependencies within gene

sequences, dependencies that are difficult to detect using traditional

sequence analysis methods. Additionally, CNN can be combined with

other feature extraction algorithms, such as Recurrent Neural Networks

(RNN), to further enhance the identification of resistance genes.

Generative Adversarial Networks (GAN) have recently

demonstrated powerful capabilities in generating high-quality
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synthetic data, particularly for data-scarce fields. In AMR research,

GAN’s primary application lies in generating scarce microbial

genome data, thereby providing more training data for deep

learning models. This is crucial for antimicrobial resistance

prediction, as resistance data for many microbial samples, especially

for rare or emerging pathogens, is relatively scarce. Through

adversarial training, GAN models generate new antimicrobial

resistance genome sequences, simulating real-world resistance gene

variations. This method can enhance existing datasets, mitigating

overfitting issues caused by the limited availability of samples.

Specifically, GAN can generate synthetic resistance gene sequences

within AMR data, enabling models to be trained across a broader

range of data, thereby improving their generalization capabilities.

Some studies have successfully used GAN to generate bacterial

genomes with resistance mutation characteristics, and these

synthetic datasets have significantly improved the accuracy of

subsequent models in predicting resistance evolution trends.

Variational Autoencoders (VAE) are powerful generative models

capable of learning latent low-dimensional representations from

high-dimensional data, making them well-suited for handling

complex genome data and understanding resistance mechanisms.

In AMR research, VAE can utilize dimensionality reduction

techniques to identify complex relationships between gene

networks, thereby enhancing the prediction of resistance genes. By

learning the latent distribution of genome data, VAE can extract

latent features of resistance genes and effectively capture associations

between different genes. This approach addresses the issue of gene

interaction effects that are often overlooked in univariate analysis

models. For example, VAE can recognize nonlinear combinatorial

effects between resistance genes, which are often challenging to model

in traditional methods. Recent studies have shown that combining

VAE with a multi-task learning framework allows simultaneous

prediction of multiple resistance gene features, enabling the model

to perform well in addressing multi-gene resistance challenges.
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