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Periodontal bacteria influence
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Many systemic diseases, including Alzheimer disease (AD), diabetes mellitus (DM)

and cardiovascular disease, are associated with microbiota dysbiosis. The oral

and intestinal microbiota are directly connected anatomically, and communicate

with each other through the oral-gut microbiome axis to establish and maintain

host microbial homeostasis. In addition to directly, periodontal bacteria may also

be indirectly involved in the regulation of systemic health and disease through

the disturbed gut. This paper provides evidence for the role of periodontal

bacteria in systemic diseases via the oral-gut axis and the far-reaching

implications of maintaining periodontal health in reducing the risk of many

intestinal and parenteral diseases. This may provide insight into the underlying

pathogenesis of many systemic diseases and the search for new preventive and

therapeutic strategies.
KEYWORDS

periodontal bacteria, oral dysbiosis, gut dysbiosis, oral-gut axis, systemic diseases, fecal
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1 Introduction

As the largest microbial community in the human body, the gut microbiota plays a

crucial role in establishing and maintaining host physiological homeostasis. A variety of

human diseases are known to be associated with dysbiosis of the gut microbiota, such as

obesity, cardiovascular disease and neurological disorders (Jin et al., 2019; Chen et al.,

2021). The proposed theories of gut-liver axis, gut-brain axis, gut-lung axis, and gut-bone

axis also fully illustrate the close relationship between the gut microbiota and various

organs and systems in the human body (Cryan et al., 2019; Dang and Marsland, 2019;

Albillos et al., 2020; Tu et al., 2021). The oral cavity is the second largest microbial habitat in

the human body after the gastrointestinal tract (GIT). Studies have shown significant
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disease-specific patterns in the composition of the salivary

microbiota of periodontitis patients (Lundmark et al., 2019). The

dominant phyla included Firmicutes, Fusobacteria, Actinobacteria,

Synergistes, Spirochetes, Proteobacteria, Saccharibacteria (TM7),

and Bacteroidetes are highly associated with periodontal disease,

contributing in part to the diversity and functional differences in the

oral microbial community (Pei et al., 2020). The oral microbiota can

be modified by systemic diseases with increased inflammation, such

as diabetes mellitus (DM) and rheumatoid arthritis (RA), which

consequently increase bacterial pathogenicity and susceptibility to

periodontitis (Graves et al., 2019). Conversely, oral bacteria can

impact systemic disease through bacteremia and has been linked to

worsening of Alzheimer disease (AD), DM, cardiovascular disease

and RA (Hajishengallis et al., 2022; Brewer et al., 2023). More

interestingly, oral bacteria may indirectly affect these diseases by

influencing the composition of the gut microbiota (Mesa et al.,

2019; Sureda et al., 2020; Park et al., 2021; Barutta et al., 2022).

The oral cavity is directly connected to the GIT, and the

progression of the ecological niche from the oral cavity to the gut

has been defined as the “oral-gut microbiome axis” (hereafter

referred to as the “oral-gut axis”). In addition to oral diseases, the

oral microbiota is also involved in the regulation of extra-oral

diseases through the oral-gut axis. The oral cavity is a microbial

reservoir that constantly replenishes the gut microbiota (Schmidt

et al., 2019). One study using 16S ribosomal RNA analysis provides

evidence of widespread translocation of oral bacteria to the gut.

After analyzing 144 pairs of saliva and stool samples, it was found

that shared amplicon sequence variants between the salivary and

gut microbiota were present in 72.9% of subjects, and that their total

relative abundance in the gut was significantly higher in older

subjects or those with dental plaque accumulation (Kurushima

et al., 2023). Another large-scale controlled study of saliva and

fecal samples taken separately from periodontally diseased/healthy

subjects confirmed that periodontal status may indeed drive

variations in the salivary and gut microbiota (Kurushima et al.,

2023). Bao et al. further verified that periodontitis can induce

intestinal dysbiosis and inflammation through the influx of

salivary microbes by transplanting saliva from patients with

periodontitis into mice via oral gavage (Bao et al., 2022).

Furthermore, periodontal treatment may improve systemic health

through the oral-gut axis further supports this concept and suggests

target that periodontal therapy may be systemically useful by

reducing the impact of the oral microbiota on intestinal bacteria.

Analysis of stool and saliva samples from periodontitis patients

using 16S ribosomal RNA gene amplicon sequencing confirmed

that periodontal treatment both mitigated oral dysbiosis and altered

gut microbial composition (Baima et al., 2024). Other evidence

comes from studies examining a positive effect of periodontal

therapy on the development of liver disease in cirrhotic patients

by reducing bacterial dysbiosis in the feces (Bajaj et al., 2015; Bajaj

et al., 2018). The need for a periodontal examination prior to liver

transplantation has also been noted (Guggenheimer et al., 2007;

Raghava et al., 2013).

How the oral and gut microbiomes interdependently regulate

physiological functions to impact systemic health has not been fully

investigated. In this paper, we provide potential mechanisms by
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which periodontal bacteria regulate extra-oral diseases via the oral-

gut axis, and the far-reaching implications of maintaining

periodontal health in reducing the risk of many intestinal and

parenteral diseases.
2 Occurrence of periodontal
pathogenic bacteria

Host–microbiome homeostasis in the oral cavity can be seen as

an ‘armed peace’ that maintains a controlled state of inflammation.

The transition from health to disease requires a susceptible host and

a dysregulated oral microbiota. For susceptible host, as shown in

diabetic mice, diabetes-enhanced IL-17 alters the oral microbiota

and renders it more pathogenic (Xiao et al., 2017). On the contrary,

local factors, such as poor oral hygiene, may induce oral microbial

dysbiosis (e.g. altered proportions of coccobacilli), which ultimately

leads to inflammation of the periodontal tissues (Lin et al., 2021).

The ensuing increased flow of gingival crevicular fluid not only

introduces a component of the host’s defenses, but also provides the

substrate necessary for the growth of many ‘inflammophilic’

bacteria (i.e. those that thrive within an inflammatory

environment, e.g. Porphyromonas gingivalis) (Hajishengallis,

2014). Inflammophilic bacteria actually gain a growth advantage

over commensal microbiome in response to inflammation. With

the aim of self-feeding, Inflammophilic bacteria develop a range of

pathogenic strategies (e.g. affecting neutrophil functions) that

gradually disrupt the ecological balance of the existing subgingival

microbial community, leading to a more intense host response

(Higashi et al., 2024).

The emergence of periodontal bacterial pathogenicity may be

related to plaque biofilms attached to the surfaces of teeth,

interdental spaces or restorations. Dental plaque represents the

microbial community whose collective properties differ significantly

from planktonic bacteria, which enhance the survival, metabolism

and pathogenesis of oral microorganisms (Freire et al., 2021).

Periodontitis-specific pathogenic bacteria, such as P.gingivalis,

Treponema denticola, Filifactor alocis, Tannerella forsythia and

Aggregatibacter actinomycetemcomitans, colonize and proliferate

predominantly within the host periodontal pocket (Darveau et al.,

2012). Three key factors may be involved in the induction of

inflammation by periodontal pathogenic bacteria to promote

periodontal tissue damage, including oral mucosal inflammation

and alveolar bone destruction. The first is a change in the relative

abundance of dominant species (e.g., inflammophilic bacteria).

High levels of the genera Porphyromonas (32.2%), Fretibacterium

(10.4%), Rothia (5.3%), and Filifactor (3.1%) were observed in

periodontitis (Abusleme et al., 2021). Studies have shown that a

very small proportion of Porphyromonas gingivalis in the

community can orchestrate the normal benign microbiota into a

dysbiotic community structure (Darveau et al., 2012). The second is

related to the location of the plaque biofilm. In line with this view,

Carrouel et al. noted that even in periodontally healthy young

adults, the interdental space favors the development of periodontal

disease as an ecological niche where microbial communities

congregate (Carrouel et al., 2016). Compared to supragingival
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1478362
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Xi et al. 10.3389/fcimb.2024.1478362
biofilms of other oral mucosa, the interdental biofilm is located

between two teeth and the gingiva, where bacteria are in a more

anaerobic environment. Due to its unusual anatomy, the body has

few or no alternative defenses against the interdental space, and

traditional methods of daily control (e.g. toothbrushing and saliva)

are inadequate for biofilm disruption at this anatomical location

(Carrouel et al., 2016). Quantitative real-time PCR assays have been

applied to reflect microbial succession events in developing

interdental biofilms, strongly suggesting that oral microbial

dysbiosis is associated with the risk of periodontal and related

diseases (Carrouel et al., 2016). The final factor is bacterial

virulence. For example, gingipains are critical virulence factors for

Porphyromonas gingivalis to colonize and proliferate in the gingival

crevice and to invade the periodontium (Silva and Cascales, 2021).

F. nucleatummediates important biofilm-organizing behaviour and

interactions with host cells through the expression of numerous

adhesins (e.g. RadD) (Brennan and Garrett, 2019).

Because of the deleterious effects of periodontal pathogenic

bacteria, there is increasing interest in whether daily antimicrobial

strategies can prevent or reverse oral dysbiosis by altering the

structure and function of the plaque biofilm, including healthy

diet, oral hygiene, and the use of antimicrobials and probiotics.

There have been studies showing changes in the oral microbiota

associated with different dietary patterns, such as the amount of

fermentable carbohydrates, fats, and anti-inflammatory/pro-

inflammatory components, the degree of processing, and

supplementation with nitrate (Anderson et al., 2020; Stanisic et al.,

2021). An oral health optimized diet (low in carbohydrates, rich in

Omega-3 fatty acids, and rich in vitamins C and D, antioxidants and

fiber) has been found to reduce the load of potential cariogenic and

periodontal bacterial species in the plaque biofilm, and even to

reduce gingival and periodontal inflammation in humans (Tennert

et al., 2020). However, some human studies have observed no clear

relationship between diet and the composition of oral bacterial

communities (Santonocito et al., 2022). Scholars holding this view

believe that food is actually present in the mouth for a limited period

of time and that the primary nutritional sources for oral bacteria

appears to be saliva and gingival crevicular fluid. It has also been

suggested that some dietary effects on the oral microbiota may occur

indirectly by altering the gut microbiota. In conclusion, more

research is still needed to elucidate whether healthy dietary

patterns can prevent/reverse oral dysbiosis by altering the

composition of oral microbiota/plaque biofilms.

In oral hygiene, the use of toothbrushes, interdental brushes,

chewing gum, and even anti-plaque agents (e.g. chlorhexidine) are

effective in reducing plaque or interrupting plaque maturation, but

none of them seem to be able to influence the structure of the

bacterial community in plaque. The main reason for this is the

blocking effect of biofilms (Rosier et al., 2018). For example,

although an anti-plaque agent blocks the formation of plaque, it

has little activity against established plaque. The use of probiotics

has the potential to prevent and/or treat oral and related diseases by

reversing oral dysbiosis. Studies have shown that the addition of

probiotics (e.g. Lactobacillus rhamnosus) does result in significant

changes in the composition of oral bacterial communities, including
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an increase in microbial diversity and a decrease in the relative

abundance of opportunistic pathogens (Di Stefano et al., 2023). It

should be noted that this effect may be reversed after a period of

cessation of treatment.

3 Possible pathogenic mechanisms of
periodontal bacteria through the oral-
gut axis

Microbial transmission between the oral cavity and the gut can

shape and/or reshape the microbial ecosystem in both habitats,

which in turn affects the overall microbial community of the

organism. Multiple changes in the gut microbiota, intestinal

barrier function and immune system induced by periodontal

bacteria can lead to an increased risk of systemic diseases by

promoting low-grade inflammation (Figure 1). Therefore,

exploring the pathogenic role of periodontal bacteria through the

oral-gut axis may help us to understand one of several avenues by

which periodontitis may affect systemic diseases.

The nature of the dysbiotic change that induces periodontitis has

not been well defined and it has been difficult to distinguish between

pathogenic and commensal bacteria. However, in the gut, dysbiosis

has been identified as a reduction in alpha and beta diversity and an

increase in bacterial pathogens, including a decrease in microbial

population and functional diversity and stability (e.g. specific

alterations in Peptococcaceae and Prevotellaceae), altered

Firmicutes/Bacteroidetes (F/B) ratios, decreased abundance of

beneficial SCFA-producing bacteria (e.g. Blautia, Roseburia, and

Lachnospiraceae), and a corresponding increase in opportunistic

pathogens (e.g. Megasphaera, Enterobacter, and Desulfovibrio)

(Sultan et al., 2021; Chidambaram et al., 2022).

The gut originally is colonized by bacteria from the oral cavity

or transit through the oral cavity. For example, Streptococcus

salivarius and Streptococcus parasanguinis localized in the oral

cavity most often colonize the intestinal niche (Kageyama et al.,

2023). In addition, oral bacteria can alter the composition of the gut

bacteria either directly or indirectly. In the intestine they may alter

commensal bacteria through bacteria-bacteria interactions. For

example, potential pathogens entering the gut can signal through

quorum sensing to commensals and trigger the expression of toxins,

virulence factors, and biofilm formation (Coquant et al., 2021).

Periodontal bacteria (e.g. P. gingivalis) have been found to express a

interspecies quorum sensing signal known as autoinducer-2 (AI-2),

which modulates gut microbiota composition by enhancing

Firmicutes growth and increasing the F/B ratio (Thompson et al.,

2015; du Teil Espina et al., 2019).

A recent mouse study not only demonstrated that oral

administration of P. gingivalis induced intestinal dysbiosis, reduced

intestinal barrier function, and intestinal inflammation, but also

further elucidated the pathological mechanisms behind the

disruption of intestinal homeostasis by P. gingivalis through gut

microbiota transplantation (Sohn et al., 2022). This study collected

the gut microbiota of normal mice after oral administration of

P. gingivalis and transferred it to genetically susceptible mice. The
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same intestinal inflammation was eventually observed in the recipient

mice, verifying that P. gingivalis-induced intestinal dysbiosis is itself

sufficient to promote intestinal inflammation (Figure 2).
3.1 Pathways of translocation of oral
bacteria to the gut

More than half of the bacterial species in the gastrointestinal

system undergo oral-gut translocation (Schmidt et al., 2019). First,

the oral cavity and gut are inherently linked through saliva. Studies

have demonstrated that periodontal bacteria migrating via enteral

dissemination (salivary pathway) are able to colonize and survive in

the gut for at least 24 hours (Bao et al., 2022). Second, the rich blood

circulation in the oral cavity and the ulcerated surface of the lining

of periodontal pockets in patients with periodontitis also allow the

oral microbiota to colonize the gut through hematogenous

dissemination. A study comparing colorectal cancer (CRC)

colonization by gavage vs. intravenous inoculated Fusobacterium

nucleatum in a mouse model and found that hematogenous

fusobacteria were more successful in CRC colonization than

gavaged ones. This may indicate that the circulatory system
Frontiers in Cellular and Infection Microbiology 04
appears to be theefficient route for some periodontal bacteria to

reach the gut. However, more evidence is still needed to

support this.

Finally, after invasion of host cells, periodontal pathogenic

bacteria (e.g. P. gingivalis and F. nucleatum) may survive within

them and subsequently disseminate to the gut (Xue et al., 2018;

Kitamoto and Kamada, 2022a). For example, periodontal bacteria

with virulence factors that inhibit phagolysosome formation are

able to survive within the host cell and migrate intracellularly via

Trojan horse mode or vesicular trafficking (Yilmaz et al., 2004;

Sansores-España et al., 2021). P. gingivalis has been shown to

survive within macrophages, epithelial cells, endothelial cells and

smooth muscle cells and to spread from one cell to another (Wang

et al., 2007; Li et al., 2008; Carrion et al., 2012). Thus, theoretically,

periodontal bacteria may hijack these cells as a vehicle for migration

to the gut (Kitamoto et al., 2020; Hajishengallis and Chavakis,

2021). However, more evidence is still required to support that

periodontal bacteria translocated via this pathway are of sufficient

pathogenic significance in the oral-gut axis mediating systemic

disease progression. In conclusion, enteral dissemination (the

main pathway), hematogenous dissemination, and host cell

hijacking are all possible ways in which the oral microbiota can
FIGURE 1

Pathogenic effect of periodontal pathogenic bacteria on systemic diseases via the oral-gut axis. In a pathogenic environment with excessive plaque
accumulation, the dynamic equilibrium between microbial invasion and host defense is disrupted, and the periodontal pathogenic bacteria and
commensal bacteria together give rise to oral dysbiosis and disease states. The oral cavity is directly connected to the gastrointestinal tract, and the
progression of the ecological niche from the oral cavity to the gut has been defined as the ‘oral-gut microbiome axes. These periodontal pathogenic
bacteria and their virulence products then breakthrough the barrier between the oral cavity and the gut and translocate in large numbers into the
gut, causing gut dysbiosis, which is characterized by (i) a reduction in overall microbial community diversity, (ii) an alteration of the Firmicutes/
Bacteroidetes (F/B) ratio, and (iii) as well as a reduction in probiotics and a corresponding increase in opportunistic pathogens. In addition to
microbiota dysbiosis, the transition from health to disease requires a susceptible host (including genetic/environmental factors), accompanied by a
complex set of interacting mechanisms that ultimately trigger destructive immune and inflammatory responses in the host. In addition to oral
diseases, systemic diseases in which the oral microbiota may be involved in regulation via the oral-gut axis include intestinal diseases (e.g.
inflammatory bowel disease and colorectal cancer), rheumatoid arthritis, brain diseases (e.g. Alzheimer’s disease, Parkinson’s disease, autism
spectrum disorders, and major depressive disorder), liver diseases (e.g. non-alcoholic fatty liver disease, cirrhosis, and hepatocellular carcinoma),
obesity, diabetes, atherosclerosis, and skin diseases.
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translocate to the gut, resulting in a complex association of the oral-

gut axis based on microbial crosstalk (Figure 3).
3.2 Breach of the oral-gut barrier by
periodontal bacteria

The oral-gut barrier is one of the important strategies for the

host to maintain microbial homeostasis in order to limit microbial

translocation between the oral cavity and the gut. The oral-gut

barrier includes physical distances and chemical barriers (e.g.

gastric acid and bile), as well as colonization resistance of the

resident gut microbiota to the intestinal migration of oral

microbes with pathogenic potential (Figure 3). Intestinal

commensal bacteria can play an important role in regulating

intestinal mucosal homeostasis and inhibiting colonization of

potential oral pathogens via distinct mechanisms (Suárez et al.,

2021). For example, intestinal commensal bacteria can compete for

nutrients and produce antimicrobial peptides and metabolites that

affect the colonization and virulence of oral pathogens. Intestinal

commensal bacteria also promote the induction of effector T and B

cells locally and systemically in response to pathogens (Suárez et al.,

2021). However, this protective mechanism of colonization

resistance may be disturbed by microbiota imbalance or local

changes in host response, leading to disruption of host-

microbiome homeostasis.
3.3 Effect of periodontal bacteria on
intestinal barrier function

The intestinal barrier has several physical and chemical barriers

separating the host from the adjacent microbiota (Figure 3).

However, when the intestinal barrier function is pathologically
Frontiers in Cellular and Infection Microbiology 05
altered, increased intestinal permeability and inflammatory

response may allow the gut to “leak”, i.e. allowing pathogenic

substances to cross the intestinal wall and spread systemically

with pathological consequences (Hollander and Kaunitz, 2020).

Prolonged translocation of periodontal bacteria to the gut may

further trigger and exacerbate the putative disease “leaky gut

syndrome” by affecting gut microbiota homeostasis and barrier

function, thus participating in the pathogenesis of various

gastrointestinal and systemic diseases (Kinashi and Hase, 2021)

(Figure 4). This will be discussed in more detail below.

3.3.1 Intestinal mucus barrier
A gel-like sieve structure formed by mucin overlying intestinal

epithelial cells (IECs) is the first physical barrier that separates

bacteria in the lumen from the IEC (Pelaseyed et al., 2014). At the

same time, antimicrobial peptides (AMPs) (e.g. alpha-defensins,

lysozyme C and C-type lectins), which are components of the

intestinal mucus, form a chemical barrier that prevents and clears

intestinal pathogens and protects intestinal cells from external

factors (Birchenough et al., 2015; Liu et al., 2021b).

Periodontal bacteria are capable of disrupting the integrity and

function of the intestinal mucus barrier. For example, P. gingivalis

secretes Gingipain B (RgpB) that cleaves mucin 2 (MUC2) to

disrupt its polymerization (van der Post et al., 2013). P. gingivalis

can also circumvent or manipulate AMP to disrupt intestinal

homeostasis, further exacerbating intestinal ‘leakiness’ (Ji et al.,

2007; Hussain et al., 2015).

3.3.2 Intestinal epithelial barrier
The intestinal epithelial barrier is provided by IEC that form

multiple types of junctions, including tight junctions (TJs),

adherens junctions and desmosomes (Figure 3). The composition

and abundance of the different components of intercellular

junctions are decisive for intestinal permeability and, together
FIGURE 2

Pathologic mechanisms of intestinal inflammation induced by periodontal pathogenic bacteria are associated with the gut dysbiosis. Collecting the
gut microbiota of normal mice after oral administration of periodontal pathogens and transferring it to genetically susceptible mice can observe the
same intestinal inflammation in recipient mice. This confirms that the disruption of gut microbiota induced by periodontal pathogens is sufficient to
cause their own intestinal inflammation.
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with IEC, maintain an important mechanical barrier preventing the

transit (cross-cellular/paracellular) of pathogenic substances such as

toxins and bacteria from the lumen to other parts of the body. In

addition, IEC can regulate the persistence of antigens on the surface

through epithelial shedding (Suárez et al., 2021).

In affecting and breaching the intestinal epithelial barrier,

periodontal pathogenic bacteria can directly/indirectly reduce

inter-epithelial adhesions, or invade and transit apically through

epithelial cells in several ways. 1) Downregulation of adhesion

molecule expression. Pathogenic bacteria (e.g. P. gingivalis,

A. actinomycetemcomitans and T. denticola) reduce intestinal

epithelial surface expression of E-cadherin, resulting in the

destruction of adherens junctions and allowing transmigration

(Devaux et al., 2019). In animal studies, a downregulation of tight

junctions at the mRNA level was also observed in the gut of mice

following oral administration of periodontal pathogenic bacteria

(e.g. P. gingivalis and F. nucleatum) (Meilian et al., 2016; Olsen and

Yamazaki, 2019; Cao et al., 2020). 2) Degradation of adhesion

molecules. For example, P. gingivalis uses gingival proteases to

directly degrade tight junctions (e.g. Occludin) and adherens

junctions (E-cadherin) (Takahashi et al., 2019; Tsuzuno et al., 2021).

3) Cause re-distribution of E-cadherin from membrane to cytoplasm.

Substantial remodeling of cell junctions may attenuate the integrity of
Frontiers in Cellular and Infection Microbiology 06
the intestinal epithelial barrier. The recombinant cyto-lethal distending

toxin (Cdt), a putative virulence factor of A. actinomycetemcomitans,

affects epithelial barrier function by altering E-cadherin’s cytosolic

distribution (Takahashi et al., 2019). 4) Excessive cell death may lead

to barrier dysfunction and translocation of pathogenic bacteria

(Crawford et al., 2022). F. nucleatum and its LPS have been shown

to promote cell apoptosis and pro-inflammatory cytokine production

in gut by activating autophagy pathway in IEC in vivo and in vitro

(Su et al., 2020).

Finally, periodontal pathogenic bacteria indirectly reduce inter-

epithelial adhesion by stimulation of inflammation. Mechanistically,

F. nucleatum targets caspase activation and caspase recruitment

domain 3 (CARD3) to activate the endoplasmic reticulum stress

(ERS) pathway or the IL-17F/NF-kB pathway, mediating damage to

the intestinal epithelial barrier (Cao et al., 2020; Chen et al., 2020a).

F. nucleatum can also increase inflammatory genes (e.g. NF-kB)
through its FadA adhesin binding to E-cadherin (Pignatelli et al.,

2023). In addition, studies have shown that even a single oral dose

of P. gingivalis can cause the prevalence of inflammatory microbiota

in the gut (Nakajima et al., 2015). The increase in the proportion

of intestinal pathogenic bacteria leads to the enrichment of LPS in

the lumen. LPS is an important stimulus for impaired intestinal

epithelial barrier function via an intracellular mechanism involving
FIGURE 3

Pathways of oral bacterial translocation to the gut and host barrier systems limiting oral-gut microbial translocation. Intestinal translocation of
periodontal pathogenic bacteria is pathogenically important in the progression of systemic diseases mediated by the oral-gut axis. Possible routes of
oral microbiota translocation to the gut include (i) migration by enteral dissemination (salivary route), (ii) colonization of the gut by hematogenous
dissemination, and (iii) hijacking of host cells as a vehicle for migration to the gut. First, the oral-gut barrier is one of the important strategies for the
host to maintain microbial homeostasis in order to limit microbial translocation between the oral cavity and the gut. The oral-gut barrier includes
physical distances and chemical barriers (e.g. gastric acid and bile), as well as colonization resistance of the resident gut microbiota to the intestinal
migration of oral microbes with pathogenic potential. If oral bacteria break through the oral-gut barrier to reach the lumen, the barrier function of
the intestinal wall is still able to separate the host from adjacent microbiota. The intestinal barrier consists of (i) the intestinal mucus barrier
composed of mucin and antimicrobial peptides (AMPs) overlying IEC, (ii) the intestinal epithelial barrier composed of IEC and intercellular junctions
(e.g. tight junctions, adherens junctions and desmosomes), and (iii) the intestinal immune barrier composed of innate and adaptive immune cells
(gut-associated lymphoid tissue).
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TLR-4-dependent up-regulation of CD14 membrane expression

(Ciesielska et al., 2021).

3.3.3 Intestinal immune barrier
As the largest immune organ in the body, the intestinal immune

barrier consists of innate and adaptive immune cells (gut-associated

lymphoid tissue). Disruption of the homeostasis of the gut

microbiota and immune barrier may trigger an excessive

intestinal immune response, leading to the intestinal barrier

damage and ultimately inducing systemic diseases associated with

altered intestinal immune responses (Liu et al., 2021b).

Studies have observed an upregulation of pro-inflammatory

cytokines in the gut by periodontal pathogenic bacteria.

Colonization by P. gingivalis drives an increase in pro-

inflammatory factors such as IL-6 and TNF-a in the gut (Lee

et al., 2022). P. gingivalis also induces an increase in intestinal-

derived IL-17 in peripheral blood (leaky gut) and has been shown to

be associated with increased LPS in the gut (Arimatsu et al., 2014;

Sato et al., 2017). The exact mechanism of action currently requires

further research to elucidate.

Disruption of the Th17/Treg balance and increased secretion of

pro-inflammatory cytokines in the body are important ways in

which periodontal pathogenic bacteria can trigger systemic disease

by affecting immune homeostasis in the gut. Periodontal pathogenic

bacteria in the gut have been shown to be involved in the

pathogenesis of diseases including inflammatory bowel disease

(IBD), rheumatoid arthritis (RA), Parkinson’s disease (PD),

psoriasis, and liver disease through activation of Th17-related

pathways (Vernal et al., 2014; Bunte and Beikler, 2019; Feng

et al., 2020; Kitamoto et al., 2020; Liu et al., 2021a). It has also

been found that recovery of the Th17/Treg balance in periodontitis

by the local injection of 3D-exos (a mesenchymal stem cell-derived

exosomes, MSC-exos) attenuated experimental colitis. However,
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further human studies to validate the efficacy and feasibility of

Th17-targeted therapies are still lacking.
4 Impact of periodontal bacteria on
systemic diseases via the oral-gut axis

4.1 Intestinal diseases

4.1.1 Inflammatory bowel disease
IBD is a chronic, recurrent inflammatory disease of the GIT.

Periodontitis, also a chronic inflammatory disease, significantly

increase the risk of IBD and its disease severity (Vavricka et al.,

2013; Lin et al., 2018). Increased periodontal pathogenic bacteria in

the gut of IBD patients is positively correlated with the severity of

IBD (Lucas López et al., 2017; Schirmer et al., 2018). Animal studies

suggest that colitis may be worsened by gut microbial disturbances,

which was promoted by gavage of periodontitis salivary microbiota

or by infection with periodontal pathogenic bacteria (e.g. P.

gingivalis and F. nucleatum) (Cao et al., 2020; Tsuzuno et al.,

2021). Successful intestinal colonization of those inoculated oral

pathobionts serves as an important trigger to exacerbate IBD.

Further study on intestinal colonization, Kitamoto et al. found

that a significant level of gut colonization by oral pathobionts was

only observed in mice with both oral and gut dysbiosis, rather than

only one of the two (Kitamoto and Kamada, 2022b). This implied

that periodontal bacteria are pathogenic only to susceptible hosts or

promote the progression of pre-existing IBD. Possible pathogenic

mechanisms for IBD after intestinal colonization include the ability

of periodontal bacteria to compromise the intestinal barrier

(downregulation of TJs), enhance intestinal immune responses

(e.g. induction of M2 macrophage polarization), and affect

intestinal metabolism (e.g. decreased unsaturated fatty acid
FIGURE 4

Periodontal pathogenic bacteria trigger and exacerbate “leaky gut syndrome”. Prolonged translocation of periodontal bacteria to the gut may further
trigger and exacerbate the putative disease “leaky gut syndrome” by affecting gut microbiota homeostasis and barrier function. As shown, periodontal
pathogenic bacteria are involved in the pathogenesis of various systemic diseases by either directly/indirectly reducing intestinal epithelial intercellular
junctions (paracellular) or by invading intestinal epithelial cells (transcellular), which ultimately affects and breaches the intestinal barrier.
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synthesis and increased arachidonic acid metabolism). Recent

evidence suggested that P. gingivalis administration aggravates

IBD via a gut microbiota-metabolite linoleic acid (LA)-Th17/Treg

cell balance axis. Mechanistically, under Th17-polarizing culture

conditions, LA, by specifically binding to AHR as an antagonist,

drive Stat1 phosphorylation at Ser727, which in turn represses IL-17

while enhancing Foxp3 expression. Further studies revealed that LA

supplementation alleviates P. gingivalis-induced colitis and

exacerbation of Th17/Treg cell imbalance (Jia et al., 2024).

4.1.2 Colorectal cancer
CRC has the third highest incidence of all cancers (Bray et al.,

2018). The gut microbiota of CRC patients is significantly altered

compared to that of the healthy population (Chen et al., 2012).

Patients with more severe periodontitis have a higher number of

oral-derived microorganisms in their gut microbiota and a higher

risk of developing CRC, as well as a worse prognosis (Momen-

Heravi et al., 2017; Negrut et al., 2023).

In addition to the increased number of oral pathobionts,

analysis using 16S rRNA gene sequencing revealed that some of

the periodontal bacteria (e.g. F. nucleatum, P. gingivalis,

T. denticola, and P. intermedia) were significantly associated with

the progression of CRC (Negrut et al., 2023). Animal studies further

transplanted the fecal microbiota of periodontitis patients into CRC

mice and the same tumor-promoting effect was observed,

suggesting that periodontal bacteria may promote CRC by

remodelling the oral and gut microbiota (Shi et al., 2023). The

current mechanistic study found that in a dysregulated intestinal

environment mediated by periodontal bacteria, opportunistic

pathogens are able to exploit tumor surface barrier defects, invade

normal colonic tissue and induce local inflammation, while

producing genotoxic metabolites to induce oncogenic

transformation of colonic epithelial cells (Chen et al., 2017).

Many periodontal bacteria are associated with the development

of gastrointestinal cancers, with F. nucleatum being most closely

associated with CRC (Fan et al., 2018; Brennan and Garrett, 2019).

F. nucleatum is usually detected in cancer tissue of CRC patients as

well as in secondary distal metastases (e.g. liver and lung) (Flanagan

et al., 2014; Abed et al., 2016; Mima et al., 2016; Bullman et al.,

2017). Moreover, patients with higher abundance of F. nucleatum in

the cancer tissue usually have a shorter survival time and are more

likely to recur (Wang et al., 2021). F. nucleatum can be involved in

influencing the various stages of CRC development through a

variety of mechanisms.

At the stage of tumor progression, F. nucleatum acts to induce a

pro-cancer immune microenvironment and assists tumor immune

evasion by inhibiting anti-tumor cells as well as increasing the

number and function of immunosuppressive cells. For example, F.

nucleatum binds and activates the human inhibitory receptors

TIGIT and CEACAM1, thereby inhibiting T and NK cells and

suppressing anti-tumor immunity (Gur et al., 2015). F. nucleatum

also suppresses immunity and increases tumor multiplicity by

selectively recruiting tumor-infiltrating myeloid cells (Kostic et al.,

2013). In addition to modulating immune cells, F. nucleatum can

target tumor cells themselves. F. nucleatum can increase the
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expression of inflammatory genes (e.g. NF-kB) and oncogenes

(e.g. Myc and Cyclin D1) via the FadA/E-cadherin/b-catenin
pathway (Rubinstein et al., 2013). This active pathway also leads

to F. nucleatum-induced over-expression of chk2, which facilitates

DNA damage and tumor growth (Guo et al., 2020). Furthermore,

LPS produced by F. nucleatum can upregulate microRNA-21

expression via the TLR4/Myd88/NF-kB pathway, thereby

activating the MAPK pathway and enhancing cancer cell

proliferation (Yang et al., 2017). In promoting tumor metastasis,

F. nucleatum can activate autophagy signaling via the upregulation

of CARD3 expression, regulate epithelial-mesenchymal transition

(EMT), activate the NF-kB pathway and transmit exosomes (Chen

et al., 2020b; Chen S. et al., 2020; Guo et al., 2021; Kong et al., 2021).

During the tumor treatment phase, F. nucleatum increases

chemotherapy resistance in CRC patients, ultimately leading to

tumor recurrence. F. nucleatum reduces the responsiveness of CRC

cells to chemotherapeutic agents (e.g. oxaliplatin and 5-

fluorouracil) by upregulating BIRC3 via the TLR4/NF-kB
pathway or by inhibiting specific miRNAs involved in autophagy

(Yu et al., 2017; Zhang et al., 2019). Therefore, F. nucleatum has

been used as a non-invasive biomarker for CRC screening and

assessment of prognosis.

Finally, F. nucleatum-based bacteriotherapy may be a potential

therapeutic target for CRC. F. nucleatum expresses a variety of

virulence factors associated with adhesion (e.g. RadD, Aid1 and

Fap2) and invasion (e.g. FadA) of host cells, thereby exerting its

pathogenicity through colonization, dissemination, evasion of host

defenses and induction of host responses. Some of the F. nucleatum

virulence factors have been shown to be closely associated with

CRC. For example, FadA promotes the growth of CRC cells, while

Fap2 enhances CRC progression by suppressing immune cell

activity (Shang and Liu, 2018). An F. nucleatum-specific

bacteriophage, FNU1, was found to kill cells and eradicate onco-

bacterium from tumor tissue (Wang et al., 2024). In addition,

antibiotic inoculation with F. nucleatum could eliminate

F. nucleatum from breast cancer and further suppressed

F. nucleatum-induced tumor growth (Parhi et al., 2020).

Therefore, F. nucleatum (or other oral bacteria)-mediated

therapies for CRC may be worth exploring further.
4.2 Rheumatoid arthritis

RA is a chronic inflammatory autoimmune disease

characterized by bone destruction in multiple joints throughout

the body. RA patients often have significant alterations in their oral

and gut microbiota that correlate with the severity of joint

destruction and the efficacy of antirheumatic treatment in RA

patients (Phillips, 2015; Zhang X. et al., 2015; Drago et al., 2019;

Möller et al., 2020). Several periodontal bacteria (e.g. P. gingivalis

and Prevotella intermedia) are detected in the gut, serum and

synovial fluid of RA patients (Martinez-Martinez et al., 2009;

Pianta et al., 2017; Drago et al., 2019). RA may be a reactive

arthritis aggravated by the repeated translocation of these

periodontal bacteria to the joints. Whether oral pathobionts reach
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the joints through the oral-gut axis or through hematogenous

dissemination, most studies suggest that both routes are possible,

but more research is needed to determine which route is

predominant or prior.

As the most important diagnostic biomarker for RA, serum

levels of anti-citrullinated protein antibodies (ACPA) positively

correlate with the severity of both RA and periodontitis (Lappin

et al., 2013; Bellando-Randone et al., 2021). P. gingivalis can convert

arginine residues in proteins to citrulline and increases serum levels

of ACPA (Möller et al., 2020). A. actinomycetemcomitans can also

indirectly increase protein citrullination through the pathway of

leukotoxin (LtxA)-induced peptidyl-arginine deiminase (PAD)

dysregulation, thereby increasing ACPA levels (Konig et al.,

2016). Thus, one of the important mechanisms by which

periodontal bacteria promote RA via the oral-gut axis is chronic

exposure to citrullinated protein (CP) triggers the expression of

ACPA in joint synovium throughout the body.

In an arthritis mouse model, oral administration of P. gingivalis

induced dysbiosis of the gut microbiota, increased IL-6 and CP

production in serum, joint and intestinal tissues, and exacerbated

joint destruction (Hamamoto et al., 2020). Further, fecal microbiota

transplantation (FMT) from P. gingivali-inoculated experimental

arthritis mice reproduced donor gut microbiota and resulted in

severe joint destruction with increased IL-6 and CP production in

joint and intestinal tissues. This suggests that the gut dysbiosis

induced by P. gingivalis oral infection may be sufficient to trigger or

exacerbate arthritis.

F. nucleatum is also enriched in the gut of RA patients and

positively correlate with RA severity (Hong et al., 2023).

Mechanistically, F. nucleatum delivers FadA to the joints via

outer membrane vesicles (OMVs) and triggers synovial

inflammation by activating the Rab5a-YB-1 axis in synovial

macrophages. In addition, some studies have treated with the

zonulin antagonist larazotide acetate, which specifically increases

intestinal barrier integrity (modulating TJs), effectively reduces

arthritis onset (Tajik et al., 2020).

The mechanism by which periodontal bacteria promote RA

may also be related to the activation of Th17-related pathways.

Furthermore, periodontal bacteria (e.g. P. gingivalis and Prevotella

nigrescens) are involved in inflammatory bone destruction in RA by

increasing the intestinal hyperimmune response triggered by Th17

cellular immune responses, which can induce higher levels of

RANKL and TRAP+ osteoclasts (Vernal et al., 2014). P. nigrescens

also can reduce the osteoprotective effects of Th2 (de Aquino

et al., 2014). All of this evidence demonstrates that the oral-gut

axis plays an important role in the influence of periodontal bacteria

on RA.
4.3 Brain diseases

Periodontal bacteria may be indirectly associated with brain

diseases through the gut pathway. In addition to ischemic (e.g.

stroke) and autoimmune (e.g. multiple sclerosis) brain diseases,

evasion strategies of specific pathogens may also alter the function

of the blood-brain barrier (BBB) (Daneman and Rescigno, 2009).
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Here we focus on the pathogenic mechanisms of the oral-gut-brain

axis in brain disease, i.e., periodontal bacteria disrupt the gut barrier

and BBB, further triggering neuroinflammatory and pathological

changes in the brain (Figure 5) (Sansores-España et al., 2021).

4.3.1 Alzheimer’s disease
AD is the most common neurodegenerative disease, with

progressive behavioral and cognitive impairment as the main

clinical feature. Endothelial cells protecting the BBB have been

shown to be infected by periodontal bacteria, and virulence factors

such as P. gingivalis-LPS and gingipains can even be detected

directly in the brains of AD patients (Dominy et al., 2019).

Animal studies provide evidence to support this view. Mice with

experimental periodontitis showed significant dysbiosis of the gut

microbiota, disruption of the intestinal barrier and BBB, and

increased levels of LPS in the serum and brain. Meanwhile,

neuropathological alterations, including neuronal loss, synaptic

injury, and glial activation, as well as progressive cognitive deficits

were also observed (Xue et al., 2020).

The pathological mechanisms by which periodontal bacteria

promote AD may include the following three aspects. First,

periodontal bacteria trigger an excessive accumulation of Ab in

the brain. P. gingivalis may increase Ab production by releasing

gingipains-rich OMVs that drive NLRP3 inflammasome activation,

ASC speck aggregation and pyroptotic cell death (Fleetwood et al.,

2017; Dominy et al., 2019). Upregulation of advanced glycation end

products (RAGE) expression in brain endothelial cells also mediates

Ab influx following P. gingivalis infection (Zeng et al., 2021). In

addition, Intestinal-derived LPS, including P. gingivalis-LPS, has

been shown to be abundant in the AD brain and has been found to

be associated with Ab plaque formation through activation of the

TLR4-mediated NF-kB and MAPK pathways (Zhao et al., 2017).

Second, periodontal bacteria mediate the formation of NFTs in

neuronal cells and promote AD (Arnsten et al., 2021). Formation of

NFTs results from hyperphosphorylation of the tau protein

(Narengaowa et al., 2021). Gingipains can cause proteolysis of tau

(tau phosphorylation and cleavage) and subsequent NFTs

formation by activating caspase-3. P. gingivalis and its virulence

factors, such as lysine-gingipain (Kgp) and arginine-gingipain B

(RgpB) are independently and positively correlated with tau load in

AD brains (Dominy et al., 2019).

Finally, neuronal necrosis due to neuroinflammation is also a

key mechanism for AD. Periodontal bacteria and their virulence

factors may activate and accumulate large numbers of microglia

through the gut, inducing synaptic toxicity and neuronal death,

ultimately exacerbating neurodegeneration (Narengaowa et al.,

2021). For example, intraneuronal gingipains may drive neuronal

NLRP1 activation, resulting in pyroptosis of neurons and activation

of caspase-1, leading to release of the neuroinflammatory

interleukins IL-1b and IL-18 (Dominy et al., 2019).

Therapeutically, administration of small-molecule inhibitors of

gingipain attenuates neurodegeneration and significantly decreases

the host Ab response to P. gingivalis brain infection, thereby

slowing or preventing further accumulation of pathology in AD

patients (Dominy et al., 2019). Another study has found a favorable

effect of periodontal treatment on AD-related brain atrophy.
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However, more research is still needed to explore the relationship

between periodontal treatment and AD (Schwahn et al., 2022).

4.3.2 Parkinson’s disease
Intestinal inflammation and leakage promoted by oral

administration of periodontal bacteria (e.g. P. gingivalis) may lead

to significant loss of dopaminergic neurons and microglial

activation in the SNpc, thereby triggering PD (Feng et al., 2020).

In animal studies, FMT treatment ameliorated gastrointestinal

dysfunction and motor deficits in PD mice by restoring intestinal

homeostasis, attenuating damage to the intestinal barrier and BBB

and suppressing neuroinflammation and dopaminergic neuronal

damage in the substantia nigra (SN) (Zhao Z. et al., 2021). Among

the human studies, a recent double-blind, placebo-controlled,

randomized trial also suggested that a single FMT induced mild,

but long-lasting beneficial effects on motor symptoms in patients

with early-stage PD (Bruggeman et al., 2024).

a-synuclein is thought to be a central molecular player involved

in the pathogenesis of PD through the oral-gut-brain axis. An

endoscopic biopsy study showed a significant correlation between

the level of a-synuclein accumulation in neurites of the enteric

nervous system and the degree of inflammation of intestinal wall

(Stolzenberg et al., 2017). Periodontal bacteria may cross the IEC

and induce misfolding and aggregation of a-synuclein in specific
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enteric neurons. The aggregated a-synuclein will then migrate to

the brain via the vagus nerve (Holmqvist et al., 2014; Garrido-Gil

et al., 2018). P. gingivalis-mediated activation of leucine-rich repeat

kinase 2 (LRRK2) has been shown to consistently induces a-
synuclein expression in the gut of R1441G mice, triggering

neuroinflammation and subsequent degeneration of dopaminergic

neurons (Kozina et al., 2018; Feng et al., 2020).

In addition, IL-17A may also be involved in the effect of

periodontal bacteria on PD via the gut (Huang et al., 2014). For

example, oral administration of P. gingivalis leads to IL-17A

immunoreactivity in the peripheral system and upregulates IL-

17RA protein levels in dopaminergic neurons (Feng et al., 2020).

Peripheral IL-17A crosses the BBB and mediates dopaminergic

neuron degeneration via IL-17RA in microglia (Liu Z. et al., 2019).

4.3.3 Autism spectrum disorder
Autism spectrum disorder (ASD) is a neurodevelopmental

disorder characterized by abnormal language and interaction

skills and repetitive stereotyped behavior (Qiao et al., 2022).

Studies have observed disruption of the intestinal barrier and BBB

in post-mortem brain tissue and gut in ASD subjects, as well as

significant neuroinflammation in the brain (Fiorentino et al., 2016).

ASD patients have been further found to have unique oral and gut

microbiota distribution patterns, including elevated F/B ratio and
FIGURE 5

The oral-gut-liver axis and the oral-gut-brain axis serve as the pathophysiologic basis for the influence of periodontal pathogenic bacteria on liver
and brain diseases via the intestinal pathway. The gut establishes an anatomical dependence on the liver via portal circulation for the direct delivery
of pathogens or metabolites to the liver, a pathophysiologic pathway termed the “oral-gut-hepatic axis” (blue symbols). In addition, the “oral-gut-
brain axis” (red symbols) refers to periodontal pathogenic bacteria that trigger neuroinflammatory and pathological changes in the brain based on
the disruption of the intestinal barrier and the BBB. As shown, periodontal pathogenic bacteria are involved in the pathogenesis of various systemic
diseases by either directly/indirectly reducing intestinal epithelial intercellular junctions (paracellular) or by invading IEC (transcellular), which
ultimately affects and breaches the intestinal barrier.
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increased abundance of opportunistic pathogens, and this bacterial

community differences are positively correlated with ASD severity

(Tomova et al., 2015; Kong et al., 2019; Johnson et al., 2020). A

study that transferred the oral microbiota of ASD donors to an

antibiotic-mediated microbiota-depleted mouse model found the

induction of ASD-like behaviors (e.g. impaired social behavior)

(Kong et al., 2019; Qiao et al., 2022). Significant differences in oral

and gut microbiota structure and altered neurosignaling activities,

including upregulation of serotonin-related gene expression and

TGF-b signaling pathway, were observed in ASD microbiota

recipient mice compared to typical development microbiota

recipient mice. Furthermore, increased serotonin-related gene

expression in ASD microbiota recipient mice was associated with

both autistic behaviors and changes in abundance of specific oral

microbiota, such as Porphyromonas spp. These evidences highlight

the important influence of the oral microbiota in the gut-

brain connection.

In addition to these, a variety of other brain disorders, including

neuropsychiatric disorders (e.g. depression), neurodegenerative

diseases (e.g. multiple sclerosis) and cerebrovascular diseases (e.g.

ischemic stroke), may also be associated with the mediating effects of

periodontal bacteria via the oral-gut-brain axis pathway (Zhang Z.

et al., 2015; Cunha et al., 2019; Maitre et al., 2020; Brown et al., 2021).

For example, in a rat model study, oral gavages with P. gingivalis

and F. nucleatum simultaneously induced periodontitis,

neuroinflammation and depression-like behavior (Martıńez et al.,

2021). This study further identified F. nucleatum in the frontal cortex

of experimental rats and also demonstrated that gastrointestinal

translocation of periodontal bacteria can lead to the entry of

peripheral LPS into the rat brain and elicit TLR-4-dependent

neuroinflammation by finding evidence for the existence of an

APOA1-mediated transport mechanism (Martıńez et al., 2021).

However, clinical studies are still needed for further confirmation.
4.4 Liver diseases

The gut microbiota may transport bacteria or metabolites

directly to the liver via portal circulation (Hou et al., 2022). The

impaired gastric acid and bile secretion prevalent in chronic liver

disease (e.g. cirrhosis) may also make the gut more susceptible to

translocation and colonization by oral bacteria (e.g. P. gingivalis and

T. denticola) (Kakiyama et al., 2014; Qin et al., 2014; Wang et al.,

2022). The anatomical dependence of the liver on the gut through

metabolic exchange and pathogen translocation is therefore the

basis for the pathophysiology of periodontal bacteria affecting liver

disease via the gut pathway, the “oral-gut-liver axis” referred to in

many current studies (Figure 5).

Epidemiological evidence suggests that having severe

periodontitis increases the prevalence of non-alcoholic fatty liver

disease (NAFLD), which recently renamed Metabolic dysfunction-

associated fatty liver disease (MAFLD), mortality associated with

cirrhosis, and progression of NAFLD towards fibrotic liver injuries

(Akinkugbe et al., 2017; Ladegaard Grønkjær et al., 2018). In

addition, patients with hepatocellular carcinoma in combination

with periodontitis tend to have worse cancer stage, liver function
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and prognosis (Tamaki et al., 2011). Periodontitis may affect liver

disease by modulating the oral and gut microbiota.

Dysregulated oral and gut microbiota may act as important

mediators between periodontal bacteria and liver disease. Oral

administration of periodontal bacteria (e.g. P. gingivalis and

A. actinomycetemcomitans) may increase the risk of liver disease

by altering the F/B ratio of the gut microbiota and increasing

intestinal leakage (regulating TJs) and serum endotoxin levels

(Arimatsu et al., 2014; Nakajima et al., 2015; Komazaki et al.,

2017; Åberg and Helenius-Hietala, 2022). Dysregulated gut

microbiota can also affect chronic liver disease by regulating bile

acid metabolism and the production of short-chain fatty acids

(SCFAs), ethanol and choline. Significant alterations in the

composition of the gut microbiomes are present in patients with

liver disease, including NAFLD, non-alcoholic steatohepatitis

(NASH), cirrhosis and alcoholic liver disease (ALD). In contrast,

FMT treatment can prevent NASH, ALD, hepatic encephalopathy

(HE), and acute liver failure (ALF) in animal models by restoring

intestinal homeostasis (Ferrere et al., 2017; Wang et al., 2017; Zhou

et al., 2017; Liu et al., 2021a). Furthermore, genetic tracking revealed

that the majority of species causing alterations in the gut microbiota

of patients with liver disease are of buccal origin (Qin et al., 2014).

Supporting this view, it has been shown that systemic periodontal

therapy in cirrhotic patients modulates salivary and fecal

microbiota dysbiosis, improves endotoxemia, as well as systemic

and local inflammation (reduces inflammatory mediators), and

improves quality of life and cognition in patients with HE (Bajaj

et al., 2018). Periodontal treatment also improves biochemical

markers (e.g. ALT and AST) in patients with NAFLD and

cirrhosis (Yoneda et al., 2012; Komazaki et al., 2017; Nakahara

et al., 2018). However, whether periodontal therapy improves

organic liver changes remains to be investigated.

Periodontal bacteria and their virulence factors may reach the

liver via the damaged gut and act directly on hepatocytes, Kupffer

cells and hepatic stellate cells (HSCs) through activation of the PRR,

hence triggering downstream pro-inflammatory cascades and

ultimately affecting chronic liver disease (Schroeder and

Bäckhed, 2016).

Periodontal treatment has been proposed as a potential

approach to improve liver disease. It has also been suggested by

some that the simultaneous treatment of periodontitis and

intestinal disease may have a synergistic effect on patients with

liver disease (Kuraji et al., 2023). That is, treatment of intestinal

inflammation and intestinal ecological dysbiosis may prevent

ectopic intestinal colonization caused by oral pathology, even in

the presence of periodontitis. However, more studies are still needed

to confirm these findings.
4.5 Obesity

Obesity is a multifactorial chronic inflammatory disease

characterized by the overgrowth of adipose tissue. The degree of

obesity (e.g. body mass index) has been found to be positively

correlated with the degree of periodontal inflammation (e.g.

periodontal inflamed surface area index and the level of
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periodontal bacteria in the oral cavity) (Chaffee and Weston, 2010;

Nascimento et al., 2015; Aoyama et al., 2021).

Obesity patients have been shown to have alterations in both

oral and gut microbiota (Wu et al., 2018; Benahmed et al., 2021).

Microorganisms play an essential role in digestion, absorption,

metabolism, energy use and immune regulation in the body

(Turnbaugh et al., 2008). Just as germ-free (GF) mice were

protected against high fat diet (HFD) induced obesity, whereas

receiving FMT from obese mice increases fat deposition and

metabolic disturbances in GF mice (Rabot et al., 2010). Oral

administration of periodontal bacteria (e.g. P. gingivalis and A.

actinomycetemcomitans) significantly alters the F/B ratio in the gut

microbiota, which in turn may induce insulin resistance, hepatic

steatosis and macrophage infiltration in adipose tissue, and

promote further increases in body weight and adipose tissue in

diet-induced obese mice (Arimatsu et al., 2014; Nakajima et al.,

2015; Komazaki et al., 2017; Rojas et al., 2021).

The triggering of endotoxemia via the leaky gut is one of the risk

factors for periodontal bacteria affecting obesity. In a mouse model,

P. gingivalis significantly elevated serum endotoxin levels after only

1 hour of single oral administration, which in turn activated pro-

inflammatory genes in the adipose tissue, blood vessels and liver of

mice, ultimately increasing the risk of insulin resistance,

atherosclerosis (AS) and NAFLD, respectively (Arimatsu et al.,

2014). Recent studies suggest that P. gingivalis-induced

endotoxemia may affect obesity by altering endocrine functions in

brown adipose tissue (BAT) in mice, including glucose homeostasis,

insulin sensitivity, and thermogenesis (Stanford et al., 2012; Hatasa

et al., 2021). In addition, P. gingivalis administration may increase

inflammation-related mRNA expression in BAT, such as TNF-a
and IL6, and downregulate the expression of genes related to

lipolysis and metabolism in BAT, such as Lipe and Pnpla2

(Hatasa et al., 2021).

The chronic low inflammatory state caused by periodontal

bacteria via the oral-gut axis promotes increased expression of

pro-inflammatory adipokines (e.g. resistin) and decreased

expression of anti-inflammatory adipokines (e.g. adiponectin)

(Zimmermann et al., 2013). In contrast, periodontal treatment

significantly reduced resistin levels and increased adiponectin

levels in obesity patients (Bharti et al., 2013; Akram et al., 2017).

However, there is no further evidence that periodontal therapy

improves obesity by affecting adipokine secretion via the

intestinal pathway.
4.6 Diabetes mellitus

DM is a group of metabolic diseases characterized by

hyperglycemia caused by abnormal insulin secretion and/or

action (Cho et al., 2018). A systematic review confirmed that

severe periodontitis increased the prevalence of type 2 Diabetes

mellitus (T2DM) by 53% (Wu et al., 2020). Periodontal patients

with established DM tend to have poorer glycemic control and

higher prevalence of DM-related complications and all-cause

mortality (Sharma et al., 2016; Graziani et al., 2018; Ziukaite

et al., 2018; Genco et al., 2020; Nguyen et al., 2020; Wu et al.,
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2020; Song et al., 2021). Periodontal treatment also facilitates

effective glycemic management in DM patients (Chang et al., 2020).

The increased susceptibility of DM patients to certain infections

due to altered innate immune response is thought to facilitate the

systemic (including intestinal) dissemination of periodontal

bacteria in the case of periodontitis (Toniolo et al., 2019; Barutta

et al., 2022). The presence of P. gingivalis has been detected in fecal

samples from DM mice following oral administration of

P. gingivalis (Kashiwagi et al., 2021). DM Patients with

periodontitis have significant alterations in both oral and gut

microbiota, systemic pro-inflammatory cytokines and metabolic

parameters (Li et al., 2020; Barutta et al., 2022; Silva et al., 2022).

Studies have demonstrated that oral administration of periodontal

bacteria (P. gingivalis and P. intermedia) induces altered gut

microbiota and leaky gut prior to the development of systemic

inflammation (Yamazaki et al., 2021).

The disruption of intestinal homeostasis mediated by oral

administration of periodontal bacteria (e.g. P. gingivalis and

A. actinomycetemcomitans) was confirmed by animal studies to

induce systemic inflammation, metabolic changes and hepatic fat

deposition in non-diabetic mice, while exacerbating fasting and

postprandial hyperglycemia in DM mice (Arimatsu et al., 2014;

Blasco-Baque et al., 2017; Komazaki et al., 2017; Kato et al., 2018;

Sasaki et al., 2018; Kashiwagi et al., 2021). That is, in the pathogenic

mechanism of periodontitis for DM, intestinal transmission of

periodontal bacteria may induce/exacerbate insulin resistance and

glucose intolerance by mediating entero-hepatic metabolic

derangements. In addition, in a ligature-induced periodontitis

mouse model, fasting blood glucose (FBG), serum glycated

hemoglobin (HbA1c) and glucose intolerance levels were higher

in the periodontitis group than in the control group (Li et al., 2021).

In contrast, FBG, HbA1c, glucose tolerance levels and systemic

inflammatory load were reversed in mice after elimination of

periodontitis or depletion of the gut microbiota with antibiotics

(Li et al., 2021). This further suggests that the gut microbiota may

mediate the influence of periodontal bacteria on DM.

Firstly, intestinal transmission of periodontal bacteria leads to

reduced diversity and altered F/B ratio in the intestinal microbiota.

Individuals with low diversity of gut microbiota tend to exhibit

more pronounced insulin resistance, hyperinsulinemia and

increased susceptibility to DM (Cotillard et al., 2013; Le Chatelier

et al., 2013). There are also mechanistic drivers for the correlation

between taxa representation (Bacteroidetes and Firmicutes) of the

gut microbiota and glycemic control (Larsen et al., 2010; Napolitano

et al., 2014). For example, metformin is known to be a first-line

treatment in patients with T2DM. Influencing bile acid metabolism

and entero-endocrine hormone secretion by altering the gut

microbiota is one of the important pharmacological mechanisms

of metformin in the treatment of T2DM (Napolitano et al., 2014).

Further studies found that serum concentrations of cholic acid and

conjugates in T2DM patients were positively correlated with the

microbiota abundance of Firmicutes and negatively correlated with

Bacteroidetes (Napolitano et al., 2014). In addition, the F/B ratio of

the gut microbiota was significantly correlated with circulating

concentrations of peptide tyrosine-tyrosine (PYY) in serum

(Napolitano et al., 2014). PYY, an intestinal hormone, has been
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shown to restore normal glucose regulation of insulin and glucagon

secretion in DM rats (Ramracheya et al., 2016).

Secondly, alterations in gut metabolites mediated by

periodontal bacteria may also contribute to the development of

DM. In animal models, the presence of periodontitis or oral

administration of P. gingivalis can disrupt the gut microbiota and

serum metabolite profiles, and increase fasting hyperglycemia and

entero-hepatic metabolic derangements associated with altered gut

metabolism in DM mice (Kato et al., 2018; Kashiwagi et al., 2021).

SCFAs are known to play an important role in mediating glucose

metabolism and insulin sensitivity through multiple signaling

pathways (Psichas et al., 2015). It was found that increased serum

HbA1c levels in mice with periodontitis were associated with a

decrease in SCFAs (e.g. butyrate) producing bacteria in the gut (Li

et al., 2021). Also, butyrate supplementation reduced fasting glucose

and insulin levels in mice and improved insulin sensitivity, the

effects of which were mediated through inhibition of HDACs

(McNabney and Henagan, 2017). Thus, reduced production of

intestinal SCFAs may mediate the effect of periodontitis on

diabetes. Furthermore, branched-chain amino acids (BCAA) are

one of the links between periodontal bacteria and insulin resistance

via the gut microbiota (Khor et al., 2021). Elevated levels of BCAA

are characteristic of insulin resistance and have been suggested as a

predictor of DM development (Pedersen et al., 2016; Nawaz and

Siddiqui, 2020). Periodontal pathogenic bacteria (e.g. P. gingivalis)

have been reported to alters the gut microbiota composition and

serum metabolite profiles in mice, increasing BCAA levels and

inducing insulin resistance (Tian et al., 2020). Mechanistically,

BCAA activates the mTOR-S6K1 pathway, which induces insulin

resistance by phosphorylating IRS-1 (Yoon, 2016).

Finally, gut dysregulation following swallowing of periodontal

bacteria implies elevated levels of circulating LPS and induced/

amplified systemic hypo-inflammation, which may be one of the

potential mechanisms explaining the association between

periodontitis and DM. Consistent with this, continuous infusion

of P. gingivalis-LPS induced endotoxemia, glucose intolerance and

insulin resistance in HFD-fed mice (Arimatsu et al., 2014; Blasco-

Baque et al., 2017). Lowering circulating LPS concentration could

be a potent strategy for the control of metabolic diseases. Gut

microbiota dysbiosis may induce the expression of pro-

inflammatory cytokines through the TLR4/MyD88/NF-kB
signaling pathway, thereby promoting DM progression (Hou

et al., 2022).

Gut dysbiosis and subsequent increased circulating levels of

pro-inflammatory cytokines induced by swallowing periodontal

bacteria may impair glycemic control in DM patients (Arimatsu

et al., 2014; Hajishengallis and Chavakis, 2021). For example,

chronic low-grade inflammation caused by periodontal bacteria

can aggravate pancreatic b-cell dysfunction in DMmice through IL-

12 regulation on Klotho, thereby worsening glucose control as well

as glucose-stimulated insulin secretion (Liu et al., 2016). Studies

have demonstrated that improved metabolic control (lower HbA1c

and plasma glucose concentrations) after periodontal treatment is

accompanied by a reduction in systemic inflammatory markers

(D’Aiuto et al., 2018).
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Rebuilding the gut microbiota may be an important way to

inhibit the pathogenic effects of periodontitis on DM. Intervention

studies using FMT in human and animal models have

demonstrated the role of the gut microbiota in improving

diabetes (Vrieze et al., 2012; Aron-Wisnewsky et al., 2019; Wang

et al., 2020). Lean donor FMT in patients with metabolic syndrome

showed altered gut microbiota and improved insulin sensitivity

(Vrieze et al., 2012; Kootte et al., 2017). Gut microbiota from DM-

resistant mice can also transfer DM protection to otherwise highly

susceptible to DM hosts. A study reported that gut microbiota

transfer from DM-protected MyD88-deficient non-obese diabetic

(MyD88-/-NOD) mice could lead to delayed onset of DM and

reduced insulitis in NODmice (Peng et al., 2014). The study further

found that the microbiota and mucosal immune system (elevated

levels of IgA, TGF-b, etc.) were significantly altered in the gut of

NOD mice after receiving the gut microbiota from DM-resistant

mice (Peng et al., 2014). This suggests that inhibiting or reversing

the alteration of the gut microbiota by periodontal bacteria might

improve DM.
4.7 Atherosclerosis

AS is the pathological basis for the development of

cardiovascular disease. Epidemiological studies have shown that

periodontitis can significantly increase the risk and prevalence of

atherosclerotic cardiovascular disease (ASCVD), including

cardiovascular death, myocardial infarction, heart failure, atrial

fibrillation and stroke (Linden et al., 2012; Dietrich et al., 2013;

Chen et al., 2016; Liljestrand et al., 2017; Nordendahl et al., 2018;

Park et al., 2019; Zhou et al., 2021). Periodontitis can also

significantly increase the intima-media thickness (IMT) and

atherosclerotic plaque area in the common carotid artery

(Montenegro et al., 2019; Meurman and Söder, 2022). Many

hypotheses have been proposed regarding the cause of AS, and it

is now generally accepted that infection is an initiating factor and an

important mechanism in promoting atherosclerotic changes in

blood vessels (Slocum et al., 2016).

There are significant pro-inflammatory alterations in the gut

microbiota of ASCVD patients, including reduced microbial

diversity, altered F/B ratios and increased relative abundance of

oral bacteria (Koren et al., 2011; Gregory et al., 2015; Emoto et al.,

2016; Emoto et al., 2017; Jie et al., 2017; Yoshida et al., 2018).

Relatively low abundance of SCFAs-producing bacteria and high

abundance of LPS-producing bacteria have also been reported in

the gut of ASCVD patients infected with periodontal bacteria

(Arimatsu et al., 2014; Kramer et al., 2017). These intestinal

alterations have not only been shown to predict and accelerate

ASCVD, but have also been associated with dyslipidemia, elevated

marker levels and a state of low systemic inflammation in ASCVD

(Le Chatelier et al., 2013; Nie et al., 2019; Yeh et al., 2020).

Conversely, FMT can reduce or transmit susceptibility to AS

(Vrieze et al., 2012; Gregory et al., 2015). Quercetin has also been

shown to modulate immune and metabolic function by restoring

intestinal homeostasis, reducing the production of pro-
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inflammatory cytokines and atherosclerotic lipid metabolites,

thereby significantly reducing areas of atherosclerotic lesions and

sizes of plaques (Nie et al., 2019).

Pro-inflammatory alterations in the gut microbiota induced by

periodontal bacteria may contribute to AS by modulating the

production of its bioactive metabolites (Yeh et al., 2020). Plasma

levels of trimethylamine N-oxide (TMAO) are an important predictor

of adverse cardiovascular events, and a disordered gut microbiota can

increase the conversion of TMAO (Tang et al., 2013; Wang et al.,

2015). TMAO can inhibit reverse cholesterol transport to exacerbate

foam cell accumulation, as well as induce platelet hyperactivity to

increase thrombus formation, ultimately affecting atherosclerotic

plaque formation and progression (Zhu et al., 2016; Yeh et al., 2020;

Qian et al., 2022). In animal studies, transplantation of TMAO-rich

gut microbiota feces into GF mice promotes platelet function and

arterial thrombus formation (Huynh, 2020). In addition, TMAO also

promotes the release of the inflammatory cytokines IL-18 and IL-1b
by activating the NF-kB pathway (Liu M. et al., 2019).

The impact of infection on AS is now thought to be related to

the total pathogen burden, i.e. the bacterial load determines the

inflammatory status and stability of the atherosclerotic plaque

(Emoto et al., 2016). Studies investigating the oral, gut and plaque

microbiota in AS patients have confirmed that the atherosclerotic

plaque microbiota is at least partly oral and gut in origin (Koren

et al., 2011). The number and abundance of periodontal bacteria

species detected in AS patients tends to be more significant and

positively correlated with the size of atherosclerotic plaques (Ford

et al., 2006; Otomo-Corgel et al., 2012; Rivera et al., 2013;

Calandrini et al., 2014). Endotoxemia associated with the oral and

gut dysbiosis may induce the recruitment of macrophages and their

infiltration of adipose tissue, culminating in the formation of foam

cells that accumulate in the artery walls (Diet, 2001; Michelsen et al.,

2004; Mullick et al., 2005).

The pathogenic effect of periodontal bacteria on AS has been

demonstrated in multiple types of animal model studies (Brodala

et al., 2005; Velsko et al., 2014; Lin et al., 2015; Widziolek et al., 2016).

A possible theoretical mechanism by which periodontal bacteria

could reach the atherosclerotic plaque via the gut is currently

mentioned, namely the phagocytosis by macrophages at epithelial

linings of the gut (Schenkein and Loos, 2013; Emoto et al., 2016).

Macrophage abundance and function can be regulated and driven by

the gut microbiota and convey immune responses at distal organs

(Yeh et al., 2020). periodontal bacteria are phagocytosed by

macrophages in the dysregulated gut and carried into circulation.

When they reach the activated endothelium of atherosclerotic

plaques, they leave the bloodstream to enter the plaque and

transform into cholesterol-laden foam cells (Wang et al., 2007;

Emoto et al., 2016). P. gingivalis has been detected in circulating

phagocytes from patients with severe cardiovascular disease suffering

from periodontitis, supporting the possibility that phagocytes may

play a role in harboring and transporting periodontal bacteria to

atherosclerotic plaques (Carrion et al., 2012). However, the current

study only demonstrates the theoretical validity of this periodontal

bacteria transport mechanism and does not indicate the extent of its

contribution in AS pathogenesis.
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4.8 Skin diseases

Both the skin and the gut are important barrier structures for

the immune and neuroendocrine functions of the body (O’Neill

et al., 2016). It is now widely accepted that there is a close

bidirectional relationship between the gut and the skin, and a

“gut-skin axis” has been proposed to further explore the link

between gut and skin homeostasis (Salem et al., 2018).

A number of studies have referred to preliminary evidence that

the oral and gut microbiota may play a role in the pathogenesis of

skin diseases as regulators of the “gut-skin axis”. Sjögren’s

syndrome, psoriasis, systemic lupus erythematosus (SLE) and

leukoaraiosis may all be linked to dysbiosis of the oral and gut

microbiota (Szymula et al., 2014; Consolandi et al., 2015; Coit et al.,

2016; Ungprasert et al., 2017; Ma and Morel, 2022). Some oral

microbiota species are enriched in the gut of SLE patients. In both

SLE and psoriasis, the severity of skin lesions, including the SLE

Disease Activity Index and the Psoriasis Area and Severity Index,

were positively correlated with the severity of periodontitis and

altered gut microbiota profiles (Masallat and Moemen, 2016;

Azzouz et al., 2019; Qiao et al., 2019; Hussain et al., 2022).

In addition, elevated levels of markers of intestinal barrier

function impairment are often observed in a variety of skin

diseases. elevated levels of fecal calprotectin have been found in

patients with SLE and atopic dermatitis (Seo et al., 2018; Azzouz

et al., 2019; Smirnova et al., 2020). Elevated levels of claudin-3 and

intestinal fatty acid-binding protein have also been found in the

blood of patients with psoriasis (Sikora et al., 2019a; Sikora et al.,

2019b). A compromised gut barrier allows periodontal or other

bacteria to move from the gut lumen into the internal environment

where they can accumulate in the skin and disrupt skin

homeostasis. Studies have detected periodontal bacteria and gut-

derived bacterial DNA in the blood of patients with psoriasis, while

finding that those with bacterial DNA-positive psoriasis patients

showed higher serum inflammatory cytokine levels, longer duration

of disease and younger onset of disease (Ramıŕez-Boscá et al., 2015;

Dalmády et al., 2020). In Sjögren’s syndrome, Sjögren’s syndrome

Antigen A (SSA)/Ro60-reactive T cells can be activated by peptides

originating from oral and gut bacteria, and thus may be involved in

disease progression (Szymula et al., 2014).
Periodontal bacteria-induced gut dysbiosis may be involved in the

pathogenesis of autoimmune (e.g. psoriasis) and allergic (e.g. atopic

dermatitis) skin diseases through immune, metabolic and

neuroendocrine pathways. First, disruption of Th17/Treg balance can

be involved in the pathogenesis of several chronic inflammatory skin

diseases (Salem et al., 2018). In particular, psoriasis is mainly considered

to be a Th17 disease (Grine et al., 2015). Activation of Th17 cells and

increased expression of IL17 are major factors mediating the

pathogenesis of psoriasis, which could be induced by periodontal

bacteria and their products (Blauvelt and Chiricozzi, 2018; Bunte and

Beikler, 2019; Zhao X. et al., 2021). After antibiotic treatment, reduced

skin inflammation caused by reduced Th17 activation in the gut was

observed in a mouse model of imiquimod-induced psoriasis

(Zákostelská et al., 2016). It was further shown that IL-17 disrupts the

integrity of the skin barrier through downregulation of filaggrin and
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adhesion molecule expression from keratinocytes, and further induces

keratinocyte hyperproliferation (Gutowska-Owsiak et al., 2012). Thus,

systemic Th17 hyperactivation or overproduction of IL-17 may be the

link between periodontal bacteria-induced disturbances in the gut

microbiota and the development of psoriasis. In addition to this, skin

diseases such as Sjögren’s syndrome, SLE, leukoplakia and scleroderma

have also been linked to the pathogenic mechanisms by which

periodontitis regulates Th17 cell differentiation and its key cytokines

(IL-17 and IL-23) (Bunte and Beikler, 2019; Tong et al., 2019).

Secondly, periodontal bacteria may mediate skin inflammation

by affecting the normal metabolic activity of the intestinal

commensals. For example, elevated serum levels of free phenol and

p-cresol may affect epidermal differentiation and epidermal barrier

function by decreasing keratin 10 expression (Miyazaki et al., 2014).

Both oral and gut microbiota dysbiosis in SLE patients may be related

to amino acid metabolism. In SLE progression, amino acid (e.g.

tryptophan) metabolism can modulate immune tolerance in lupus.

We can therefore speculate that alterations in the oral and gut

microbiota of SLE patients with periodontitis may initiate

autoimmunity by manipulating amino acid metabolism. However,

this needs to be verified by further studies.

Finally, some studies support the idea that alterations in the gut

microbiota can be involved in the development of skin diseases by

affecting the levels of circulating neuroendocrine molecules such as
Frontiers in Cellular and Infection Microbiology 15
tryptamine, trimethylamine and serotonin, inducing skin barrier

dysfunction and immune system dysregulation (Jin et al., 2014;

O’Neill et al., 2016).
5 Discussion

This review suggests that periodontal bacteria gain access to

systemic dissemination through the disturbed gut, thereby

modulating the host’s inflammatory state and immune function,

and ultimately the development of multiple systemic diseases

(Table 1). The downside is that this article may not have listed all

the systemic diseases that may be associated with the pathogenic

mechanisms of the oral-gut axis in the setting of periodontitis, such

as lung disease and other cancers of the digestive tract such as

pancreatic cancer. Some diseases, such as adverse pregnancy

outcomes, have been shown to be strongly associated with both

periodontitis and the gut microbiota, but no studies have yet

reported whether their development may be influenced by the

intestinal transit of periodontal bacteria. We hope that in the

future more and more evidence will emerge to help us identify

more systemic diseases that may have oral-gut transit of periodontal

bacteria involved in the pathogenic mechanism. In addition, this

paper uses a wealth of evidence to interpret the causal role of
TABLE 1 Impact of periodontal bacteria on systemic diseases via the oral-gut axis.

Systemic Diseases
Periodontal
Bacteria

Possible Pathogenic Mechanisms Through the
Oral-gut Axis

Impact on
Systemic Diseases

Inflammatory Bowel
Disease (IBD)

P. gingivalis, F. nucleatum,
P. intermedia

(i) compromise the intestinal barrier (downregulation of TJs),
enhance intestinal immune responses (e.g. induction of M2
macrophage polarization), and affect intestinal metabolism (e.g.
decreased unsaturated fatty acid synthesis and increased arachidonic
acid metabolism)

Promote the development of
IBD and exacerbate the
progression of pre-existing IBD

(ii) Induction and migration of oral pathobiont-reactive Th17 cells
indirectly exacerbate intestinal inflammation.

Colorectal Cancer (CRC) P. gingivalis, F. nucleatum

exploit tumor surface barrier defects, invade normal colonic tissue
and induce local inflammation, while producing genotoxic
metabolites to induce oncogenic transformation of colonic
epithelial cells.

Promote tumor progression,
metastasis and recurrence

Rheumatoid Arthritis (RA)
P. gingivalis, P. intermedia,
A. actinomycetemcomitans,
F. nucleatum, P. nigrescens

(i) Increased production of pro-inflammatory factors (e.g. IL-6) and
citrullinated protein in joint and intestinal tissues disrupts immune
tolerance in susceptible individuals.

Exacerbate the severity of joint
destruction and affect
regression on anti-
rheumatic drugs

(ii) trigger synovial inflammation by activating the FadA-Rab5a-YB-
1 axis in synovial macrophages.

(iii) inflammatory bone destruction by increasing the intestinal
hyperimmune response triggered by Th17 cellular
immune responses.

Alzheimer’s Disease (AD) P. gingivalis, T. denticola

Promote neuroinflammation and neurodegeneration by disrupting
the intestinal barrier and BBB. This includes inducing Ab plaque
formation through activation of the TLR4/NF-kB and MAPK
pathways, proteolysis of tau and subsequent NFTs formation
through activation of caspase-3, and neuronal death through
triggering of the immune cascade response.

Increase risk of developing AD
and increased dementia
severity (e.g.
cognitive impairment)

Parkinson’s Disease (PD) P. gingivalis

(i) Disrupt the intestinal barrier and BBB and activate the TLR4/
MyD88/NF-kB pathway in the SN and colon, ultimately leading to
dopaminergic neuronal damage and microglia activation in
the SNpc.

Increase risk of developing PD
and correlate with
disease severity

(Continued)
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periodontal bacteria in a variety of systemic diseases through the

oral-gut axis, the oral-gut-liver axis and the oral-gut-brain axis in

the pathogenesis of disease. This suggests a potential therapeutic

and preventive route by blocking the transmission route. However,

periodontal bacteria may also play a pathogenic role in distal organs

through other parenteral routes. Further studies are needed to

elucidate whether indirect regulation of periodontal bacteria

through the oral-gut route is predominant.

Dysbiosis of the oral microbiota is closely associated with the

development and progression of many systemic diseases. In recent

years there has been an increasing interest in therapeutic interventions

to regulate and re-establish the homeostasis of the human oral

microbiota and thereby restore systemic health. Inspired by FMT,

oral microbiota transplantation (OMT) has started to be considered

by researchers as a promising treatment for improving oral and extra-

oral diseases. The OMT procedure recommended in the current study

consists of (i) collection of supra/subgingival plaque from a healthy

donor followed by in vitro culture to obtain a sample with the healthiest
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oral microbiota, (ii) pre-treatment of the recipient’s oral cavity, e.g.,

physical plaque removal and the application of antimicrobial agents, and

lastly (iii) transplantation of the donor oral microbiota is accomplished

by rinsing/applying (hydrogel may be considered as a delivery vehicle)

(Beikler et al., 2021; Nath et al., 2021; Xiao et al., 2021; Weyrich et al.,

2024). The oral microbiota appears to be more stable than other body

niches (e.g. the gut), but at the same time oral biofilms display

significant phenotypic plasticity (microbial community composition

fluctuates in response to changes in the oral environment).

Introducing health-associated oral microbiota into the oral cavity of a

diseased patient is a key factor in the potential therapeutic role of OMT

by shaping and altering the composition and function of the human

microbial community, which in turn affects systemic health and

disease states.

The potential of OMT in the treatment of oral diseases (e.g. dental

caries and periodontitis) has now been documented (Pozhitkov et al.,

2015; Nascimento, 2017; Nath et al., 2021). Beikler et al. validated the

safety and efficacy of OMT in the treatment of periodontitis in dogs
TABLE 1 Continued

Systemic Diseases
Periodontal
Bacteria

Possible Pathogenic Mechanisms Through the
Oral-gut Axis

Impact on
Systemic Diseases

(ii) Induce misfolding and aggregation of a-synuclein in specific
enteric neurons and subsequent migration to the brain.

Autism Spectrum
Disorder (ASD)

P. gingivalis

(i) Disrupt the intestinal barrier and BBB, triggering the microglia-
associated NF-kB pathway to induce neuroinflammation.

Correlate with ASD severity
(ii) Promote mitochondrial dysfunction, resulting in alterations in
metabolism and neurosignaling activities.

Major Depressive
Disorder (MDD)

P. gingivalis, F. nucleatum,
A. actinomycetemcomitans

(i) Disrupt the intestinal barrier and the BBB, leading to high
activation of astrocytes and promoting neuroinflammation and
neuronal death.

increase risk of developing
MDD, induce depression-like
behavior and correlate with
disease severity(ii) potential association on the transcriptomic level.

Liver Disease
P. gingivalis,
A. actinomycetemcomitans,
T. denticola

activate the PRR via the oral-gut-liver axis (e.g. portal circulation)
and act directly on hepatocytes, Kupffer cells and HSC, triggering
downstream pro-inflammatory cascades and ultimately inflammation
and fibrosis in the liver.

affect the prevalence, mortality,
disease severity and prognosis
of many chronic liver diseases
(e.g. NAFLD, NASH
and cirrhosis)

Obesity
P. gingivalis, A.
actinomycetemcomitans,
T. forsythia

(i) induce insulin resistance, hepatic steatosis and macrophage
infiltration in adipose tissue. Increase the risk of obesity,

correlate with disease severity,
and affect regulation of energy
use and metabolism in vivo

(ii) Induced endotoxemia may alter endocrine function and gene
expression in BAT.

(iii) affect the secretion of pro/anti-inflammatory adipokines.

Diabetes Mellitus (DM)
P. gingivalis, A.
actinomycetemcomitans,
T. forsythia, F. alocis

induce/exacerbate insulin resistance and glucose intolerance by
mediating entero-hepatic metabolic derangements.

Increase the risk of developing
DM and affect glycemic control
in DM patients

Atherosclerotic Cardiovascular
Disease (ASCVD)

P. gingivalis, A.
actinomycetemcomitans,
T. denticola, T. forsythia,
F. nucleatum, P. intermedia

(i) modulate the production of bioactive metabolites (e.g. TMAO)
from the gut microbiota and influence atherosclerotic plaque
formation and progression.

Increase the risk of ASCVD,
promote inflammatory and
atherosclerotic changes in
blood vessels.

(ii) induce the recruitment of macrophages and their infiltration of
adipose tissue, culminating in the formation of foam cells that
accumulate in the artery walls.

Skin disease

P. gingivalis, A.
actinomycetemcomitans, P.
intermedia, T. denticola, T.
forsythia, P. nigrescens

modulate autoimmune and allergic skin diseases through immune
(e.g. Th17/Treg balance), metabolic, and neuroendocrine pathways.

correlate with severity of
skin disease
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(Beikler et al., 2021). The findings suggest that a single OMT from a

healthy periodontal donor as an adjunct to mechanical and chemical

full-mouth debridement has a greater modulating effect on the oral

microbiota composition in dogs with naturally occurring periodontitis

than full-mouth mechanical and antimicrobial debridement alone. In

addition, using an experimental periodontitis mouse model, Xiao et al.

showed that OMT from healthy to irradiatedmice reduced OM-related

epithelial damage and oral and systemic inflammation by attenuating

irradiation-induced alterations in oral and gut microbiota (Xiao et al.,

2021). The results of this study support the mechanism of the oral-gut

axis and confirm that OMT may be employed as a novel therapeutic

avenue for radiation-induced oral mucositis of head and neck cancer

patients after radiotherapy in preclinical settings (Xiao et al., 2021).

However, more in vivo studies are still needed to confirm the safety and

efficacy of OMT in the treatment of human disease. In the meantime,

OMT is only an adjunct to the treatment of systemic disease and

patients will need to take other therapeutic measures to manage and

treat the disease.

This article illustrates the far-reaching implications of maintaining

periodontal health in reducing the risk of many intestinal and

extraintestinal diseases. Some studies have already been conducted

on periodontal treatment or modification of the oral microbiota as an

entry point for the treatment and prevention of systemic diseases, such

as targeted inhibitors against virulence factors of periodontal bacteria to

reduce the ability of bacteria to translocate to distal tissues. However,

more research is still needed in the future to investigate the role of

periodontitis in the regulation of systemic disease pathogenesis through

the oral-gut axis and to clarify the importance of oral microbiota

defense in building systemic microbiota immunity. This may provide

insight into the underlying pathogenesis of many systemic diseases and

the search for new preventive and therapeutic strategies.
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Lucas López, R., Grande Burgos, M. J., Gálvez, A., and Pérez Pulido, R. (2017). The
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