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Background: Extensively drug-resistant Acinetobacter baumannii (XDRAB) has

become a significant pathogen in hospital environments, particularly in intensive

care units (ICUs). XDRAB’s resistance to conventional antimicrobial treatments

and ability to survive on various surfaces pose a substantial threat to patient

health, often resulting in severe infections such as ventilator-associated

pneumonia (VAP) and bloodstream infections (BSI).

Methods: We retrospectively analyzed clinical data from 559 patients with

XDRAB infections admitted to Jinhua Central Hospital between January 2021

and December 2023. Patients were randomly divided into a training set (391

cases) and a testing set (168 cases). Variables were selected using Lasso

regression and logistic regression analysis, and a predictive model was

constructed and validated internally and externally. Model performance and

clinical utility were evaluated using the Hosmer-Lemeshow test, C-index, ROC

curve, decision curve analysis (DCA), and clinical impact curve (CIC).

Results: Lasso regression analysis was used to screen 35 variables, selecting

features through 10-fold cross-validation. We chose lambda.1se=0.03450 (log

(lambda.1se)=-3.367), including 10 non-zero coefficient features. These features

were then included in a multivariate logistic regression analysis, identifying 8

independent risk factors for XDRAB infection: ICU stay of 1-7 days (OR=3.970,

95%CI=1.586-9.937), ICU stay >7 days (OR=12.316, 95%CI=5.661-26.793),

hypoproteinemia (OR=3.249, 95%CI=1.679-6.291), glucocorticoid use

(OR=2.371, 95%CI=1.231-4.564), urinary catheterization (OR=2.148, 95%

CI=1.120-4.120), mechanical ventilation (OR=2.737, 95%CI=1.367-5.482),

diabetes mellitus (OR=2.435, 95%CI=1.050-5.646), carbapenem use

(OR=6.649, 95%CI=2.321-19.048), and b-lactamase inhibitor use (OR=4.146,

95%CI=2.145-8.014). These 8 factors were used to construct a predictive

model visualized through a nomogram. The model validation showed a C-

index of 0.932 for the training set and 0.929 for the testing set, with a

Hosmer-Lemeshow test p-value of 0.47, indicating good calibration.

Furthermore, the DCA curve demonstrated good clinical decision-making

performance, and the CIC curve confirmed the model’s reliable clinical impact.
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Conclusion: Regression analysis identified ICU stay duration, hypoproteinemia,

glucocorticoid use, urinary catheterization, mechanical ventilation, diabetes

mellitus, carbapenem use, and b-lactamase inhibitor use as independent risk

factors for XDRAB infection. The corresponding predictive model demonstrated

high accuracy and stability.
KEYWORDS
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1 Introduction

Acinetobacter baumannii is a Gram-negative, non-fermentative

bacterium that has emerged as a significant pathogen in hospital

environments due to its remarkable ability to survive on various

surfaces and its intrinsic resistance to many antibiotics (Shi et al.,

2024). This bacterium is one of the most problematic organisms in

healthcare-associated infections (HAIs), responsible for severe

infections such as ventilator-associated pneumonia (VAP),

bloodstream infections (BSI), skin and soft-tissue infections, and

bacteremia. These infections often result in ineffective early-stage

treatment and increased mortality rates (Fu et al., 2015). A survey of

nosocomial infections in tertiary general hospitals in China identified

A. baumannii as the most common pathogen in HAIs (Jian et al.,

2023). Reports of extensively drug-resistant A. baumannii (XDRAB)

are increasing, with ventilator-associated pneumonia (VAP) and

bloodstream infections (BSI) being the most common and having

high mortality rates. In recent years, the probability of detecting

XDRAB in ICU patients has been increasing (Fang et al., 2023;

Fitzpatrick et al., 2022). This pathogen has multiple resistance

mechanisms, rendering conventional antimicrobial drugs ineffective.

ICU patients often have severe and complex conditions, poor baseline

health, and are frequently co-infected with VAP and BSI, leading to a

bloodstream infection mortality rate of 40% (Garnacho-Montero et al.,

2015). Although studies on XDRAB infection exist, regional variations

necessitate early detection of risk factors and effective interventions to

reduce mortality, minimize complications, and improve patient

prognosis. This article aims to retrospectively analyze clinical data

from XDRAB-infected patients to establish a practical infection

prediction model using various statistical analyses. Line graphs will

be employed to convert complex regression equations into easy-to-read

visuals, facilitating the assessment of XDRAB infection risk.
2 Meterial and methods

2.1 Patient selection

In this study, we retrospectively analyzed the clinical data of patients

infected with extensively drug-resistant Acinetobacter baumannii
02
(XDRAB) who were hospitalized at Jinhua Central Hospital between

January 2021 and December 2023. Based on the parameters to be

estimated in this study, we referred to relevant literature to assess the

required sample size (Riley et al., 2020). A total of 559 subjects were

included, comprising 212 patients in the XDRAB-infected group and

347 patients in the non-XDRAB-infected Acinetobacter baumannii

(AB)-infected group. All patients were randomly assigned to either

the training set (391 cases) or the test set (168 cases) using a 7:3

randomization model by R software. The training set was used to

construct the predictive model, while the test set was used for model

validation. This retrospective study was conducted in accordance with

the Transparent Reporting of a Multivariable Prediction Model for

Individual Prognosis or Diagnosis (TRIPOD) guidelines (Collins et al.,

2015). The study was approved by the Ethics Committee of Jinhua

Central Hospital (Ethical Number: (2024) Lun Audit No. (1)), and all

procedures followed ethical guidelines and regulations.

2.2 Screening criteria

2.2.1 Inclusion criteria
1. Patients hospitalized at Jinhua Central Hospital from

January 2021 to December 2023.

2. Patients meeting the Centers for Disease Control and

Prevention (CDC) criteria for A. baumannii infection

(Horan et al., 2008).

3. Types of clinically infected AB specimens include sputum,

bronchoalveolar lavage fluid, urine, pleural fluid, ascites,

cerebrospinal fluid, blood, wound secretions, and

puncture fluid.

4. Only the first AB infection in each patient was included.

5. XDRAB is defined as a strain of A. baumannii susceptible

to only one or two drugs with potential antifusobacterial

activity (mainly polymyxins and tigecycline).
2.2.2 Exclusion criteria
1. Contaminated samples or duplicate strains from the

same patient.
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2. Patients who were infected with pathogens other than AB

or who were colonized with AB without clinical infection.

3. Patients with AB infection detected within 48 hours of

admission, patients transferred out of the hospital within 48

hours of admission, patients who died, or patients who

abandoned treatment.

4. Patients with significant missing clinical data.
2.3 Data collection

In this study, potential predictive variables were collected and

analyzed with reference to relevant literature. These variables

included age, sex, smoking history, drinking history, ICU stay,

hypoproteinemia, use of glucocorticoids, surgical history, central

venous cannulation (CVC), tracheal intubation, mechanical

ventilation, urinary catheterization, other invasive procedures,

hemodialysis, shock, and various blood parameters (including

white blood cell count, neutrophil count, lymphocyte count,

neutrophil-to-lymphocyte ratio (NLR), red blood cell count,

hemoglobin, platelet count, C-reactive protein, calcitonin, and

interleukin-6). Additionally, the history of chronic pneumonia,

cerebrovascular disease, cardiovascular disease, diabetes mellitus,

hypertension, and antibiotic use were recorded. All potential risk

factors were present prior to XDRAB infection.

ICU admission times were divided into three intervals:

1. No ICU admission

2. ICU admission time of 1 to 7 days

3. ICU admission time greater than 7 days

These intervals were calculated from the day of admission to the

first AB detection. Hypoproteinemia was defined as serum albumin

below 30 g/L. Antibiotic usage was defined by the type of

antimicrobial drugs used before contracting AB, including

aminoglycosides (e.g., tobramycin, amikacin, gentamicin),

carbapenems (e.g., imipenem, meropenem), quinolones (e.g.,

levofloxacin, ciprofloxacin), beta-lactamase inhibitors (e.g.,

piperacillin-tazobactam, cefoperazone -sulbactam), and broad-

spectrum cephalosporins (e.g., ceftazidime, ceftriaxone, cefepime).
2.4 Statistical analysis

In this study, SPSS 22.0 software was used for statistical analysis,

and R 4.3.1 software was employed to screen characteristic

variables, construct the prediction model, and validate it. As the

study is retrospective, some continuous variables had individual

missing values. The “VIM” package in R was used to visualize the

distribution of missing values. If a potential risk factor had more

than 10% missing values, it was excluded. For factors with less than

10% missing values, the “MICE” package in R was used to perform

multiple imputation.

For continuous variables, normality was assessed using the

Kolmogorov-Smirnov test. Variables conforming to normal

distribution were expressed as mean ± standard deviation and

analyzed using the independent samples t-test. Non-normally
tiers in Cellular and Infection Microbiology 03
distributed variables were expressed as median (interquartile

range) and analyzed using the Mann-Whitney U-test. Categorical

data were described using frequencies and percentages and

compared using the c2 test or Fisher’s exact test.

To reduce the dimensionality of the data, address

multicollinearity-induced model overfitting, and enhance the

model’s generalizability and applicability, we employed the Least

Absolute Shrinkage and Selection Operator (Lasso) regression

algorithm, which penalizes the coefficients of all variables in the

model (Simon and Tibshirani, 2012). We used the “glmnet” package

in R to perform Lasso regression for variable selection, utilizing 10-

fold cross-validation to determine the appropriate lambda value.

The lambda value determines the degree of penalization for the

regression coefficients, the larger the lambda, the greater the

penalization, forcing non-characteristic variables to be precisely

zero. We selected the non-zero variables corresponding to the

lambda.1se value in the cross-validation for inclusion in the

multivariable logistic regression analysis to identify independent

risk factors for XDRAB infection. Based on the regression

coefficients, we constructed a visual predictive nomogram using

the “rms” package in R. The predictive probability of XDRAB

infection was calculated by summing the scores of each indicator in

the nomogram.

The model was internally validated using 1000 bootstrap

samples from the training set and externally validated using the

test set data. The Hosmer-Lemeshow test was employed to assess

model calibration. A p-value > 0.05 indicated good model fit, while

a p-value < 0.05 indicated poor model fit. The C-index (Harrell

et al., 1996) and the Area Under the Curve (AUC) of the Receiver

Operating Characteristic (ROC) curve were used to quantify the

model’s discriminatory power and prediction accuracy. A C-index

of 0.50–0.70 indicated low accuracy, 0.71–0.90 indicated moderate

accuracy, and greater than 0.91 indicated high accuracy. An AUC

less than 0.5 indicated poor model discrimination, 0.5–0.7 indicated

low discrimination, 0.7–0.85 indicated good discrimination, and

greater than 0.85 indicated excellent discrimination. To assess the

clinical utility of the model, Decision Curve Analysis (DCA)

(Vickers and Elkin, 2006) and Clinical Impact Curve (CIC)

analyses (Kerr et al., 2016) were performed.

3 Results

3.1 Analysis of XDRAB and NXDRAB
patient data

A total of 559 patients were included in this study, with 212

patients in the XDRAB group and 347 patients in the non-XDRAB

(NXDRAB) group. Comparison of baseline data showed significant

differences between the XDRAB and NXDRAB groups in terms of

smoking history, chronic pneumonia history, cardiovascular disease

history, diabetes mellitus, duration of ICU stay, hypoproteinemia,

glucocorticoid use, surgery, central venous catheterization,

endotracheal tube placement, mechanical ventilation, urinary

catheterization, other invasive procedures, shock, white blood cell

counts (including neutrophils and lymphocytes), erythrocyte
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counts, hemoglobin, procalcitonin, interleukin-6, CRP levels, and

the use of carbapenem and b-lactamase inhibitor medications

(P<0.05). See Table 1 and Figure 1.
3.2 Screening for infection factors

We used LASSO regression to screen 35 variables, performing

feature selection through 10-fold cross-validation. As the value of

lambda changes in the LASSO algorithm, we tracked how the

coefficients (which represent the importance of each predictor)

behaved (Figure 2). At the point where lambda was at its minimum

(lambda.min = 0.0065 [log(lambda.min) = -0.5041]), we identified

24 variables with non-zero coefficients. However, including too

many variables can make the model more complex and less

generalizable. Therefore, we chose a slightly larger lambda value

(lambda.1se = 0.03450 [log(lambda.1se) = -3.367]) that resulted in a

more streamlined model with only 10 variables. These 10 key

variables included smoking history, length of ICU stay, low

protein levels, use of glucocorticoids, urinary catheterization,

mechanical ventilation, CRP levels, diabetes, use of carbapenems,

and use of b-lactamase inhibitors (Figure 2).
3.3 Multivariate logistic regression analysis

The outcome variable was XDRAB infection, and the above

subset of 10 characteristics were included as independent variables

in the multivariate logistic regression analysis. The results showed that

an ICU stay of 1 to 7 days (OR = 3.970, 95% CI = 1.586–9.937), ICU

stay >7 days (OR = 12.316, 95% CI = 5.661–26.793), hypoproteinemia

(OR = 3.261, 95% CI = 1.679–6.291), glucocorticoid use (OR = 2.371,

95% CI = 1.231–4.564), catheterization (OR = 2.148, 95% CI = 1.120–

4.120), mechanical ventilation (OR = 2.737, 95% CI = 1.367–5.482),

diabetes mellitus (OR = 2.435, 95% CI = 1.050–5.646), carbapenem

use (OR = 6.649, 95% CI = 2.321–19.048), and b-lactamase inhibitor

use (OR = 4.146, 95% CI = 2.145–8.014) were independent risk

factors for the development of XDRAB infection in hospitalized

patients. See Table 2.
3.4 Creation of XDRAB infection
prediction nomogram

Predictors obtained from the multivariate logistic regression

analysis—ICU length of stay, hypoproteinemia, glucocorticoid use,

urinary catheterization, mechanical ventilation, diabetes mellitus,

carbapenem use, and b-lactamase inhibitor use—were included in

the model. Based on the regression coefficients, a visualized

prediction nomogram was constructed. The total score was

obtained by summing the scores corresponding to each indicator,

and the corresponding prediction probability of XDRAB infection

was derived (Figure 3). For instance, if a patient has been in the ICU

for more than 7 days, the corresponding score on the nomogram is

100 points. If the patient has also undergone mechanical ventilation,

an additional 42.5 points are added. Further, if the patient has used
Frontiers in Cellular and Infection Microbiology 04
glucocorticoids and carbapenem antibiotics, these add 32.5 and 80

points respectively. The total score in this case would be 255 points,

which correlates with an estimated infection probability of

around 82%.

This scoring system allows clinicians to quickly assess the risk

level of patients based on their clinical characteristics and make

informed decisions about their care.
3.5 Validation of predictive models

The model was internally validated using the training set with a

C-index of 0.932 and a p-value of 0.47 from the Hosmer-Lemeshow

test, indicating no significant difference between the predicted and

actual values. The calibration curve oscillated around the 45°

diagonal line, showing a high degree of calibration (Figure 4).

The ROC curves of the training and test sets showed AUCs of

0.932 and 0.929, respectively, indicating good discrimination and

consistency (Figure 5).
3.6 Clinical applications of
predictive modeling

We used Decision Curve Analysis (DCA) and Clinical Impact

Curve (CIC) to evaluate the net benefit and clinical reliability of the

model. As shown in Figure 6, the DCA curves for the validation of

the nomogram (A for the training set and B for the test set) are

plotted. The horizontal axis represents the threshold probability

(Pt), which is the predicted score value at which the probability of a

patient contracting XDRAB is Pi (Predicted Probability of

Infection). When Pi reaches a threshold Pt, it is classified as

positive, and intervention measures are taken. The vertical axis

represents the net benefit rate. Both curves (A and B) are far from

the extreme sloped lines, indicating better clinical utility. As shown

in Figure 7, the CIC curves illustrate both the number of individuals

the model predicts to be at high risk for XDRAB infection at

different probability thresholds and the actual number of true high-

risk cases. The close alignment between these curves across various

thresholds underscores the model’s strong clinical utility, effectively

balancing the identification of true positives with minimizing

false positives.
4 Discussion

The aim of this study was to investigate potential risk factors for

extensively drug-resistant Acinetobacter baumannii (XDRAB)

infection in hospitalized patients and to develop a prediction

model for such infections. XDRAB infections cause prolonged

hospitalization, complications, increased patient mortality, and

significant financial burden on patients’ families (Zhen et al.,

2021). In our study, we used LASSO regression and multivariate

logistic regression analyses to identify the most influential factors,

thereby reducing confounding bias. The results indicated that ICU

length of stay, hypoproteinemia, glucocorticoid use, urinary
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TABLE 1 Clinical characteristics of patients with XDRAB and NXDRAB.

Characteristics Total patients N=559 NXDRAB N=347 XDRAB N=212 P-value

Age, Median (IQR) 69 (58, 77) 69 (58, 77) 70 (57.75, 79) 0.557

Sex, N (%) 0.094

male 373 (67) 222 (64) 151 (71)

women 186 (33) 125 (36) 61 (29)

Smoking history, N (%) < 0.001

there are 109 (19) 48 (14) 61 (29)

not have 450 (81) 299 (86) 151 (71)

Drinking history, N (%) 0.277

there are 77 (14) 43 (12) 34 (16)

not have 482 (86) 304 (88) 178 (84)

Chronic pneumonia, N (%) 0.038

there are 82 (15) 42 (12) 40 (19)

not have 477 (85) 305 (88) 172 (81)

Cerebrovascular disease, N (%) 0.056

there are 120 (21) 65 (19) 55 (26)

not have 439 (79) 282 (81) 157 (74)

Cardiovascular disease, N (%) 0.015

there are 81 (14) 40 (12) 41 (19)

not have 478 (86) 307 (88) 171 (81)

Diabetes, N (%) < 0.001

there are 111 (20) 52 (15) 59 (28)

not have 448 (80) 295 (85) 153 (72)

Hypertension, N (%) 0.19

there are 290 (52) 172 (50) 118 (56)

not have 269 (48) 175 (50) 94 (44)

Length of ICU stay,N (%) < 0.001

Not admitted to ICU 318 (57) 273 (79) 45 (21)

1~7 days 80 (14) 43 (12) 37 (17)

Greater than 7 days 161 (29) 31 (9) 130 (61)

Hypoproteinemia, N (%) < 0.001

there are 249 (45) 97 (28) 152 (72)

not have 310 (55) 250 (72) 60 (28)

Glucocorticoids, N (%) < 0.001

there are 252 (45) 109 (31) 143 (67)

not have 307 (55) 238 (69) 69 (33)

Surgery, N (%) < 0.001

there are 241 (43) 130 (37) 111 (52)

not have 318 (57) 217 (63) 101 (48)

(Continued)
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TABLE 1 Continued

Characteristics Total patients N=559 NXDRAB N=347 XDRAB N=212 P-value

Central venous catheterization,
N (%)

< 0.001

there are 86 (15) 36 (10) 50 (24)

not have 473 (85) 311 (90) 162 (76)

Tracheal intubation, N (%) < 0.001

there are 229 (41) 99 (29) 130 (61)

not have 330 (59) 248 (71) 82 (39)

Mechanical ventilation, N (%) < 0.001

there are 267 (48) 108 (31) 159 (75)

not have 292 (52) 239 (69) 53 (25)

Catheter, N (%) < 0.001

there are 229 (41) 108 (31) 121 (57)

not have 330 (59) 239 (69) 91 (43)

Other intrusive operations, N (%) < 0.001

there are 194 (35) 89 (26) 105 (50)

not have 365 (65) 258 (74) 107 (50)

Hemodialysis, N (%) 0.048

there are 30 (5) 13 (4) 17 (8)

not have 529 (95) 334 (96) 195 (92)

Shock, N (%) < 0.001

there are 65 (12) 18 (5) 47 (22)

not have 494 (88) 329 (95) 165 (78)

Leukocytes (×109 /L),
Median (IQR)

7.71 (5.3, 11.14) 7.11 (4.89,11.46) 8.09 (5.95,10.95) 0.013

Neutrophils (×109 /L),
Median (IQR)

5.87 (3.96,9.44) 5.6 (3.55,9.54) 6.46 (4.59, 9.15) 0.012

Lymphocytes (×109 /L),
Median (IQR)

0.9 (0.57,1.31) 0.96 (0.66,1.39) 0.76 (0.48,1.19) < 0.001

NLR, Median (IQR) 7.66 (4.45, 11.5) 6.82 (4.18,10.54) 8.92 (5.48,14.33) < 0.001

Erythrocytes (×1012 /L),
Median (IQR)

3.45 (3.02, 3.95) 3.65 (3.16,4.07) 3.26 (2.79, 3.6) < 0.001

Hemoglobin (g/L), Median (IQR) 104 (91,118) 107 (95,120) 98 (85, 110.25) < 0.001

Platelets (×109 /L),Median (IQR) 193 (124.5, 273.5) 194 (141, 266) 190 (96.5, 299) 0.094

Calcitoninogen, Median (IQR) 0.45 (0.09,1.17) 0.25(0.07,0.62) 0.87 (0.21,2.25) < 0.001

Interleukin-6, Median (IQR) 27.36 (12.3, 77.4) 20.1 (10.25, 43.6) 58.27 (22.7, 171.48) < 0.001

CRP, Median (IQR) 20.9 (11.3, 29.86) 18.11 (9.8, 25.17) 29.86 (12.83, 73.16) < 0.001

Carbapenems, N (%) < 0.001

there are 75 (13) 15 (4) 60 (28)

not have 484 (87) 332 (96) 152 (72)

Cephalosporins, N (%) 0.28

there are 87 (16) 59 (17) 28 (13)

(Continued)
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catheters, mechanical ventilation, diabetes mellitus, carbapenem

use, and b-lactamase inhibitor medications were independent risk

factors for XDRAB infection in hospitalized patients. Subsequently,

we developed a nomogram based on these eight predictors, which

has great potential for clinical application in early detection of

XDRAB infection.

In our previous survey, the detection rate of XDRAB was

highest in ICU wards, accounting for almost 50% of the hospital’s

detection rate, making the ICU a “reservoir” of XDRAB. ICU

patients often suffer from acute or critical illnesses, many with
Frontiers in Cellular and Infection Microbiology 07
underlying diseases, rapid progression, and a high risk of disease

deterioration. The risk of XDRAB infection increases under high

doses of antimicrobials due to low patient mobility, prolonged bed

rest, difficulty in cooperating with clinical examinations, and more

invasive procedures weakening the body’s protective barriers (Wu

et al., 2023). Our study showed that the risk of XDRAB infection

increased significantly with ICU stay, particularly for stays longer

than seven days. Therefore, early transfer from the ICU to general

wards could reduce the risk of XDRAB infection for

eligible patients.
TABLE 1 Continued

Characteristics Total patients N=559 NXDRAB N=347 XDRAB N=212 P-value

not have 472 (84) 288 (83) 184 (87)

Aminoglycosides, N (%) 0.062

there are 51 (9) 25 (7) 26 (12)

not have 508 (91) 322 (93) 186 (88)

Quinolones, N (%) 0.792

there are 44 (8) 26 (7) 18 (8)

not have 515 (92) 321 (93) 194 (92)

Beta-lactamase inhibitors, N (%) < 0.001

247 (44) 101 (29) 146 (69)

312 (56) 246 (71) 66 (31)
XDRAB, Extensively Drug Resistant Acinetobacter baumannii; NXDRAB, Non- Extensively Drug Resistant Acinetobacter baumannii; N, Total number; CRP, C-reactive protein; IQR,
interquartile range Beta-lactamase inhibitors: piperacillin/tazobactam + cefoperazone/sulbactam + ticarcillin/clavulanic.
FIGURE 1

Area under the ROC curve (AUC) for individual data. The Area Under the ROC Curve (AUC) represents the diagnostic accuracy of individual data as
evaluated by the model test.
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We also found that patients with hypoproteinemia were more

susceptible to XDRAB. Hypoproteinemia, an indicator of weakness

and instability, often leads to lower immunity and poorer physical

condition, particularly in ICU patients, increasing the risk of

infection (Ushizawa et al., 2016). A study has shown a strong

association between hypoproteinemia and death from AB infection

(Zhang et al., 2020). The extensive drug resistance of XDRAB,

coupled with the low immunity of patients, further elevates the risk

of infection.

Prolonged and extensive use of glucocorticoids impairs immune

function by reducing the immune response. This suppression of

alveolar macrophages leads to increased colonization by respiratory

pathogens, toxin accumulation, and a shift in favor of pathogenic

bacterial growth (Hogg, 2012). Research has identified steroid use as

an independent risk factor for mortality from bacteremia in patients

infected with AB (Townsend et al., 2015; Ballouz et al., 2017).
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The ICU environment, combined with complex patient

conditions, can lead to aerosol contamination from open

suctioning operations, increasing the chance of cross-infection.

AB’s ability to produce biofilm enhances its colonization, allowing

it to persist on artificial devices like mechanical ventilation

equipment and catheters. Our study identified prolonged

mechanical ventilation and urinary catheter use as independent

risk factors for XDRAB infection. Mechanical ventilation

compromises normal physiological function, connecting the

airway to the external environment, destroying the weaker

defense barrier, and allowing colonized XDRAB to enter the

lower respiratory tract, leading to infection (Zilberberg et al.,

2016; de Carvalho Baptista et al., 2018). Due to the drug

resistance of XDRAB, the infection is difficult to control, leading

to a vicious cycle, increased difficulty in weaning patients off

mechanical ventilation, and even a higher risk of death (Huang
FIGURE 2

LASSO regression screening feature subset. The Least Absolute Shrinkage and Selection Operator (LASSO) regression was used to screen the feature
subset. (A) LASSO coefficient curves for 35 variables, showing the coefficient distributions generated for the log(l) series. (B) The suitable parameter
(l) was selected by 10-fold cross-validation, with dashed lines indicating lambda.min and lambda.1se. The left dashed line represents lambda.min,
and the right dashed line represents lambda.1se. (lambda.min denotes the value of l when the model error is smallest, and lambda.1se denotes the
value of l when the model error is within one standard error.) The goal is to include the least number of variables while ensuring a good fit to create
the most streamlined prediction model. In this study, lambda.1se was selected as the optimal l value.
TABLE 2 Multifactor logistic regression analysis.

Characteristics b S.E P-value OR 95% CI

smoking history 0.419 0.397 0.291 1.521 0.699~3.311

ICU 1~7 days 1.132 0.422 0.007 3.970 1.586~9.937

ICU > 7 days 2.511 0.397 <0.001 12.316 5.661~26.793

hypoproteinemia 1.179 0.337 <0.001 3.250 1.679 ~6.291

glucocorticosteroid 0.863 0.334 0.010 2.371 1.231 ~4.564

mechanical ventilation 1.007 0.354 0.004 2.737 1.367 ~5.482

urinary catheter 0.764 0.332 0.021 2.148 1.120 ~4.120

CRP 0.009 0.006 0.122 0.992 0.981 ~1.002

diabetes 0.890 0.429 <0.001 2.435 1.050 ~5.646

carbapenems 1.895 0.537 <0.001 6.649 2.321 ~19.048

Beta-lactamase inhibitor drugs 1.422 0.336 <0.001 4.146 2.145 ~8.014
b: regression coefficient; S.E: standard error.
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et al., 2018). Indwelling urinary catheters, commonly used in

clinical treatment for postoperative patients and those with

incontinence or urinary retention, also facilitate AB colonization

and the development of drug resistance. Meta-analyses, A recent

meta-analysis identified the use of urinary catheters as one of the

risk factors for XDRAB infection (Deshwal et al., 2023).

Among the underlying diseases in this cohort, including

cerebrovascular disease, cardiovascular disease, chronic

pneumonia, hypertension, and diabetes, only diabetes was a risk

factor for XDRAB infection. Diabetes is often accompanied by
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complications and disturbances in humoral immunity, such as a

reduced response of complement factor 4 and cytokines after

stimulation. Additionally, studies have shown that the function

of polymorphonuclear cells and monocytes/macrophages

(chemotaxis, phagocytosis, and killing) is impaired in diabetics.

High glucose environments also enhance the virulence and

adherence of certain pathogens (Geerlings and Hoepelman, 1999).

Diabetic patients often face impaired blood perfusion, reducing the

effectiveness of antimicrobial drugs and facilitating the growth of

drug-resistant bacteria. A report from Malaysia indicated that
FIGURE 3

Line graph of predicted risk of XDRAB infection in hospitalized patients. Each item corresponds to an option, which corresponds to the numerical
point above. All option values sum up to the final TOTAL POINT, which corresponds to the probability of infection below.
FIGURE 4

Calibration curves for predictive models. The Hosmer-Lemeshow test yielded a p-value of 0.47, indicating no significant difference between the
predicted and actual values of the model. This suggests that the model is well-calibrated. Additionally, the calibration curve closely oscillates around
the 45° diagonal line, further demonstrating high calibration accuracy.
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Chinese diabetic patients are more susceptible to CRAB infections

and face a higher risk of death, potentially due to genetic factors that

make them more prone to severe diseases compared to other ethnic

groups (Woon et al., 2021). Many diabetic patients who initially

respond to antimicrobial treatment for MDRAB are found to be

reinfected with drug-resistant bacteria within a month (Lin et al.,

2016). Ching-Hsiang Leung’s team reported that hypoglycemia is a

risk factor for increased mortality in CRAB-infected patients and

emphasized the importance of glycemic control, noting that insulin

therapy is a major cause of hypoglycemia (Leung and Liu, 2019).

Interestingly, a recent study found AB presence in the serum of 23%

of tested type 2 diabetic patients (Perera et al., 2021). There remains

a need for more prospective studies in the areas of glycemic control

and XDRAB infection to further validate these findings.

For ICU patients or other high-risk individuals, prophylactic

use of antimicrobial drugs is common, often involving

combinations of these medications. However, the irrational use of

antibiotics and their inherent toxicity can disrupt the patient’s

microbiota, leading to the emergence of bacterial resistance,

invasion by colonizing bacteria, and replacement of sensitive

bacteria with resistant strains. This also results in decreased

immunity and increased risk of infection by resistant pathogens

(Bassetti et al., 2018). Our study identified the prophylactic use of
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carbapenems (such as imipenem and meropenem) and

b-lactamase inhibitors (such as piperacillin/tazobactam and

cefoperazone/sulbactam) as independent risk factors for XDRAB

infection. Treating AB infections is particularly challenging in

distinguishing between acute infection and upper respiratory tract

colonization in critically ill patients, especially those with severe

immunodeficiency or other high-risk factors. Consequently,

empirical treatment for AB is often initiated when the clinical

diagnosis is unclear (Bartal et al., 2022).

Sensitivity thresholds for some antimicrobials against XDRAB

vary between CLSI and EUCAST. Currently, the isolation rates of

CRAB worldwide range from 30% to 80%, with higher rates

generally observed in Asian countries (Seifert et al., 2022). Studies

have shown that once resistance to carbapenems develops,

resistance to many other antimicrobials often follows (Zhang

et al., 2017). XDRAB resistance to carbapenems is usually

associated with the horizontal gene transfer of oxacillinase (OXA)

genes, particularly OXA-23 and OXA-24/40.

Piperacillin-tazobactam, often used empirically due to its

pharmacodynamic efficacy when administered in high doses with

extended infusions, remains effective against E. coli, K. pneumoniae,

and P. aeruginosa. However, it is ineffective against A. baumannii

due to high resistance rates, and frequent empirical use can select
FIGURE 5

ROC curve for validating the nomogram. (A) Training set validation ROC curve with an area under the curve (AUC) of 0.9322. (B) Test set validation
ROC curve with an AUC of 0.9291.
FIGURE 6

DCA curve for predictive model validation. (A) DCA curve for the training set. (B) DCA curve for the test set. DCA, Decision Curve Analysis.
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for highly resistant strains. Sulbactam, primarily a b-lactamase

inhibitor, is typically combined with b-lactam antibiotics to

prevent enzymatic degradation. Nevertheless, increasing resistance

to cefoperazone/sulbactam in A. baumannii has been observed.

Therefore, the rational use of antimicrobials, especially

carbapenems and b-lactamase inhibitors, remains crucial.

Antimicrobial use is generally guided by bacterial culture and

sensitivity results, but traditional identification methods are time-

consuming. Emerging high-throughput sequencing technologies,

such as Next-Generation Sequencing (NGS), can rapidly detect and

characterize pathogens. Although NGS offers significant

advantages, its high cost currently limits widespread clinical

adoption (Wen et al., 2020).

Our study utilized LASSO regression analysis to screen clinical

variables, effectively reducing data dimensionality and preventing

multicollinearity among independent variables. This approach

addresses the limitations of retrospective studies, which are often

constrained by sample size and cannot include a large number of

variables. As a visualization method for predictive models,

nomograms have become increasingly popular in clinical

research. The factors influencing XDRAB infection are complex

and interrelated. The predictive model developed in this study,

based on eight independent risk factors identified through

regression analysis, is user-friendly and allows for quantitative

risk assessment. This aids clinicians in quickly assessing the risk

of XDRAB infection using existing clinical data and implementing

timely isolation and treatment measures. Moreover, this study

employed stringent inclusion and exclusion criteria, ensuring a

sufficient sample size and relevant factors. The nomogram

underwent internal and external validation, demonstrating
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excellent discrimination, calibration, and strong clinical utility

and stability.

However, this study has certain limitations. Firstly, being a

single-center study, the model’s coefficients might vary under

different circumstances, introducing geographic bias and

limiting generalizability. External validation with datasets

from other healthcare institutions, regions, and countries is

necessary. Secondly, as a retrospective study, the data were

obtained from electronic medical records and laboratory

systems, which could result in some data being incomplete,

and some factors that we intended to include in the statistical

analysis could not be included. Selection bias is also

unavoidable. Future prospective studies are needed to further

validate these findings.
5 Conclusion

In this study, we identified that ICU length of stay,

hypoproteinemia, glucocorticoid use, urinary catheters,

mechanical ventilation, diabetes mellitus, carbapenem use, and b-
lactamase inhibitor use were significantly correlated with XDRAB

infection. Using these eight indicators, we developed a nomogram

for individualized and visualized prediction of XDRAB infection

risk in hospitalized patients. This predictive model facilitates early

identification and mitigation of avoidable risks, allows for timely

isolation and treatment of high-risk patients, and guides clinicians

in rational antibiotic use. These findings provide valuable insights

for improving the prevention and control of hospital-

associated infections.
FIGURE 7

CIC curves for predictive model validation. CIC, Clinical Impact Curve. The horizontal axis (x-axis) represents the threshold probabilities (Pt), which
are the decision points where clinicians may consider a patient at high risk for infection. The vertical axis (y-axis) shows the number of patients
identified as high risk. The upper curve depicts the total number of patients classified as high risk by the model at each threshold, while the lower
curve represents the true positive cases—patients correctly identified as having the infection. The closer the lower curve is to the upper curve, the
more accurately the model predicts true positives, minimizing false positives and highlighting its reliability in a clinical setting.
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