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Endophytic fungi associated with selected aquatic plants, Eichhornia crassipes,

Nymphaea nouchali, Salvinia minima and S. molesta were evaluated. Ectophoma

salviniae sp. nov. and Neottiosporina mihintaleensis sp. nov. are introduced as

novel taxa from Salvinia spp. from Sri Lanka. Chaetomella raphigera is reported as

a new geographical record, Colletotrichum siamense and C. truncatum are

reported as novel host records in aquatic plants, while Phyllosticta capitalensis

has been identified on the same host (Nymphaea nouchali) in the North-Central

Province of Sri Lanka. Identification of the fungi was based on morphological

characteristics and multi-locus phylogenetic analyses using ITS, LSU, SSU, ACT,

CHS-1, GAPDH, tub2, rpb2, and tef1-a molecular markers. The identified fungi

were analysed for extracellular enzymatic properties. According to the qualitative

analysis, Ectophoma salviniae sp. nov. exhibited the highest amylase production,

Chaetomella raphigera exhibited the highest cellulase enzyme production, and

Neottiosporina mihintaleensis sp. nov. exhibited the highest laccase production.

The results demonstrate the aquatic fungal diversity in this region and their

extracellular enzymatic potentials, providing valuable insights for future

biotechnological approaches.
KEYWORDS

freshwater plants, fungal endophytes, hydrolytic and oxidative enzymes, new species,
phylogeny, taxonomy
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1 Introduction
The magnitude of the fungal kingdom has been a debatable topic

for decades and several studies have revised the prevailing estimations

based on the advancements in estimation methods and technologies

(e.g., Hawksworth, 1991, 2001; May, 2000; Tedersoo et al., 2015, 2022;

Hyde et al., 2023). However, Wu et al. (2019) estimated the global

fungal species diversity to be around 12 million, based on culture-

independent approaches, while culture-dependent methods yielded a

more conservative estimate of 2.2 to 3.8 million species (Hawksworth

and Lücking, 2017). Niskanen et al. (2023) revisited the species

number estimated by Hawksworth and Lücking (2017) and

concluded that it would be 2–3 million species, however, the best

estimation is at 2.5 million. Nevertheless, only 160,000 fungal species

have been accepted in Species Fungorum (2024; accession date: 06

June 2024, https://www.speciesfungorum.org/names/names.asp),

thus, a large number of taxa are yet to be described. Additionally,

it has reported understudied geographical regions and well-studied

hosts but biodiversity regions (temperate and tropical) would

harbour more novel taxa (Wijayawardene et al., 2021). It is

considered a challenge to reveal the unknown fungal diversity

with traditional methods, such as morphological or cultural

characteristics. The recent advances in molecular techniques

(such as high-throughput sequencing of environmental samples)

are accelerating the explorations and further trying to reveal the

understudied fungal habitats, life modes and geographical regions

(Wijayawardene et al., 2023).

Endophytes are widespread and have been reported in plants

from diverse ecosystems such as deserts, temperate zones, arctic

tundra, tropical forests, grasslands, and croplands (Arnold, 2007;

Arnold and Lutzoni, 2007; Zheng et al., 2015; Rana et al., 2019;

Harrison and Griffin, 2020; Dar et al., 2022; Hashem et al., 2023).

Based on the ratio of the host (vascular plants) to species current

estimates suggest that there are approximately one million species

of fungal endophytes (Sun and Guo, 2012; Lugtenberg et al., 2016;

Rashmi et al., 2019; Wu et al., 2019; Bhunjun et al., 2024).

Endophytic fungi belong to both mitosporic and meiosporic

ascomycetes, which reside within plants without causing

symptoms and colonize healthy tissue beneath the epidermal cell

layer through quiet infections (Lu et al., 2012; Ali et al., 2018; Abdel-

Wareth, 2022). Further, it has been reported that comparing

endophytic basidiomycetes and basal fungi with endophytic

ascomycetes shows that almost 90% of the identified endophytes

are Ascomycota (Rungjindamai and Gareth Jones, 2024).

Endophytes’ ecology, evolution, and applications are interesting

topics; however, knowledge about their diversity, geographic and

ecological distributions in most plant communities remains limited

and unexplored (Gao et al., 2019; Zheng et al., 2021). Previous

research has primarily focused on endophytes in terrestrial plants,

while endophytic fungal studies related to aquatic plants received

little attention (Li et al., 2010; Sandberg et al., 2014; Dissanayake et al.,

2016; Myovela et al., 2024). However, the richness of endophytic

fungal diversity has been reported in marine ecosystems (Kamat et al.,

2020; El-Bondkly et al., 2021), mangrove ecosystems (Deshmukh

et al., 2020; Jia et al., 2020; da Silveira Bastos et al., 2024; Myovela
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et al., 2024), and freshwater ecosystems (You et al., 2015; Chen et al.,

2023; Pramanic et al., 2023). Aquatic plants (including emergent

plants, floating-leaved plants, free-floating plants, submerged plants,

and wet plants (Ismail et al., 2021; Zhou et al., 2023) serve as hosts for

a diverse array of endophytic fungi (Zheng et al., 2021; Wimalasena

et al., 2024). Many researchers have studied the diversity and

ecological roles of aquatic plants (O’Hare et al., 2018; Kamat et al.,

2020; Zheng et al., 2022; Ji et al., 2024). However, most studies have

overlooked how endophytes affect these plants and their wider

ecological functions. Accordingly, there is a significant gap in the

understanding of endophytic fungal communities in aquatic plants

(Sandberg et al., 2014; Zheng et al., 2021; Wimalasena et al., 2024).

Sri Lanka is a tropical biodiversity hotspot (Gunawardene et al.,

2007; Surasinghe et al., 2019; Sarathchandra et al., 2021; De Zoysa,

2022) and harbours a diverse range of aquatic ecosystems, including

both coastal and inland areas (Gunatilleke et al., 2008). Inland

freshwater habitats (rivers, streams, marshes, swamp forests, villus,

and man-made reservoirs) collectively cover approximately 202,435

hectares (Gunatilleke et al., 2008; Yakandawala, 2012). Sri Lanka is

home to over 370 species of aquatic and wetland plants, with 12%

being endemic to the country (Yakandawala, 2012). These plants

serve as habitats for various fungi, including endophytes

(Ratnaweera, 2019; Wimalasena et al., 2024). As highlighted by

Wimalasena et al. (2024), Sri Lanka offers significant potential for

the identification and study of endophytic fungi. Previous research

on endophytic fungi in freshwater plants has been relatively limited

in Sri Lanka. For instance, Dissanayake et al. (2016) isolated 20

distinct endophytic fungi from Nymphaea nouchali. More recently,

Wimalasena et al. (2024) reported the ongoing study on the

isolation of endophytic fungi from freshwater plants in Sri Lanka.

In this study, an effort was made to document the endophytic

fungi associated with three freshwater plant taxa, viz., Eichhornia

crassipes, Nymphaea nouchali, Salvinia minima and S. molesta, found

in the lentic freshwater habitats of the Mihintale area (in

Anuradhapura district, North-Central Province), Sri Lanka. We

isolated six fungal species that belong to Colletotrichum,

Chaetomella, Ectophoma, Neottiosporina and Phyllosticta. Among

these taxa, two new species, Ectophoma salviniae sp. nov. and

Neottiosporina mihintaleensis sp. nov. are introduced. Chaetomella

raphigera has been reported as a new geographical record for Sri

Lanka. Colletotrichum siamense and C. truncatum have been

identified as new host records on Eichhornia crassipes. Isolation of

Phyllosticta capitalensis on Nymphaea nouchali is in confirmative

with the findings of Dissanayake et al. (2016) based on multilocus

phylogenetic analyses. Furthermore, the study assessed the potential

of these endophytic fungi to produce various extracellular enzymes by

qualitative assays for amylolytic, cellulolytic, and laccase activities.
2 Materials and methods

2.1 Sampling, isolation and characterization
of endophytic fungi

From November to December 2023, healthy aquatic plants were

sampled from three lentic freshwater habitats in Mihintale, located in
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the Anuradhapura district of Sri Lanka including the Iluppukanniya

tank (8.36482° N, 80.50764° E, 118 m), Mahakanadara tank (8.38683°

N, 80.38683° E, 117 m), and Mihintale tank (8.36267° N, 80.50591° E,

108 m) (Figure 1; Table 1). Mature plants with undamaged leaves of

Eichhornia crassipes, Nymphaea nouchali, Nymphaea pubescens,

Salvinia minima, and Salvinia molesta (Figure 2), were carefully

uprooted and brought to the laboratory within one hour in ziplock

plastic bags containing fresh water. The samples were maintained

separately in freshwater until the isolation process began immediately.

Each plant sample was thoroughly rinsed for 30 seconds under

running tap water to remove the debris and adhered mud

contaminants. The plants were cut into roots, stems, and leaves

and processed in the following sequential surface sterilization steps:

an initial immersion in 0.5% sodium hypochlorite for 2 minutes,

followed by a rinse in sterile distilled water for 1 minute, immersion

in 75% ethanol for 2 minutes, and a final rinse in sterile distilled

water for 1 minute. After the final wash, the samples were dried

using sterile paper towels under a laminar airflow cabinet (Li et al.,

2010; Zheng et al., 2021). However, during surface sterilization of
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the plant material, the duration of treatment for each plant species

depended on its tissue sensitivity. Specifically, being very spongy,

the leaves of Salvinia molesta were processed with an initial

immersion of 1 minute in 0.5% sodium hypochlorite, followed by

a rinse in sterile distilled water for one minute, immersion in 70%

ethanol one minute, and a final rinse in sterile distilled water for

one minute.

Surface-sterilized plant tissues were cut into 5 × 5 mm segments

and placed in Potato Dextrose Agar (PDA; 20% potato, 2% dextrose,

2% agar) media supplemented with tetracycline (50 mg/L). The plates

were incubated under aseptic conditions at room temperature (28–

30°C) and observed for fungal growth every second day for seven

days. Once fungal mycelium emerged from the edges of the plant

segments, a portion of the growing colony was aseptically cut and

transferred to a freshly prepared PDA plate (Li et al., 2010).

The growth of the subcultures was monitored daily, and colony

characteristics, including colour, form, elevation, margin, texture,

and dimensions, were recorded for two weeks. The colony colour

was identified by a colour guide (Colour guide; ArtyClick Colors,
TABLE 1 Lentic freshwater habitats and host substrates for the endophytic fungi.

Locations Host or substrates

Iluppukanniya tank (8.36482° N, 80.50764° E, 118 m) Leaf of Eichhornia crassipes (Water hyacinth)
Leaf of Salvinia minima (Watermoss)
Leaf of Nymphaea nouchali (Blue Water-Lily)

Mahakanadara tank (8.38683° N, 80.38683° E, 117 m) Leaf of Eichhornia crassipes (Water hyacinth)
Leaf of Salvinia molesta (Giant Salvinia)

Mihintale tank (8.36267° N, 80.50591° E, 108 m) Leaf of Eichhornia crassipes (Water hyacinth)
FIGURE 1

Sampling locations of lentic freshwater habitats in the Mihintale area.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1475114
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wimalasena et al. 10.3389/fcimb.2024.1475114
2024). The stock cultures were stored in sterile water and agar slants

and preserved at 4°C at Rajarata University Fungal Culture

Collection (RUFCC) in Sri Lanka.

The fungal cultures were induced to sporulate using different

stress stimulation techniques. These included reducing the normal
Frontiers in Cellular and Infection Microbiology 04
growth temperature (cold treatment), reducing the quantity of PDA

volume for each plate to create starvation media (Mattoo and

Nonzom, 2022), exposing the plates to UV light for 15 minutes,

and placing a double-sterilized pine needle or toothpick on the

fungal colony to induce conidiomatal formation (Su et al., 2012).
FIGURE 2

Aquatic plants in lentic freshwater habitats in Mihintale area were used to isolate endophytic fungal species. (A) Iluppukanniya tank. (B) Eichhornia
crassipes (Water hyacinth) and Salvinia minima (Watermoss) in the Iluppukanniya tank. (C) Nymphaea sp. in the Iluppukanniya tank. (D, E)
Mahakanadara tank. (F) Eichhornia crassipes in the Mahakanadara tank. (G) Salvinia molesta (Giant Salvinia) in the Mahakanadara tank. (H) Mihintale
tank. (I) Eichhornia crassipes in Mihintale tank.
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Post-stressors, the plates were incubated for a week under normal

light conditions.

The sporulating cultures were studied using a Nikon SMZ18

stereomicroscope, a Nikon TS2R-FL inverted trinocular microscope

and a Nikon ECLIPSE Ci upright microscope. Morphological

features were examined and documented (Senanayake et al., 2018).
2.2 Molecular identification of
endophytic fungi

2.2.1 Genomic DNA extraction
The genomic DNA was extracted from the freshly cultured

fungi using trimethylammonium bromide (CTAB) method,

following the protocol described by Gontia-Mishra et al. (2014)

and Hatamzadeh et al. (2024).

2.2.2 Polymerase chain reaction
The targeted primers used in the polymerase chain reaction

(PCR) included; Actin (ACT; ACT-512F/ACT-783R), Chitin (CHS-

1; CHS-354R/CHS-79F) , Glyceraldehyde 3-phosphate

dehydrogenase (GAPDH; GDF1/GDR1/Gpd2-LM), Internal

transcribed spacers (ITS; ITS5/ITS4), Large subunit nuclear

ribosomal DNA (LSU; LROR/LR5R), RNA polymerase II subunit

2 (rpb2; fRPB2-5F2/fRPB2-7cR), Small-subunit ribosomal RNA

(SSU; NS1/NS4), Translation elongation factor 1 (tef1-a; EF1-
728F/EF1-986R), and Beta-tubulin (tub2; T1/Bt2b), (Table 2),

each with specific annealing temperatures. The final volume of

the PCR reaction was 25 ml, containing 5 ml of DNA template, 2.5 ml
of each forward and reward primer, 12.5 ml of HIMEDIA MBT061-

100R 2× PCR TaqMixture (mixture of Taq DNA Polymerase,

dNTPs, and optimized buffer) and 2.5 ml of ddH2O.

The PCR amplification was performed with an initial

denaturing step at 95°C for 5 min., followed by 40 amplification

cycles consisting of a denaturation step at 95°C for 1 min., an

annealing step for 1 min., and a final extension step at 72°C for 10

min. The annealing temperatures were set for the gene loci, with the

optimum for each: ACT: 58°C, CHS-1: 58°C, GAPDH: 60°C, tub2:

55°C, ITS: 54°C, LSU: 55°C, rpb2: 56°C, SSU: 55°C, and tef1-a: 54°
C. All PCR products were visualized by 1% agarose gel (stained with

Diamond TM Nucleic Acid Dye) electrophoresis at 80 V/cm for 30

minutes. The gel was visualized under a UV transilluminator to

estimate the fragment size.

2.2.3 DNA sequencing
Amplicons were sequenced using both PCR primers and DNA

sequencing results were acquired through Sanger bidirectional

sequencing (GeneLabs Medicals Pvt. Ltd., Sri Lanka). The

obtained nucleotide sequences were checked for their quality by

reviewing the chromatograms using BioEdit version 7.2. After

confirming the quality, the sequences were compared with entries

in the GenBank database using the Basic Alignment Search Tool

(BLAST) (https://blast.ncbi.nlm.nih.gov; accessed on 03 April 2024)

to identify significant alignments with similarity percentages.
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2.3 Phylogenetic analysis

Closely related sequences were downloaded from GenBank

based on blast similarity and recent publications. Multiple gene

phylogenetic analyses were conducted for endophytic fungi for

Colletotrichum sp., ITS, GAPDH, ACT, CHS-1, HIS 3, and tub2

(Damm et al., 2009). Chaetomella raphigera was analyzed using ITS,

LSU, and SSU (Suwannarach et al., 2018). Ectophoma salviniae sp.

nov. underwent analysis with ITS, LSU, rpb2 and tub2 (Hou et al.,

2020a). Phyllosticta capitalensis was analyzed by using ITS, ACT,

tef1-a, and GAPDH (Glienke et al., 2011; Wang et al., 2012).

Neottiosporina mihintaleensis sp. nov. was analyzed using ITS,

LSU, and SSU (de Gruyter et al., 2009) (see Table 2 for the

primer details). The phylogenetic trees were constructed via

Maximum likelihood (ML) and Bayesian analyses. Maximum

likelihood (ML) analysis was constructed by the online portal

CIPRES Science Gateway v. 3.3 (Miller et al., 2010), using

RAxML-HPC v.8 on XSEDE (8.2.12) tool, with the default

settings but adapted: with the GAMMA nucleotide substitution

model and 1000 rapid bootstrap replicates. Bayesian analysis was

generated from MrBayes v. 3.0b4 (Ronquist and Huelsenbeck,

2003), and the model of evolution was estimated with

MrModeltest v. 2.2 (Nylander, 2004). The posterior probabilities

(PP) (Rannala and Yang, 1996; Zhaxybayeva and Gogarten, 2002)

were determined by the following Markov chain Monte Carlo

sampling (MCMC) in MrBayes v.3.0b4 (Huelsenbeck and

Ronquist, 2001). Six simultaneous Markov chains were run for

1,000,000 generations, with trees sampled every 100th generation.

The preburn was set to 0.25 and the run was automatically stopped

when the mean standard deviation of the split frequency reached

below 0.01 (Maharachchikumbura et al., 2015). The bootstrap

values for maximum likelihood (MLBP) and Bayesian posterior

probabilities (BYPP) equal to or greater than 50% and 0.95, are

given at the respective branches of each phylogenetic trees (See the

Supplementary Tables 1–5). GTR+I+G model was selected as

the best model based on MrModeltest and was used for the

Bayesian analysis.
2.4 Taxonomic classification

The higher-level taxonomic classification of each freshwater

endophytic fungi was based on Wijayawardene et al. (2022a). Index

Fungorum identifiers were obtained from Index Fungorum (2024)

for the newly introduced taxa following the requirements

mentioned in Art. F5.1 of International Code of Nomenclature

for Algae, Fungi, and Plant.
2.5 Extracellular enzymatic assay of
endophytic fungi

The qualitative analysis of amylolytic, cellulolytic, and laccase

enzymatic activities of the endophyte isolates conducted using
frontiersin.org
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TABLE 2 The gene loci utilized in molecular identification techniques for endophytic fungi.

Fungal genera Gene loci Primers Sequence References

Colletotrichum sp.

ITS
ITS5 5′-GGAAGTAAAAGTCGTAACAAGG-3′ (White et al., 1990)

ITS4 5′-TCCTCCGCTTATTGATATGC-3′ (White et al., 1990)

GAPDH
GDF1 5′-GCCGTCAACGACCCCTTCATTGA-3′ (Guerber et al., 2003)

GDR1 5′-GGGTGGAGTCGTACTTGAGCATGT-3′ (Guerber et al., 2003)

ACT
ACT-512F 5′-ATGTGCAAGGCCGGTTTCGC-3′ (Carbone and Kohn, 1999)

ACT-783R 5′-TACGAGTCCTTCTGGCCCAT-3′ (Carbone and Kohn, 1999)

CHS-1
CHS-354R 5′-TGGAAGAACCATCTGTGAGAGTTG-3′ (Carbone and Kohn, 1999)

CHS-79F 5′-TGGGGCAAGGATGCTTGGAAGAAG-3′ (Carbone and Kohn, 1999)

tub2
T1 5′-AACATGCGTGAGATTGTAAGT-3′ (O’Donnell and Cigelnik, 1997)

Bt2b 5′-ACCCTCAGTGTAGTGACCCTTGGC-3′ (Glass and Donaldson, 1995)

Chaetomella sp.

ITS
ITS5 5′-GGAAGTAAAAGTCGTAACAAGG-3′ (White et al., 1990)

ITS4 5′-TCCTCCGCTTATTGATATGC-3′ (White et al., 1990)

LSU
LROR 5′-ACCCGCTGAACTTAAGC-3′ (Vilgalys and Hester, 1990)

LR5 5′-TCCTGAGGGAAACTTCG-3′ (Vilgalys and Hester, 1990)

SSU
NS1 5′-GTAGTCATATGCTTGTCTC-3′ (White et al., 1990)

NS4 5′-CTTCCGTCAATTCCTTTAAG-3′ (White et al., 1990)

Ectophoma sp.

ITS
ITS5 5′-GGAAGTAAAAGTCGTAACAAGG-3′ (White et al., 1990)

ITS4 5′-TCCTCCGCTTATTGATATGC-3′ (White et al., 1990)

LSU
LROR 5′-ACCCGCTGAACTTAAGC-3′ (Vilgalys and Hester, 1990)

LR5 5′-TCCTGAGGGAAACTTCG-3′ (Vilgalys and Hester, 1990)

rpb2
fRPB2-5F2 5′-GGGGWGAYCAGAAGAAGGC-3′ (Sung et al., 2007)

fRPB2-7cR 5′-CCCATRGCTTGYTTRCCCAT-3′ (Liu et al., 1999)

tub2
T1 5′-AACATGCGTGAGATTGTAAGT-3′ (O’Donnell and Cigelnik, 1997)

Bt2b 5′-ACCCTCAGTGTAGTGACCCTTGGC-3′ (Glass and Donaldson, 1995)

Phyllosticta sp.

ITS
ITS5 5′-GGAAGTAAAAGTCGTAACAAGG-3′ (White et al., 1990)

ITS4 5′-TCCTCCGCTTATTGATATGC-3′ (White et al., 1990)

tef1-a
EF1-728F 5′-CATCGAGAAGTTCGAGAAGG-3′ (Carbone and Kohn, 1999)

EF1-986R 5′-TACTTGAAGGAACCCTTACC-3′ (Carbone and Kohn, 1999)

ACT
ACT-512F 5′-ATGTGCAAGGCCGGTTTCGC-3′ (Carbone and Kohn, 1999)

ACT-783R 5′-TACGAGTCCTTCTGGCCCAT-3′ (Carbone and Kohn, 1999)

GAPDH
GDF1 5′-GCCGTCAACGACCCCTTCATTGA-3 (Guerber et al., 2003)

Gpd2-LM 5’- CCCACTCGTTGTCGTACCA-3’ (Myllys et al., 2002)

Neottiosporina sp.

ITS
ITS5 5′-GGAAGTAAAAGTCGTAACAAGG-3′ (White et al., 1990)

ITS4 5′-TCCTCCGCTTATTGATATGC-3′ (White et al., 1990)

LSU
LROR 5′-ACCCGCTGAACTTAAGC-3′ (Vilgalys and Hester, 1990)

LR5 5′-TCCTGAGGGAAACTTCG-3′ (Vilgalys and Hester, 1990)

SSU
NS1 5′-GTAGTCATATGCTTGTCTC-3′ (White et al., 1990)

NS4 5′-CTTCCGTCAATTCCTTTAAG-3′ (White et al., 1990)
F
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colourimetric changes in the PDA medium. Petri dishes containing

PDA supplemented with tetracycline (1600 µg/mL), preventing

bacterial contamination (Elshafie et al., 2019). The specific

substrates were incorporated into the PDA media for each

enzymatic identification, excluding laccase enzymatic activity.

Each enzymatic assay included both negative and positive

controls. The negative controls consisted of uninoculated fungal

PDA plates supplemented with each substrate and treated with the

specific chemicals used in each enzymatic assay. The positive

controls, involved inoculating fungal PDA plates supplemented

with each substrate and treated with the specific chemicals used

in each enzymatic assay. All positive and negative controls were

incubated at the required incubation temperatures and time periods

(see methodology sections 2.5.1, 2.5.2, and 2.5.3).

2.5.1 Qualitative identification of amylase
enzymatic activity

Petri dishes containing PDA supplemented with 1% starch were

employed for the experiment. The fungal inoculum, comprising

small fragments of mycelium (0.5 × 0.5 cm), was carefully placed in

the centre of the PDA Petri dishes. Subsequently, the dishes were

incubated at 28–30°C for a duration of seven days to facilitate fungal

growth and development. Following the incubation period, 1–2 mL

of iodine solution was added to each dish. The dishes were then

incubated for an additional hour at 28–30°C. Following this

incubation, the dishes were thoroughly washed with distilled

water to remove any excess iodine solution. The success of the

experiment was determined by observing colourimetric changes. A

distinct halo appearing around the fungal colony was indicative of a

positive result, highlighting the presence of cellulolytic activity

(Robledo-Mahón et al., 2020).

2.5.2 Qualitative identification of cellulase
enzymatic activity

The 0.5% (w/v) sodium carboxymethyl cellulose (CMC)

(Central Drug House Pvt. Ltd., India) was added to the PDA

media to evaluate cellulolytic activity. Small pieces of mycelium

(0.5 × 0.5 cm) were then positioned on PDA petri dishes. The

prepared fungal plates underwent incubation at 28–30°C for a

period of three to five days. The qualitative cellulase activity of

fungal isolates was assessed based on their ability to proliferate and

create cleared zones around colonies on a solid medium. The

surface of the media containing the developed fungal colonies was

flooded with 0.1% (w/v) Congo red (Himedia Laboratories Pvt. Ltd.,

Mumbai, India) solution and incubated for 15 minutes at 28–30°C.

Afterwards, the dye was removed with sterile distilled water, and the

plates underwent an additional 10-minute incubation period at 28–

30°C. Subsequently, the plates were further treated by flooding with

1M NaCl (Daejung Chemicals and Metals Co., Ltd., South Korea)

for 5 minutes.

2.5.3 Qualitative identification of laccase
enzymatic activity

The small pieces of mycelium (0.5 × 0.5 cm) were placed on a

PDA medium and incubated for approximately five days at 28–30°
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C temperature. The colonized Petri dishes were utilized for adding

solutions by droplets at the edge of each colony. Laccase activity was

determined using a 0.1 M 1-Naphthol (Research Lab Fine Chem.

Industries, Mumbai, India). Following the addition of droplets,

Petri dishes were incubated for 24 hours at 28–30°C temperature

and changes in the colour of the edge of the colony were considered

positive results. The blue-purple appearance was displayed for

laccase activity at the edge of each fungal colony (Gramss et al.,

1998; Robledo-Mahón et al., 2020).
3 Results

3.1 Phylogenetic analyses

The taxa for each analysis were selected based on blast similarity

and related publications and closely related sequences were

downloaded from GenBank (See the Supplementary Tables 1–5).
3.1.1 Multi-gene analyses for Ectophoma
The concatenated dataset of LSU, ITS, rpb2, and tub2 regions

contained 14 isolates, which comprised 2434 characters with gaps.

Single gene analysis was carried out to compare the topology of the

tree and clade stability. Didymella exigua (CBS 183.55) was used as

the outgroup taxon. The best-scoring RAxML tree with a final

likelihood value of -4415.606556 is presented in Figure 3. The

matrix had 127 distinct alignment patterns, with 13.83% of

undetermined characters or gaps. Estimated base frequencies were

as follows: A = 0.236991, C = 0.247923, G = 0.273055, T = 0.242031;

substitution rates AC = 2.940086, AG = 5.756609, AT = 1.806664,

CG = 1.455718, CT = 18.313095, GT = 1.000000; gamma

distribution shape parameter alpha = 0.020000. In the

phylogenetic analysis, our new strains (RUFCC2458 and

RUFCC2462) form the sister clade to Ectophoma multirostrata

(CBS 274.60 (ex-type) and CBS 380.67) and E. iranica

(SCUATK1G1 (ex-type) and SCUAK1) with moderate statistical

values (95% ML), 96 PP with BP values more than 95%.

3.1.2 Multi-gene analyses for Phyllosticta
The concatenated ITS, tef1-a, ACT and GADPH region dataset

contained 38 isolates, comprising 1698 characters with gaps. Single

gene analysis was carried out to compare the topology of the tree

and clade stability. Botryosphaeria obtusa (CMW 8232) and B.

stevensii (CBS 112553) were used as the outgroup taxa. The best-

scoring RAxML tree with a final likelihood value of -9726.371339 is

presented in Figure 4. The matrix had 727 distinct alignment

patterns, with 20.00% of undetermined characters or gaps.

Estimated base frequencies were as follows: A = 0.200267, C =

0.311861, G = 0.264840, T = 0.223032; substitution rates AC =

0.893796, AG = 2.729183, AT = 1.229527, CG = 1.044891, CT =

6.112001, GT = 1.000000; gamma distribution shape parameter

alpha = 0.344610. The GTR+I+G model was selected as the best

model based on MrModeltest and was used for the Bayesian

analysis. In the phylogenetic analysis, our new strain
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(RUFCC2452) clustered with Phyllosticta capitalensis (CBS 128856)

with high statistical support (75% ML, 0.99 PP).

3.1.3 Multi-gene analyses for Colletotrichum
The concatenated dataset of ITS, tub2, ACT, CHS-1 and

GADPH regions contained 39 isolates comprising 1818 characters

with gaps. Single gene analysis was carried out to compare the

topology of the tree and clade stability. Colletotrichum boninense

(CBS 123755) and C. chamaedoreae (LC:13868) were used as the

outgroup taxa. The best-scoring RAxML tree with a final likelihood

value of -8361.798032 is presented in Figure 5. The matrix had 644

distinct alignment patterns, with 3.72% of undetermined characters

or gaps. Estimated base frequencies were as follows: A = 0.232029, C

= 0.290209, G = 0.245763, T = 0.231999; substitution rates AC =

1.179354, AG = 3.249038, AT = 1.464001, CG = 0.806083, CT =

5.743800, GT = 1.000000; gamma distribution shape parameter

alpha = 0.281325. The GTR+I+G model was selected as the best

model based on MrModeltest and was used for the Bayesian

analysis. In the phylogenetic analysis, our new strains

(RUFCC2457 and RUFCC2455) clustered in the clade that

comprises Colletotrichum siamense (CBS 125378 (ex-type), C.
FIGURE 4

Phylogenetic tree from the best scoring of the RAxML analysis based on combined (ITS, tef1-a, ACT and GADPH) is rooted to Botryosphaeria obtusa
(CMW 8232) and B. stevensii (CBS 112553). Bootstrap values for maximum likelihood (MLBP) and Bayesian posterior probabilities (BYPP) equal to or
greater than 75% and 0.95, are given at the respective branches. Hyphen (-) means a value lower than 50% (BS) or 0.95 (PP). Ex-types are marked in
“T”. New isolates are labelled in bold and red.
FIGURE 3

Phylogenetic tree from the best scoring of the RAxML analysis based
on combined (ITS, LSU, rpb2 and tub2) is rooted to Didymella exigua
(CBS 183.55). Bootstrap values for maximum likelihood (MLBP) and
Bayesian posterior probabilities (BYPP) equal to or greater than 50%
and 0.95, are given at the respective branches. Hyphen (-) means a
value lower than 75% (BS) or 0.95 (PP). Ex-types are marked in “T”.
New isolates are labeled in bold and red.
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australianum (BRIP 63698), and C. queenslandicum (ICMP 1778)

with moderate statistical values (79% ML, 0.95 PP). We compared

the conidial morphologies of the new collection against the three

species and confirmed that our collections belong to Colletotrichum

siamense (See the taxonomy section). While another new collection

(RUFCC2451) clustered in the clade Colletotrichum truncatum with

high statistical values (100% ML, 1 PP).

3.1.4 Multi-gene analyses for Chaetomella
The concatenated dataset of LSU, ITS and SSU regions

contained 24 isolates, which comprised 2977 characters with gaps.

Single gene analysis was carried out to compare the topology of the

tree and clade stability. Hymenoscyphus scutula (CBS 101.66) and

H. fructigenus (CBS 186.47) were used as the outgroup taxa. The

best-scoring RAxML tree with a final likelihood value of

-7269.420511 is presented in Figure 6. The matrix had 353

distinct alignment patterns, with 37.79% of undetermined

characters or gaps. Estimated base frequencies were as follows: A

= 0.263303, C = 0.209012, G = 0.275987, T = 0.251698; substitution

rates AC = 1.805316, AG = 2.136673, AT = 0.949986, CG =

0.780819, CT = 4.656160, GT = 1.000000; gamma distribution

shape parameter alpha = 0.020000. The GTR+I+G model was

selected as the best model based on MrModeltest and was used

for the Bayesian analysis. In the phylogenetic analysis, our new

strain (RUFCC2453) clustered in the clade Chaetomella raphigera

with high statistical values (100% ML, 1 PP).
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3.1.5 Multi-gene analyses for Neottiosporina
The concatenated dataset of ITS regions contained eleven isolates,

which comprised 539 characters with gaps. Single gene analysis was

carried out to compare the topology of the tree and clade stability.

Suttonomyces rosae (MFLUCC 15-0051) was used as the outgroup

taxon. The best-scoring RAxML tree with a final likelihood value of

-1790.869339 is presented in Figure 7. The matrix had 138 distinct

alignment patterns, with 3.39% of undetermined characters or gaps.

Estimated base frequencies were as follows: A = 0.220321, C =

0.266236, G = 0.234288, T = 0.279155; substitution rates AC =

4.232102, AG = 5.947883, AT = 5.637501, CG = 0.698220, CT =

13.019587, GT = 1.000000; gamma distribution shape parameter

alpha = 0.164930. The GTR+I+G model was selected as the best

model based on MrModeltest and was used for the Bayesian analysis.

In the phylogenetic analysis, our new strain (RUFCC2454 (ex-type),

and RUFCC2461) form a sister clustered with Neottiosporina

cylindrica (BRIP 14187 (ex-type) and BRIP (16231) with high

statistical values (84% ML, 0.95 PP). Based on the phylogenetic

analyses and morphological characters, we confirm our strains

differ from Neottiosporina cylindrica. Herein, we report our strains

as a novel species viz. Neottiosporina mihintaleensis sp. nov.

3.2 Taxonomy

In this section, we listed all the collected taxa according to the

higher-level classification referenced by Wijayawardene et al. (2022a).
FIGURE 5

Phylogenetic tree from the best scoring of the RAxML analysis based on combined (ITS, tub2, ACT, CHS-1 and GADP) is rooted to Colletotrichum
boninense (CBS 123755) and C. chamaedoreae (LC:13868). Bootstrap values for maximum likelihood (MLBP) and Bayesian posterior probabilities
(BYPP) equal to or greater than 50% and 0.95, are given at the respective branches. Hyphen (-) means a value lower than 75% (BS) or 0.95 (PP). Ex-
types are marked in “T”. New isolates are labelled in bold and red.
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Ascomycota Caval.-Sm.

Dothideomycetes O.E. Erikss. & Winka

Pleosporales Luttr. ex M.E. Barr

Didymellaceae Gruyter, Aveskamp & Verkley

Ectophoma Valenz.-Lopez, Cano, Crous, Guarro and Stchigel,

Stud. Mycol. 90: 34 (2017)

Index Fungorum Registration Identifier: 819952

Notes: The genus Ectophoma was introduced by Valenzuela-Lopez

et al. (2018) with E. multirostrata (basionym: Sphaeronaema

multirostratum P.N. Mathur et al.) as the type species. Ectophoma

comprises six species in diverse habitats (Valenzuela-Lopez et al.,

2018) and a well-defined genus in Didymellaceae (Hou et al., 2020a,
Frontiers in Cellular and Infection Microbiology 10
b). In this study, we introduce Ectophoma salviniae sp. nov. from a

healthy leaf of Salvinia minima (Watermoss).

Ectophoma salviniae Wimalasena, Wijayaw. & Bamunuarachchige

sp. nov.

Index Fungorum Registration Identifier: IF902503 (Figure 8).

Etymology: The name is derived from the host genus Salvinia, from

which the fungus was isolated.

Holotype: RUSLH/240

Description: Endophytic of healthy leaf of Salvinia minima. Sexual

morph: Undetermined. Asexual morph on the culture: Colonies on
FIGURE 7

Phylogenetic tree from the best scoring of the RAxML analysis based on combined (ITS) is rooted to Suttonomyces rosae (MFLUCC 15-0051).
Bootstrap values for maximum likelihood (MLBP) and Bayesian posterior probabilities (BYPP) equal to or greater than 50% and 0.95, are given at the
respective branches. Hyphen (-) means a value lower than 50% (BS) or 0.95 (PP). Cultures from holotype and specimens are marked in “T”. New
isolates are labelled in bold and red.
FIGURE 6

Phylogenetic tree from the best scoring of the RAxML analysis based on combined (LSU, ITS and SSU) is rooted to Hymenoscyphus scutula (CBS
101.66) and H. fructigenus (CBS 186.47). Bootstrap values for maximum likelihood (MLBP) and Bayesian posterior probabilities (BYPP) equal to or
greater than 50% and 0.95, are given at the respective branches. Hyphen (-) means a value lower than 50% (BS) or 0.95 (PP). Ex-types are marked in
“T”. New isolates are labelled in bold and red.
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PDA slow growing, effuse, with a regular margin, flat, white to grey

olivaceous reaching a diam of 1.5–2 cm after 7 days at 28°C.

Mycelium regular, composed of filamentous, septate, branched,

smooth, pale olivaceous hyphae 0.5 µm wide. Conidiomata

pycnidial, 140–300 µm long × 50–80 µm wide, brown to dark

brown, solitary or confluent, abundant, ostiolate, with one or more

short necks. Pycnidial wall, glabrous, with globose to subglobose or

irregular cells of textura angularis. Conidiogenous cells holoblastic to

phialidic, minute. Conidia 6.1–9.6 × 3.6–6.7 (x = 8.0 × 5.0 µm; n =

30) µm, aseptate, hyaline, smooth-walled, oblong to ellipsoidal, end

of conidia is acute, guttulate: two guttules are inside the

conidial cytoplasm.

Culture characteristics: Colonies on PDA reached a diameter of

1.5–2 cm after 7 days at 28°C, with a regular margin and flat,

colourless to weak olivaceous, poorly developed, white to grey

olivaceous aerial mycelium. The centre of the colony is

olivaceous, followed by a black circle formed by abundant

pycnidia. The reverse of the colony was dark black and featured

some radially furrowed zones and concentric circles of greyish-

black colours.
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Material examined: SRI LANKA, North Central Province,

Mihintale, Iluppukanniya Tank (8.36482° N, 80.50764° E, 118 m),

on healthy leaf of Salvinia minima (Watermoss), 28 November

2023, Madhara K. Wimalasena, RUSLH/240 (dried culture as the

holotype), RUFCC2462 (ex-type).

Notes: The multi-locus analyses of combined data set of ITS, LSU,

rpb2, and tub2 sequence data revealed that our isolates

(RUFCC2458, RUFCC2462) are clustered within the Ectophoma

s. str., forming a sister clade to E. iranica (SCUATK1G1 (ex-type)

and SCUAK1) and E. multirostrata (CBS 274.60 (ex-type) and CBS

380.67). The conidiomata of E. salviniae show a slight similarity in

shape and the dimensions to those of E. iranica and E.

multirostrata. However, E. salviniae has larger conidia than in

both E. iranica and E. multirostrata (Table 3). Furthermore, its

cultural characteristics, including dark greyish to black colonies, are

also distinct from E. iranica and E. multirostrata (Table 3).

Moreover, phylogenetic analysis further confirms that E. salviniae

is distinct from E. iranica and E. multirostrata (Figure 3). Herein,

the taxon, represented by RUFCC2458 (ex-type) and RUFCC2462

is introduced as a novel species viz., Ectophoma salviniae sp. nov.
FIGURE 8

Ectophoma salviniae sp. nov. (A, B). Salvinia minima in the lake. (A) and in the lab (B) (Watermoss). (C) Top view of the PDA culture plate (diameter;
9.5 cm). (D) Downside of the PDA culture plate (diameter; 9.5 cm) after five days. (E) Sporulated culture after seven days. (F) Stereo microscopic
view of sporulation in culture. (G, H) Squashed pycnidium. (I) Inner wall of pycnidium. (J) Conidial production. (K) Conidiogenous cells and conidia.
(L, M) Conidia. Scale bars: (F) = 1000 µm, (G–M) = 100 µm.
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Botryosphaeriales C.L. Schoch, Crous & Shoemaker

Phyllostictaceae Fr.

Phyllosticta Pers., Traité champ. Comest. (Paris): 55, 147 (1818)

Index Fungorum Registration Identifier: 9384

= Guignardia Viala & Ravaz, Bull. Soc. mycol. Fr. 8(2):

63 (1892)

Notes: Phyllosticta is a well-established genus in Phyllostictaceae,

Botryosphaeriales with over 3000 species epithets in the Index

Fungorum 2024 (accession date: 14 of May 2024). This genus

currently includes 1,499 recognized species (Sui et al., 2023).

Recently, Gong et al. (2024) introduced two novel species (P.

savannaensis and P. ovalina), and Jiang et al. (2024) added three

new species (P. fujianensis, P. saprophytica, and P. turpiniae) to this

genus. The members of Phyllosticta have been mostly reported as

pathogens, saprobes, and endophytes of different hosts worldwide

(Wikee et al., 2013; Rodrigues et al., 2019; Sui et al., 2023; Jiang et al.,

2024). In this study, we isolated Phyllosticta capitalensis as an

endophytic taxon from Nymphaea nouchali.

Phyllosticta capitalensis Henn., Hedwigia 48: 13 (1908) [1909]

Index Fungorum Registration Identifier: 168326 (Figure 9).

Description: Endophytic of healthy leaf of Nymphaea nouchali.

Sexual morph: Undetermined; Asexual morph: Pycnidia up to 300

µm diam, 250 µm tall, black, aggregated, erumpent, globose to

ampulliform, ostiolate, exuding a colourless, glossy, slimy conidial

mass. Pycnidial wall consisting of 6–8 layers, up to 40 mm thick,

with cells of textura angularis.Ostiole single, central, 5–15 mm diam.

Conidiophores subcylindrical to ampulliform, frequently reduced to

conidiogenous cells, or branching from a basal supporting cell,

coated in mucoid layer, 7–20 × 3–7 mm. Conidiogenous cells

subcylindrical to ampulliform to doliiform, holoblastic,

polyblastic, hyaline, smooth, 7–10 × 3–5 mm; percurrently

proliferating 1–2 times near apex. Conidia 10–11 × 6–7 mm (x =

9.5 × 6.5 µm; n = 30), solitary, hyaline, aseptate, thin- and smooth-

walled, coarsely guttulate, ellipsoid to obovoid, tapering toward a

narrowly truncate base, enclosed in a mucilaginous 2–4 mm thick
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sheath, bearing a hyaline, mucoid, straight to curved, unbranched,

6–8 × 1–1.5 mm, apical appendage on a bluntly rounded apex.

Culture characteristics: Colonies incubated for 14 days at 28–

30°C in darkness on PDA initially appear woolly and white with

abundant mycelium. Over the next 2–3 days, they transform from

greenish to dark green, with white hyphae visible along the

undulating margins, eventually becoming black. Over two weeks

of incubation in darkness at 28°C, the mycelium extends to the edge

of the Petri dish.

Material examined: SRI LANKA, North Central Province,

Mihintale, Iluppukanniya tank (8.36482° N, 80.50764° E, 118 m),

on healthy leaf of Nymphaea nouchali (Blue Water-Lily), 02

December 2023, Madhara K. Wimalasena, RUFCC2452 (living

culture), RUSLH/242 (dried culture as the herbarium specimen).

Notes: Phyllosticta capitalensis is often found as an endophyte on

a wide range of hosts and exhibits a broad geographic distribution

(Silva and Pereira, 2007; Silva et al., 2008; Glienke et al., 2011;

Wang et al., 2023). It was reported from 70 plant families and is

considered a weak plant pathogen (Wikee et al., 2013). Phyllosticta

capitalensis has been previously reported in Sri Lanka as a rubber

foliar pathogen (Herath et al., 2019) and as an endophytic fungus

in the leaves of Camellia sinensis (Thambugala et al., 2018).

Dissanayake et al. (2016) reported Phyllosticta capitalensis on

healthy specimens of Nymphaea nouchali collected from an

unpolluted natural freshwater pond in the Western Province of

Sri Lanka, based on a single gene locus (ITS) study. In this study,

we reconfirmed the occurrence of Phyllosticta capitalensis on

healthy leaves of Nymphaea nouchali in lentic freshwater

habitats in the North-Central Province of Sri Lanka, based on

four gene loci (ITS, tef1-a, ACT, and GADPH) study, a polyphasic

approach. Previous reports of Phyllosticta species in freshwater

plants worldwide include Phyllosticta aquatica (on Lemna minor

fide (Spegazzini, 1881), P. fatiscens (on Nymphaea odorata fide

(Anonymous, 1960), and P. nymphaeacea (on Nymphaea sp. fide

(Ellis and Everhart, 1900). According to (Farr et al., 2012), P.

capitalensis has not been reported from Nymphaea nouchali so far,
TABLE 3 Diagnostic characters of Ectophoma iranica, E. multirostrata and E. salviniae.

Morphological
and colony
characters

Species name and references

E. iranica (Kularathnage et al., 2023;
Larki et al., 2019)

E. multirostrata
(Ahmadpour et al., 2021;
Boerema, 2004)

E. salviniae sp. nov.
(This study)

Conidiomata Pycnidia 145.9–382.7 µm long, hyaline to pale brown to
brown, with age becoming blackish brown, variable in
shape, mostly globose to subglobose but also ovoid,
lemon‐shaped

Pycnidia more than 550 µm in
diameter, globose to subglobose or
irregular. Conidial matrix whitish to
cream or buff-coloured

Pycnidia 140–300 µm long × 50–80 µm
wide, brown to dark brown, glabrous,
globose to subglobose or irregular

Conidiogenous cells Conidiogenous cells discrete, hyaline, smooth‐walled,
globose, phialidic. Dimensions of the conidiogenous cell
were not reported

Conidiogenous cell were not reported Conidiogenous cells were not observed.

Conidia 2.2–5.8 mm long aseptate, oblong to ellipsoidal Variable in dimensions, mostly 3.8–4.2
× 1.8–2.4 µm, oblong to ellipsoidal,
sometimes eguttulate

Conidia 6.1–9.6 × 3.6–6.7 µm (x = 8.04 ×
5.0 µm; n = 30) µm aseptate, hyaline,
smooth and thin walled, oblong to
ellipsoidal, guttulate

Colony characters Pale brown to greyish brown colonies Colourless to weakly olivaceous, white
to grey olivaceous to olivaceous buff;
reverse olivaceous

Drak greyish to black colour colonies;
reverse dark black
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and thus, this is the first confirmative report of P. capitalensis on

Nymphaea nouchali. When comparing the recently isolated P.

capitalensis (SDBR-CMU497 and SDBR-CMU498) (Chaiwong

et al., 2024) isolates with P. capitalensis RUFCC2452, their

morphological features, such as pycnidia, conidiophores, and

conidiogenous cells, are similar. However, the asexual conidia of

P. capitalensis RUFCC2452 are slightly larger than those of the

SDBR-CMU497 and SDBR-CMU498 (5.2 to 9.4 × 3.6 to 7.5 µm (n

= 50) isolates.

Leotiomycetes O.E. Erikss. & Winka

Chaetomellales Crous & Denman

Chaetomellaceae Baral, P.R. Johnst. & Rossman

Chaetomella Fuckel, Jb. nassau. Ver. Naturk. 23–24: 401 (1870)

[1869–70]

Index Fungorum Registration Identifier: 7575
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Notes: Fuckel (1869), established the genus Chaetomella, including

two species; C. oblonga, characterized by hyaline spores, and C. atra,

characterized by olivaceous spores. Among these, the type species

was C. oblonga (Rossman et al., 2004). The members of the genus

were reported as plant pathogens (Gajbhiye et al., 2016; Pärtel et al.,

2017; Nguyen et al., 2018; Suwannarach et al., 2018; Cao et al.,

2021), saprophytes and as endophyte (Suwannarach et al., 2018). As

of June 2024, the Index Fungorum lists 61 records for the genus

Chaetomella (https://www.indexfungorum.org/names/Names.asp).

In this study, we report C. raphigera from the healthy leaf of

Eichhornia crassipes as an endophytic species.

Chaetomella raphigera Swift, Mycologia 22(4): 165 (1930)

= Volutellospora raphigera (Swift) Thirum. & P.N. Mathur,

Sydowia 18 (1–6):38 (1965)

= Chaetomella terricola P.Rama Rao, Mycopathologia et

Mycologia Applicata 19 (3):255 (1963)
FIGURE 9

Phyllosticta capitalensis (A) Host freshwater plant leaf of Nymphaea nouchali (Blue Water-Lily). (B) Upside of the PDA culture plate (diameter; 9.5
cm). (C) Downside of the PDA culture plate (diameter; 9.5 cm) after five days. (D) Sporulated culture after seven days. (E) Stereo microscopic view of
sporulation in culture. (F) Conidiomata. (G-I) Conidiogenous cells. (J) Conidia. Scale bars: (E) = 1000 µm, (F) = 50 µm (G-J) = 100 µm.
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Index Fungorum Registration Identifier: 163400 (Figure 10).

Description: Endophytic of healthy leaf of Eichhornia crassipes.

Sexual morph: Undetermined. Asexual morph: Conidiomata

pycnidial, 200–350×100–250 mm, solitary, short-stipitate, globose

to ovate, ostiolate, widely opening lengthwise, dark brown to black,

thick-walled, setiferous. Basal stipe short, composed of hyaline,
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pseudoparenchymatous cells. Setae 50–100×2.5–5 mm, brown,

smooth, thick-walled, septate, unbranched, with hooked apices.

Conidiophores hyaline, short, branched, filiform, septate, and

smooth. Conidiogenous cells enteroblastic, phialidic, determinate,

integrated, filiform, hyaline, and smooth. Conidia 3.5–6 × 1.–2.3 µm

(x = 4.8 × 1.6 µm; n = 30), hyaline, aseptate, cymbiform to allantoid,
FIGURE 10

Chaetomella raphigera (A) Host freshwater plant leaf of Eichhornia crassipes (Water hyacinth). (B) Upside of the PDA culture plate (diameter; 9.5 cm).
(C) Downside of the PDA culture plate (diameter; 9.5 cm) after five days. (D) Sporulated culture after seven days. (E, F) Stereo microscopic view of
sporulation in culture. (G) Pycnidia. (H, I) Types of setae on pycnidium. (J, K) Pycnidia release the conidia. (L) Conidiogenous cells. (M) Conidia. Scale
bars: (E, F) = 1000 µm (G–M) = 100 µm.
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on maturity released by splitting the pycnidial wall along the thin-

walled cells of the raphe, in mass becoming amber-coloured

on aging.

Culture characteristics: Colonies on incubation for 14 days at

28–30°C in darkness on PDA media, attaining 5.5 cm diam.,

cinnamon brown with yellowish-white margins and with septate,

branched mycelium. The reverse of the colony is dark brown in the

center with yellowish-white edges. Sporulation is visible in a circular

pattern on the surface of the colony.

Material examined: SRI LANKA, North Central Province,

Mihintale, Iluppukanniya tank (8.36482° N, 80.50764° E, 118 m),

on healthy leaf of Eichhornia crassipes (Water hyacinth), 5

December 2023, Madhara K. Wimalasena, RUFCC2453 (living

culture), RUSLH/243 (dried culture as the herbarium specimen).

Notes: Chaetomella raphigera has been reported as a plant pathogen

from India (Gajbhiye et al., 2016). However, this is the first report of

C. raphigera as a new geographical record in Sri Lanka, found in the

freshwater plant Eichhornia crassipes. Besides, Chaetomella species

have not been reported in Sri Lanka thus this is the first genus
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report from the country. Morphological similarities of C. raphigera

(RUFCC2453) with previous studies are mentioned in Table 4.

Sordariomycetes O.E. Erikss. & Winka

Glomerellales Chadef. ex Réblová, W. Gams & Seifert

Glomerellaceae Locq. ex Seifert & W. Gams

Colletotrichum Corda

Index Fungorum Registration Identifier: 7737

Note: Colletotrichum represents a diverse and complex genus, with

currently 344 recognized species grouped into 20 species complexes

(Talhinhas and Baroncelli, 2021). These species often lead to

considerable economic losses, mostly infecting economically

important crops (Peng et al., 2023; Peralta-Ruiz et al., 2023;

Zhang et al., 2023). The members of Colletotrichum exhibit

different lifestyles that are found in varied environments and host

species (Jayawardena et al., 2016a, b; Samarakoon et al., 2018;

Talhinhas and Baroncelli, 2023). These include necrotrophic

(Vargas et al., 2012; De Silva et al., 2017; Talhinhas and

Baroncelli, 2021; Páez Redondo et al., 2022), biotrophic and
TABLE 4 Morphological similarities of Chaetomella raphigera (RUFCC2453) with previous studies.

C. raphigera
strains

Morphological and colony characters

Conidiomata Conidiogenous
cells

Conidia Colony characters

C. raphigera
(Rossman et al., 2004)

Pycnidia 150–450 ×
100–200 µm on natural
substratum, 200–320 × 140–
200 µm in culture, elongated,
reniform, pale to dark reddish
brown,
with a short stalk of hyaline
textura angularis

Conidiogenous cells
enteroblastic,
collar and
channel minute

Conidia non-septate,
hyaline, ellipsoid with
broadly rounded ends,
straight or slightly curved,
smooth, guttulate, 5.2–7.5 ×
2.0–3.0 µm (x = 6.41 × 2.47
µm, n = 87)

Colonies 4.3–5.0 cm diam., no aerial
mycelium, submerged mycelium cinnamon to
dark brick, sporulating profusely

C. raphigera (TAC-15/
MUBL No. 665),
(Gangadevi and
Muthumary, 2009)

Conidiomata are pycnidial,
separate, globose but opening
widely, very shortly stipitate,
dark brown to black, thick-
walled, 200–350 × 100–
250 mm

Conidiogenous cells
enteroblastic, phialidic,
determinate,
integrated, filiform,
hyaline, smooth

Conidia hyaline, aseptate,
cymbiform to allantoid,
3.75–6.25 × 1.25–2.5 µm

Colonies are brown, septate,
branched mycelium

C. raphigera (BF79/
JX863671 and BF99/
KF308287),
(Gajbhiye et al., 2016)

Pycnidia were dark reddish
brown, oval, approximately
200 µm × 300 µm

Conidiogenous cells
not reported

Conidia were produced
apically on conidiophores,
aseptate, ellipsoidal with
rounded ends, smooth,
straight or curved, 10–12
µm × 2–3 µm

Colony characters not reported

C. raphigera (CNUFC-
GHD05-1),
(Nguyen et al., 2018)

Elongated, reniform, pale to
dark reddish brown,
and measured 72.5–148.5 µm
× 46.5–88.5 µm

Conidiogenous cells
not reported

Ellipsoid, and measured 4.8–
7.2 µm × 1.8–2.6 µm

Slowly-growing, white at first, becoming
cinnamon brown in age

C. raphigera
(Cao et al., 2021)

Pycnidia were pale to dark
brown, globose or oblate
(245.98–491.33 µm × 123.14–
274.11 mm), covered
with setae

Conidiogenous cells
not reported

Conidia were hyaline, oval
or boat-shaped (5.19–6.52
µm × 1.87– 2.66 mm)

Colonies were pale brown with rare aerial
mycelium and abundant pycnidia production.

C. raphigera RUFCC2453
(This study, 2024)

Conidiomata pycnidial, 200–
350 µm ×100–250 mm,
solitary, short-stipitate,
globose to ovate, ostiolate,
widely opening lengthwise,
dark brown to black, thick-
walled, setiferous

Conidiogenous cells
enteroblastic, phialidic,
determinate,
integrated, filiform,
hyaline, and smooth

Conidia 3.5–6 µm × 1.–2.3
µm (x = 4.8 × 1.6 µm; n =
30), hyaline, aseptate,
cymbiform to allantoid, on
maturity released by
splitting the pycnidial wall

Colonies 5.5 cm diam., cinnamon brown with
yellowish-white margins and with septate,
branched mycelium. The reverse of the colony
is dark brown in the center with yellowish-
white edges. Sporulation is visible in a circular
pattern on the surface of the colony
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hemibiotrophic (De Silva et al., 2017; Páez Redondo et al., 2022; Jia

et al., 2023), quiescent (De Silva et al., 2017; Fu et al., 2022), and

endophytic (De Silva et al., 2017; Páez Redondo et al., 2022; Lin

et al., 2023; Liu et al., 2023; Zhang et al., 2023; Barreto Ramos et al.,

2024) lifestyles. Among these lifestyles, endophytic Colletotrichum

spp. have been documented in marine environments such as

mangroves (Grano-Maldonado et al., 2021; Norphanphoun and

Hyde, 2023; Aumentado et al., 2024) and freshwater habitats

(Zheng et al., 2022). In this study, we isolated C. siamense and C.

truncatum as two endophytic taxa of Eichhornia crassipes in

freshwater environments.

Colletotrichum siamense Prihast., L. Cai & K.D. Hyde, Fungal

Diversity 39: 98 (2009)

Index Fungorum Registration Identifier: 515410 (Figure 11).

Description: Endophytic of healthy leaf of Eichhornia crassipes. Sexual

morph: Undetermined. Asexual morph: Conidiomata acervular,

pulvinate, with erect conidiophores formed on a cushion of roundish

and medium brown cells. Setae not observed. Conidiophores

maconematous, hyaline, septate, branched. Conidiogenous cells

hyaline, cylindrical to ampulliform, phialidic, smooth, guttulate, 7–

15.5 mm long, 1–2.5 mm wide at apex. Conidia 9.89–15.95 × 3.73–5.67

µm (x = 13.75 × 4.75 µm; n = 30), hyaline, aseptate, smooth-walled,

cylindrical, bluntly rounded at both ends, guttulate.

Culture characteristics: Colonies on incubating for ten days at

28–30°C in dark on PDA media, reaching a diameter of 1–1.5 cm

Eichhornia crassipes. The aerial mycelium is white, cottony, and

sparse. The colony surface features numerous, small acervuli with

orange conidial ooze, and the reverse side remain pale yellowish.

Material examined: SRI LANKA, North Central Province, Mihintale

tank (8.36267° N, 80.50591° E, 108 m), Mihintale, on healthy leaf of

Eichhornia crassipes (Water hyacinth), 30 November 2023, Madhara

K. Wimalasena, RUFCC2455 and RUFCC2457 (living cultures),

RUSLH/244 (dried culture as the herbarium specimen).

Notes: Colletotrichum siamense and C. truncatum are important

plant pathogens causing a wide range of diseases worldwide

(Talhinhas and Baroncelli, 2023). Several studies reported C.

siamense and C. truncatum from different hosts and habitats in

Sri Lanka and these include Allium cepa (Herath et al., 2021),Hevea

brasiliensis (Herath et al., 2019), Musa sp. (Kurera et al., 2023), and

Persea americana (Dissanayake et al., 2021) as hosts for

Colletotrichum siamense, while Begonia sp. (Wickramasinghe

et al., 2019), Capsicum annuum (Welideniya et al., 2019), and

Hevea brasiliensis (Herath et al., 2019) have been identified as hosts

for Colletotrichum truncatum. De Silva et al. (2019) reported

isolates of Colletotrichum siamense from different countries

showed noticeable differences in growth rates and culture

morphology. However, conidial measurements from isolates in

distinct subclades of the phylogenetic tree were consistent, and

the morphological traits within each subclade were highly uniform

within each country (De Silva et al., 2019) (see Table 5 for the

morphological comparison).

Huang et al. (2021) reported C. fructicola (which causes

irregular necrotic lesions on leaves, stems, and crown and petiole

rot symptoms) from Eichhornia crassipes in China. However, as far

as we know, there are no hitherto reports of C. siamense or C.

truncatum on Eichhornia crassipes in Sri Lanka or elsewhere (2024;
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accession date: 06 June 2024, https://fungi.ars.usda.gov/). Hence,

this is the first host report of C. siamense and C. truncatum from

Eichhornia crassipes from Sri Lanka.

Colletotrichum truncatum (Schwein.) Andrus & W.D. Moore,

Phytopathology 25: 121 (1935)

Index Fungorum Registration Identifier: 280780 (Figure 12).

Description: Endophytic of healthy leaf of Eichhornia crassipes.

Sexual morph: Undetermined. Asexual morph: Conidiomata

acervular, with conidiophores and setae formed directly on

hyphae. Setae subhyaline to moderately brown, smooth to

verruculose, 2 to 5-septate, cylindrical to conical at base, tapering

towards the slightly acute to roundish tip, 4–6 µm diam.

Conidiophores up to 90 µm long, hyaline to pale brown, septate,

densely branched, clustered, Conidiogenous cells enteroblastic,

phialidic, hyaline to pale brown, cylindrical, 6–20 × 2.5–4 µm,

with invisible collarette, periclinal thickening not observed. Conidia

20.35–28.39 × 2.23–4 µm (x = 25 × 3 µm; n = 30), hyaline, cylindric-

fusiform, elongated, smooth-walled, aseptate, curved at tapering

apex, truncate at base, guttulate with granular content.

Culture characteristics: Colonies on incubating for seven days at

28–30°C in dark on PDA, exhibit a diameter of 1.5–2 cm. The

colonies are flat with an entire margin, devoid of aerial mycelium,

bluff at surface and covered by olivaceous-grey to iron-grey acervuli.

The reverse of the colony is buff to pale olivaceous-grey. Conidia in

mass are whitish, buff to pale saffron.

Material examined: SRI LANKA, North Central Province,

Mihintale, Mahakanadara tank (8.38683° N, 80.38683° E, 117 m),

on healthy leaf of Eichhornia crassipes (Water hyacinth), 8

December 2023, Madhara K. Wimalasena, RUFCC2451 (living

culture), RUSLH/245 (dried culture as the herbarium specimen).

Notes: De Silva et al. (2019) found that Colletotrichum isolates with

curved conidia and ITS sequences matching the ex-type of C.

truncatum were the most common, making up 44% of all isolates.

These isolates came from Indonesia, Malaysia, Sri Lanka, and

Thailand, while species with straight conidia were identified

separately. The remaining 56% were species with straight conidia,

mostly from other complexes within the Colletotrichum genus. Liu

et al. (2022) reported that the C. truncatum species complex

produces curved conidia. Interestingly, species with curved

conidia appear throughout the phylogenetic tree, suggesting this

trait evolved multiple times. While ITS is useful for identifying

Colletotrichum species complexes (Cannon et al., 2012), other loci

like GAPDH, ACT, CHS-1, HIS 3, and tub2 are increasingly used to

better define species boundaries, including in the C. truncatum

complex (Damm et al., 2009, 2014; Liu et al., 2022). See the notes

under Colletotrichum siamense.

Dothideomycetes genera incertae sedis

Neottiosporina Subram., Proc. Natl. Inst. Sci. India, B 27: 238 (1961)

Index Fungorum Registration Identifier: 9117

Notes: Sutton and Alcorn (1974) revisited the genus Neottiosporina,

typified by N. apoda (Speg.) Subram. (1961), which is characterized

by pycnidia that are solitary, dark brown, globose to subglobose,

thin-walled, and ostiolate; conidiogenous cells are holoblastic,

solitary, hyaline, determinate, and originate from the inner wall of

the pycnidium. The conidia are acrogenous, solitary, hyaline,
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multiseptate, smooth-walled, cylindrical to cymbiform, obtuse at

apex, and truncate at base. The genus comprises ten species viz., N.

apoda (Speg.) Subram (Sutton and Alcorn, 1974), N. ashworthiae

(From Scleria: Queensland fide Tan and Shivas, 2022), N.

asymmetrica (on Themeda australis fide Sutton and Alcorn,

1974), N. australiensis (on Phragmites australis fide Sutton and
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Alcorn, 1974), N. clavata (on Phragmites australis fide Sutton,

1981), N. masonii (on Pinus caribaea fide Sutton and Sarbhoy,

1976), N. cylindrica (on Cyperus brevifolius fide Sutton and Alcorn,

1985), N. paspali (Sutton and Alcorn, 1974), N. phragmiticola (in

Ethiopia, Sudan, and Uganda fide (Nag Raj, 1993), andN. sorghicola

in China (Sutton and Wu, 1995). In our study of endophytic fungi
FIGURE 11

Colletotrichum siamense (A) Host freshwater plant leaf of Eichhornia crassipes (Water hyacinth). (B) Upside of the PDA culture plate (diameter; 9.5
cm). (C) Downside of the PDA culture plate (diameter; 9.5 cm) after seven days. (D) Sporulated colony. (E) Acervuli with orange conidial ooze. (F, G)
Conidiomata and conidiogenous cells. (H) Conidiogenous cells. (I–P), Maturity levels of conidiogenous cells. (P) Conidia. Scale bars: (E) = 500 µm,
(F–P) = 100 µm.
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inhabiting aquatic plant species, we isolated a novel taxon

of Neottiosporina.

Neottiosporina mihintaleensis Wimalasena, Wijayaw. &

Bamunuarachchige sp. nov.

Index Fungorum Registration Identifier: IF902502 (Figure 13).

Etymology: The name is derived from the locality from where the

fungus was collected.

Holotype: RUSLH/241

Description: Endophytic of healthy leaf of Salvinia molesta. Sexual

and asexual morphs undetermined. Despite efforts to induce the

asexual morph using sporulation techniques described in the

materials and methods section (2.1), the fungal cultures did not

sporulate. Thus, we conclude it is sterile mycelia.

Culture characteristics: Colonies grown on PDA at 28–30°C in a

2 cm Petri dish over a two-week period show that the superficial

mycelium is abundant and dark grey at the centre, with white patches

towards the periphery. The immersed mycelium appears pale to

medium brown with an irregular margin. On the reverse side, the

colony displays a centre ranging from yellowish-brown to dark

brown, transitioning to a yellowish-white colour at the margin.

Material examined: SRI LANKA, North Central Province,

Mihintale, Mahakanadara tank (8.38683° N, 80.38683° E, 117 m),

on healthy leaf of Salvinia molesta (Giant Salvinia), 10 December

2023, Madhara K. Wimalasena, RUSLH/241 (holotype as the dry

culture), RUFCC2454 (ex-type); ibid RUFCC2461 (living culture).

Notes: Neottiosporina mihintaleensis sp. nov. is a newly identified

species within the genus Neottiosporina, discovered in freshwater

environments in Sri Lanka. Phylogenetic analysis indicates that it is

closely related to N. cylindrica and N. ashworthiae (Figure 7).

Neottiosporina cylindrica produces cylindrical to slightly clavate

conidia (Sutton and Alcorn, 1985; Li et al., 2020) whereas N.

ashworthiae has not reported its micromorphological characters.

However, Neottiosporina mihintaleensis did not produce asexual

morph in culture, despite the use of sporulation techniques (see

sporulation techniques in materials and methods 2.1), making it

impossible to compare its morphological features along with

phylogenetically related species. Hence, we introduce Neottiosporina

mihintaleensis as sterile mycelia.
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3.3 Qualitative enzymatic assay for
extracellular enzymes production by
endophytic fungi

This study shows that fungal isolates can produce amylase,

cellulase, and laccase enzymes. This enhances our understanding of

their ecological roles and opens avenues for future biotechnological

applications in diverse industries, thereby addressing the ongoing

demand for enzymatic solutions in global markets.

3.3.1 Production of amylase enzyme by
fungal isolates

The amylase activity shown by these endophytes can help break

down starch when plants start to age (Mahfooz et al., 2017). As

biotechnology advances, the significance of amylases in the

production of various commodities, such as food and starch-

based products, continues to grow. Given the widespread

utilization of these enzymes across numerous industries, there

exists a persistently high demand for amylases (Khokhar et al.,

2011; Bilal and Iqbal, 2019; Patil et al., 2021). As a result, there is an

ongoing search for new microbial strains that can produce these

enzymes (Khokhar et al., 2011; Patil et al., 2021). The emergence of

these newly identified fungal isolates suggests promising prospects

for large-scale amylase production.

To assess amylase production, the positive control contained

fungal endophytes cultured on PDA media supplemented with 1%

soluble starch. Following a seven-day incubation period at 28–30°C

(range of the room temperature), 1–2 mL of iodine solution was

applied to flood the culture plates, resulting in a blue-black

coloration. Observations were recorded at 15 minute and 30

minute intervals. A change from blue-black to a colorless medium

indicated the presence of amylase activity, as the enzyme catalyzed

the hydrolysis of starch. Among the isolates, Ectophoma salviniae

sp. nov. exhibited the highest amylase production, forming a clear

zone with a diameter of 2.5 cm around the fungal colony and

decolorizing the medium completely within 10 minutes, while

Phyllosticta capitalensis produced a clear zone of 1.5 cm in

diameter around its colony after 15 minutes. Other fungal isolates
TABLE 5 Colletotrichum siamense strains reported in different geographical locations and their conidial measurements (CPC-Culture collection of
P.W. Crous, housed at Westerdijk Fungal Biodiversity Institute, RUFCC-Rajarata University Fungal Culture Collection, UOM-University of Melbourne
culture collection, Victoria, Australia).

Colletotrichum siamense strains reported in
different geographical locations

Host and distribution Conidial measurements

C. siamense
(UOM 1116), (De Silva et al., 2019)

Fruit lesion of Capsicum sp.,
Kandy, Sri Lanka

10.5–16.5 × 3.5–5.5 µm

C. siamense
(CPC 30233), (De Silva et al., 2019)

Fruit lesion of Capsicum annuum,
Gowa, Indonesia

12.5–17 × 2.5–5.5 mm

C. siamense
(UOM 1132), (De Silva et al., 2019)

Fruit lesion of Capsicum sp.,
Ratchaburi, Thailand

9.5–14.5 ×3.5–5 mm

C. siamense
(UOM 1126/F4-1C), (De Silva et al., 2019)

Fruit lesion of Capsicum sp.,
Kanchana Buri, Thailand

12–15 × 5–7 mm

C. siamense
(RUFCC2457), This study

On healthy leaf of Eichhornia crassipes,
Mihintale, Sri Lanka

9.89–15.95 × 3.73–5.67 µm
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also displayed amylase production, with discernible effects after 15

minutes. All endophyte isolates, except Neottiosporina

mihintaleensis sp. nov. and C. truncatum, have exhibited the

ability to produce extracellular amylase, underscoring their

notable enzymatic capabilities (Table 6; Figure 14). Prior research

has documented amylase activity in species like Phyllosticta spp.
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(Wikee et al., 2017; Reyes et al., 2021). and Colletotrichum spp.

(Prajapati et al., 2013; Armesto et al., 2020; da Silva et al., 2021). The

comparison with the negative control, which consisted of PDA

media supplemented with 1% soluble starch and without the

inoculation of endophytic fungi, involved a seven-day incubation

period at 28–30°C. Following this incubation, 1–2 mL of iodine
FIGURE 12

Colletotrichum truncatum (A) Host freshwater plant leaf of Eichhornia crassipes (Water hyacinth). (B) Upside of the PDA culture plate (diameter; 9.5
cm). (C) Downside of the PDA culture plate (diameter; 9.5 cm) after five days. (D) Sporulated culture after ten days. (E) Stereo microscopic view of
sporulation in culture. (F) Stereo microscopic observation of acervuli. (G, H) Acervuli. (J) Aseta. (I, K) Conidiogenesis. (L–P) Maturity levels of
conidiogenus cells. (Q) Conidia. Scale bars: (E, F) = 1000 µm, (G–Q) = 100 µm.
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solution was applied to flood the culture plates, resulting in a blue-

black coloration. Observations were recorded at 15 minute and

30minute intervals; however, no color change occurred, and the

blue-black coloration remained (Figure 14).

3.3.2 Production of cellulase enzyme by
fungal isolates

Cellulase has significant applications across various industries,

making it a highly researched enzyme in academic and industrial

settings. It is particularly valuable in the pulp and paper, textile

industry, bio-ethanol production, wine and brewery sectors, food

industry, extraction of pigments and bioactive compounds,

pharmaceutical industries, and waste management (Srivastava
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et al., 2018; Dhevagi et al., 2021; Ejaz et al., 2021; Maravi and

Kumar, 2021; Singh et al., 2021; Łubek-Nguyen et al., 2022). Due to

its broad utility, cellulase is in high demand, accounting for

approximately 20% of the global enzyme market (Srivastava et al.,

2015; Singh et al., 2021). Fungal cellulase enzymes are particularly

effective in breaking down the cellulose component of

lignocellulosic materials into hexose sugars, making fungi good

producers of cellulase enzymes among microorganisms (Singh

et al., 2021).

In this study, the positive control consisted of endophytic fungi

inoculated into PDA media supplemented with 0.5% (w/v) sodium

carboxymethyl cellulose and incubated for five days at 28–30°C.

Following incubation, 0.1% (w/v) Congo red was applied, followed

by 1M NaCl for 5 minutes to visualize the enzymatic activity (clear

halo around the colonies). Chaetomella raphigera exhibited the

highest cellulase enzyme production, as evidenced by the red media

turning colorless with a clear halo. Phyllosticta capitalensis formed

clear halos around each colony, indicating significant cellulase

enzyme production, second only to Chaetomella raphigera. The

other isolates (Colletotrichum truncatum, C. siamense, and

Ectophoma salviniae sp. nov) exhibited only minimal cellulase

enzyme production on solid media, whereas Neottiosporina

mihintaleensis sp. nov. displayed no cellulase enzyme activity

(Table 6; Figure 15). In the comparison between the positive and

negative controls, the negative control consisted of PDA media

supplemented with 0.5% (w/v) sodium carboxymethyl cellulose,

without the inoculation of endophytic fungi, and incubated for five

days at 28–30°C. After incubation, 0.1% (w/v) Congo red was

applied, followed by a 5-minute treatment with 1M NaCl. No

enzymatic activity (clear halo) was observed, leaving only the

Congo red stain visible on the plates (Figure 15).
TABLE 6 The ability for extracellular enzymes production by endophytic
fungi isolated from freshwater plants.

Endophytic
fungal strains

Extracellular
enzymes production

Amylase Cellulase Laccase

Chaetomella raphigera + + –

Colletotrichum siamense + + –

C. truncatum – + +

Ectophoma salviniae sp. nov. + + +

Phyllosticta capitalensis + + +

Neottiosporina mihintaleensis
sp. nov.

– – +
“+” denotes the ability of fungi to produce extracellular enzymes, while “–” represents the
inability of fungi to produce extracellular enzymes.
FIGURE 13

Neottiosporina mihintaleensis sp. nov. (A–C) Host freshwater plant leaf of Salvinia molesta (Giant Salvinia). (D) Upside of the PDA culture plate
(diameter; 9.5 cm). (E) Downside of the PDA culture plate (diameter; 9.5 cm) after five days. (F) Upside of the PDA culture plate (diameter; 9.5 cm).
(G) Downside of the PDA culture plate (diameter; 9.5 cm) after ten days.
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Previously, Kao et al. (2019) and Singh et al. (2023) have found

that Chaetomella sp. exhibits a high capacity for producing glucose-

tolerant cellulase enzymes. Similarly, Amirita et al. (2012); Yopi

et al. (2017), andWikee et al. (2017) have highlighted the significant

potential of Phyllosticta sp. for cellulase enzyme production.
3.3.3 Production of laccase enzyme by
fungal isolates

Laccases, classified as blue multicopper oxidases, catalyze the

one-electron oxidation of a wide range of substrates and play a

crucial role in lignin degradation (Abdel-Hamid et al., 2013;

Viswanath et al., 2014; Singh and Gupta, 2020; Kyomuhimbo and

Brink, 2023; Sharma et al., 2024). These enzymes are extensively
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used in various industries, including industrial effluent

decolorization and detoxification, wastewater treatment, paper

and pulp production, textiles, xenobiotic degradation,

bioremediation, and as biosensors, owing to their key role in the

breakdown of lignin and phenolic compounds (Shraddha et al.,

2011; Viswanath et al., 2014; Singh and Gupta, 2020; Khatami et al.,

2022). Laccase have been identified in approximately 60 fungal

strains from the genera Ascomycetes, Deuteromycetes, and

Basidiomycetes (Leonowicz et al., 2001; Albu et al., 2019; Abo

Nahas et al., 2021; Mahuri et al., 2023). Fungal laccases are

categorized into two types: true laccase and false laccase (De Jesus

et al., 2009; Mahuri et al., 2023). True laccases can oxidize phenols

and aminophenols but cannot oxidize the amino acid residue

tyrosine. On the other hand, false laccases can oxidize tyrosine
FIGURE 14

Amylase enzymatic activity of endophytic fungi isolated from freshwater plants. (A) Negative control. (B) Ectophoma salviniae sp. nov. (C) Phyllosticta
capitalensis. (D) Colletotrichum siamense. (E) Chaetomella raphigera. (u, d) Upside and downside of the plate before adding 1–2 mL of iodine
solution. (u1, d1) Upside and downside of the plate after adding 1–2 mL of iodine solution for 15 minutes (u2, d2) Upside and downside of the plate
after adding 1–2 mL of iodine solution for 30 minutes, respectively. Amylase enzymatic activity was indicated by the clear zone appearance of the
fungal colony on PDA media supplemented with 1% starch. (B–E) Positive control.
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(De Jesus et al., 2009; Chauhan et al., 2017; Jayaram et al., 2023;

Mahuri et al., 2023). Jayaram et al. (2023) highlighted that laccase

production by fungal endophytes is a promising area of research

due to its potential industrial applications, such as bioremediation

and detoxification of pollutants.
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As per the findings of this study, upon comparing the negative

and positive controls in the laccase assay, no color change (blue-

purple coloration) was observed in the negative control after the

addition of 1-Naphthol solution droplets and 24 hours of

incubation at 28–30°C (Figure 16). In the positive control, the
FIGURE 15

Cellulase enzymatic activity of endophytic fungi isolated from freshwater plants. (A) Negative control. (B) Chaetomella raphigera. (C) Colletotrichum
truncatum. (D) Phyllosticta capitalensis. (E) Colletotrichum siamense. (F) Ectophoma salviniae sp. nov. (u, d) Upside and downside of the plate before
adding 0.1% (w/v) Congo red solution respectively. (u1, d1) Upside and downside of the plate after adding 0.1% (w/v) Congo red solution respectively.
Cellulase enzymatic activity was indicated by the clear zone appearance of the fungal colony on PDA media. (B–F) Positive control.
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addition of 1-Naphthol solution droplets to each colony of

endophyte isolates, followed by subsequent incubation for 24

hours at 28–30°C, resulted in a blue-purple coloration at the

edges of the colonies, indicating the presence of laccase enzymes.

This reaction was observed in Colletotrichum truncatum, Ectophoma

salviniae, Neottiosporina mihintaleensis, and Phyllosticta capitalensis.

Among these, Neottiosporina mihintaleensis exhibited the highest

laccase production, with a 3.5 cm diameter blue-purple circle around

the colony. Phyllosticta capitalensis showed the second-highest

laccase production, with a 1 cm diameter blue-purple circle around

the colony, compared to its appearance before applying 1-Naphthol

droplets. In contrast, Chaetomella raphigera, and C. siamense did not

exhibit laccase enzyme production in this qualitative assay

(Table 6; Figure 16).

This research has shown the novel discovery of laccase

production in N. mihintaleensis and E. salviniae. These findings

contribute to an expanding understanding of fungal laccases.

Notably, prior studies have extensively documented laccase

production capabilities in Phyllosticta spp. (Wikee et al., 2017;

Shankar Naik et al., 2019), C. truncatum (Levin et al., 2007;

Núñez et al., 2023).
4 Discussion

4.1 Exploration of endophytic fungi in Sri
Lanka’s freshwater environments

4.1.1 Current status and research gaps on
endophytic fungal study in Sri Lanka

Currently, only around 3,000 fungal species are known in Sri

Lanka, with an estimated 31,000 plant-associated species still to be

described (Adikaram and Yakandawala, 2020; Wijayawardene et al.,

2022b). Several of the known fungi in the island nation remain

unpublished and have not been sufficiently studied or documented

(Adikaram and Yakandawala, 2020; Karunarathna et al., 2022;

Wijayawardene et al., 2022b, 2023; Wimalasena et al., 2024). In

the Sri Lankan context, particularly regarding endophytic fungi,

many studies have focused on terrestrial plants (e.g (Alwis et al.,

2021; Pathmanathan et al., 2022; Koshila et al., 2023; Undugoda

et al., 2023). Studies on endophytic fungi associated with aquatic

plants in Sri Lanka are relatively scarce (Rajagopal et al., 2018;

Ravimannan and Sepali, 2020; Ekanayake et al., 2021). Hitherto, the

identification of endophytic fungi in freshwater plants was based

largely on morphological characters. For instance, Hettiarachchi

et al. (1983) reported 15 fungi (Alternaria sp., Cephalosporium sp.,

Cercospora piaropi, Curvularia tuberculata, Fusarium sp., Idriella

lunata, Mucor sp., Myrothecium roridum, Neurospora sp.,

Penicillium oxalicum, Phaeotrichoconis crotalariae , and

Septofusidium elegantulum) isolated from Eichhornia crassipes,

with identification based only on morphologal charcteristics. In

some of the Sri Lankan studies, endophytic fungal identification was

based on a single gene locus, which is inadequate for accurate

identification. For example, Dissanayake et al. (2014, 2016)

identified Chaetomium globosum from healthy Nymphaea

nouchali using only the ITS locus.
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4.1.2 Identification of endophytic fungi in Sri
Lankan freshwater habitats: potential for novel
species discovery

Sri Lanka harbors over 370 aquatic and wetland plant species,

with 12% being unique to the country (Yakandawala, 2012;

Bambaranda et al., 2024). These endemic plants serve as essential

habitats for fungi, including freshwater fungi and endophytic

species that have adapted to unique environmental conditions

(Ratnaweera, 2019; Wimalasena et al., 2024). Wimalasena et al.

(2024), highlighted that these habitats offer substantial potential for

the collection, identification, and utilization of endophytic fungi

found in freshwater plants.

This study focused on isolation of freshwater endophytic fungi

in three lentic freshwater habitats (Iluppukanniya tank,

Mahakanadara tank, and Mihintale tank) located in Mihintale

area within the Anuradhapura district. Using polyphasic

approaches, six endophytic fungi were isolated including two

novel taxa, Ectophoma salviniae sp. nov. and Neottiosporina

mihintaleensis sp. nov. These fungal species were identified in

their endophytic life modes, occurring within healthy freshwater

plant tissues, particularly in healthy leaves, isolated by a culture-

dependent method. In this study, the invasive plant species

Eichhornia crassipes (Ayanda et al., 2020; Maulidyna et al., 2021;

Bayu et al., 2024) provided a wider range of host substrates for fungi

compared to other freshwater plants such as Salvinia and

Nymphaea, highlighting its value for biodiversity. Hence,

expanding such studies to cover more freshwater habitats could

lead to the identification of additional novel species, contributing

significantly to the field of mycology and biotechnology worldwide.
4.2 Reference cultures of pathologically
important taxa, Colletotrichum
siamense, C. truncatum and
Ectophoma sp. in Sri Lanka

Precise identification of fungi is an important step in taxonomy.

DNA sequence analyses and morphological characters play an

important role in modern taxonomy which aids in identifying

species and providing their classification (Wijayawardene et al.,

2023). A large number of species originally described from Sri

Lanka lack sequence data and were identified based on only

morphological characteristics (Wijayawardene et al., 2022b).

Nevertheless, delineating species boundaries of species complexes

of specious genera would depend only on DNA sequence

data analyses.

Adikaram and Yakandawala (2020) listed pathologically

important Colletotrichum species in Sri Lanka, including C.

siamense and C. truncatum. However, either C. siamense or C.

truncatum have not been reported as a pathogenic species from

aquatic plants. Table 7 lists the studies that provided phylogenetic

identifications of C. siamense and C. truncatum.

In a previous study, Dissanayake et al. (2016) reported C.

siamense from Nymphaea nouchali but they used only the ITS

region to identify the taxon. Use of one locus is not recommended
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for Colletotrichum thus, we used ITS, tub2, ACT, CHS-1 and

GADPH regions in our phylogenetic analyses following Armand

et al. (2023) and Armand and Jayawardena (2024). We have not

observed any disease symptoms in the leaves of Eichhornia

crassipes. Hence, it is concluded that both C. siamense and C.
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truncatum are endophytic species of Eichhornia crassipes. This is

the first study that provided multi-locus phylogenetic evidence to

identify two pathologically important (but endophytic in this study)

Colletotrichum species (e.g., C. siamense and C. truncatum) in

aquatic habitats. It is important to maintain the reference living
FIGURE 16

Laccase enzymatic activity of endophytic fungi isolated from freshwater plants. (A) Negative control. (B) Colletotrichum truncatum.
(C) Neottiosporina mihintaleensis sp. nov. (D) Phyllosticta capitalensis. (E) Ectophoma salviniae sp. nov. (u, d) Upside and downside of the plate
before adding 0.1M 1-Naphthol respectively. (u1, d1) Upside and downside of the plate after adding after adding 0.1M 1-Naphthol respectively.
Laccase enzymatic activity was indicated by the blue purple colour appearance of the fungal colony on PDA media. (B–E) Positive control.
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cultures of both species; thus, it has been deposited at the Rajarata

University Culture Collection.

Ectophoma species have been reported as important plant

pathogens. Ectophoma multirostrata, the type species of

Ectophoma (Valenzuela-Lopez et al., 2018), has been originally

reported as a soil-inhabiting fungi in India (as Sphaeronaema

multirostratum fide (Mathur and Thirumalachar, 1959). Later,

this species was reported as a pathogen of different plants

worldwide (e.g (Aveskamp et al., 2010; Valenzuela-Lopez et al.,

2018; Chobe et al., 2020; Ahmadpour et al., 2021; Kularathnage

et al., 2023). Lee et al. (2022) reported Ectophoma multirostrata as a

pathogenic agent infecting the aquatic plant water spinach

(Ipomoea aquatica) in Korea. Ectophoma myriophyllana Huang Y.

and Yu Z. F. was recently introduced as an epiphyte of leaves of

Myriophyllum spicatum (Chen et al., 2023). Our novel species,

Ectophoma salviniae did not cause any diseased symptoms on the

leaves of Salvinia minima and thus, we conclude it is an endophytic

taxon inhabiting the host. As far as we know, this is the first report

of Ectophoma species from Salvinia species in Sri Lanka (Farr and

Rossman, 2024). We have not observed Ipomoea aquatica (which

was affected by Ectophoma multirostrata) in the same aquatic

environment, and the distribution of Ectophoma salviniae sp. nov.

is unknown. Future studies would be essential to recognise the

potential host jumping and life mode switching of Ectophoma

salviniae sp. nov. and its impact on Ipomoea aquatica since it is a

widely-used leafy vegetable in Sri Lanka.
4.3 The possibility of endophytic fungi
being used as mycoherbicides against
invasive weed management in
wetland environments

4.3.1 Threat of invasive aquatic plants
Invasive plant species pose a major threat to natural ecosystems

by reducing biological diversity (Rodrıǵuez-Merino, 2023; Xiong

et al., 2023). Over the past few decades, the spread of aquatic alien
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plant species in the lentic water bodies of Sri Lanka has created

significant ecological, environmental, and economic problems

(Dissanayake, 2020; Kariyawasam et al., 2021). Thus, fungi can be

used as mycoherbicides for a more effective solution to eradicate

invasive aquatic plant species due to their pathogenic activity and

host-specific targeting.

4.3.2 Application of fungi as mycoherbicides
Bioherbicides are biological products used to control weed species

and are typically formulated using microbiological agents, especially

fungi, and are often referred to as mycoherbicides (Golijan et al., 2023;

Ravlić and Baličević, 2014). The concept of mycoherbicides emerged

during the 1980s and 1990s, as documented by TeBeest and Templeton

(1985); Templeton (1987); Templeton (1992) and Wall et al. (1992).

Mycoherbicides are considered environmentally friendly alternatives to

chemical herbicides because they are harmless to the environment, eco-
TABLE 7 Studies provided phylogenetic analyses for Colletotrichum siamense and C. truncatum species in Sri Lanka (RUFCC-Rajarata University
Fungal Culture Collection, UOM-University of Melbourne culture collection, Victoria, Australia, UPBT-University of Peradeniya, Department of
Biotechnology, USJCC-University of Sri Jayewardenepura Culture Collection, Department of Botany, University of Sri Jayewardenepura, Nugegoda,
Sri Lanka).

Species name Host Life mode Gene regions Culture collections References

C. truncatum Capsicum annuum Pathogen ITS, tub2, GADPH, CHS-1, HIS3
and ACT

UOM (De Silva et al., 2019)

Eichhornia crassipes Endophyte ITS, tub2, ACT, CHS-1 and GADPH RUFCC This study

C. siamense Capsicum annuum Pathogen ITS, tub2, GADPH, CHS-1, HIS3
and ACT

UOM (De Silva et al., 2019)

Persea Americana Pathogen ITS, tub2, and GADPH UPBT (Dissanayake
et al., 2021)

Allium cepa Pathogen ITS, GADPH and tub2 USJCC (Herath et al., 2021)

Eichhornia crassipes Endophyte ITS, tub2, ACT, CHS-1 and GADPH RUCC This study
TABLE 8 The potential application of Colletotrichum species in
weed management.

Colletotrichum
spp.

Target weeds References

C. gloeosporioides
BWH-1

Alopecurus aequalis, Amaranthus
retroflexus, Ageratum conyzoides,
Bidens pilosa, Capsella bursa-
pastoris, Celosia argentea,
Echinochloa crusgalli, and
Mikania micrantha

(Xu et al., 2019)

C. dematium Parthenium hysterophorus (Singh
et al., 2010)

C. gloeosporioides Russian thistle, Tumblewee (Berner
et al., 2009)

C. graminicola Echinochloa sp. (Yang
et al., 2007)

C. lini Convolvulus arvensis (Damm et al.,
2014; Tunali
et al.,
2008, 2009)
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friendly, and specifically target certain types of plants (Chakraborty and

Ray, 2021; Hasan et al., 2021; Keshamma, 2022). The efficiency of fungi

in weed management is exemplified by the reported potential of

Colletotrichum species (Table 8). Colletotrichum siamense and C.

truncatum have previously been identified as pathogenic fungi across

various plant species. According to this study, these Colletotrichum spp.

may demonstrate potential for managing the invasive weed Eichhornia

crassipes in Sri Lanka.
5 Conclusion

This study identified the culturable mycobiota in three lentic

freshwater habitats located in Mihintale, within the Anuradhapura

District of Sri Lanka, revealing a rich fungal diversity. Through

identification, six endophytic fungal species were found, including

two novel endophytic fungal species: Ectophoma salviniae sp. nov.

and Neottiosporina mihintaleensis sp. nov., recorded on the

freshwater plant Salvinia. The identification was confirmed using

a polyphasic approach. The next step involved qualitatively

assessing the extracellular enzymatic potentials of these

endophytic isolates. Ectophoma salviniae sp. nov. exhibited the

highest amylase production, Chaetomella raphigera showed the

highest cellulase enzyme production, and Neottiosporina

mihintaleensis sp. nov. demonstrated the highest laccase

production, offering novel insights for future biotechnological

applications. Besides, this study discussed the potential of fungi as

mycoherbicides for managing invasive freshwater weeds.
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