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Background: Senecavirus A (SVA) is a newly pathogenic virus correlated with the

acute death of piglets and vesicular lesions in pigs. The further prevalence of SVA

will cause considerable economic damage to the global pig farming industry.

Therefore, rapid and accurate diagnostic tools for SVA are crucial for preventing

and controlling the disease.

Methods: We designed multiple primer pairs targeting the most conserved

region of the SVA 3D gene and selected those with the highest specificity.

Nfo-probes were subsequently developed based on the highest specificity

primer pairs. Subsequently, the recombinase-assisted amplification (RAA)

reaction was completed, and the reaction temperature and duration were

optimized. The RAA amplicons were detected using a lateral flow device (LFD).

Finally, a rapid and intuitive RAA-LFD assay was established against SVA.

Results: The SVA RAA-LFD assay can be performed under reaction conditions of

35°C within 17 minutes, with results observable to the naked eye. We then

evaluated the performance of this method. It exhibited high specificity and no

cross-reaction with the other common swine pathogens. The lowest detectable

limits of this method for the plasmid of pMD18-SVA-3D, DNA amplification

product, and viral were 3.86×101 copies/µL, 8.76×10-7 ng/µL, and 1×100.25

TCID50/mL, respectively. A total of 44 clinical samples were then tested using

the RAA-LFD, PCR, and RT-qPCR methods. The results demonstrated a

consistent detection rate between the RAA-LFD and RT-qPCR assays.

Conclusion: The SVA RAA-LFD assay developed in our study exhibits excellent

specificity, sensitivity, and time-saving attributes, making it ideally suited for

utilization in lack-instrumented laboratory and field settings.
KEYWORDS

Senecavirus A, recombinase-aided amplification, lateral flow dipstick, sensitivity,
specificity, visual detection
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1 Introduction

Senecavirus A (SVA) is a single-stranded, positive RNA virus

belonging to the genus Senecavirus within the family Picornaviridae

(Adams et al., 2015; King et al., 2012). SVA is among the pathogens

associated with vesicular diseases in pigs, characterized primarily by

acute mortality in neonatal piglets and the development of vesicular

ulcers in the nostrils, hoof coronets, and coronary arteries of adult

pigs (Joshi et al., 2016; Vannucci et al., 2015). Consequently,

distinguishing disease infected by SVA from other swine vesicular

diseases such as foot-and-mouth disease (FMD), swine vesicular

disease (SVD), and vesicular stomatitis (VS) based solely on clinical

symptoms has been a challenging task. Furthermore, this disease

lacks distinct seasonal epidemic trends, posing additional challenges

for prevention and control efforts (Hales et al., 2008). The SVA

genome is approximately 7300 bp, comprising a 5’ untranslated

region (5′ UTR), an open reading frame (ORF), and a 3’

untranslated region (3′ UTR) (Lin et al., 2009). The ORF

consisted of a leader protein (L) and three precursor proteins (P1,

P2, and P3) (Adams et al., 2016; Hales et al., 2008; Venkataraman

et al., 2008). Subsequently, these regions are further processed by

the virus-encoded cysteine protease (3Cpro) to form mature

functional viral proteins (L-VP4-VP2-VP3-VP1-2A-2B-2C-3A-

3B-3C-3D) (Hales et al., 2008; Leme et al., 2015).

In 2002, SVA was identified in cultivating transformed

embryonic retinal cell lines (C6 cells) grown at a U.S. research

company (Knowles et al., 2006). Following isolation and

purification, the virus was named SVV 001 (Hales et al., 2008).

Since the identification of SVV001, several studies have shown that

it is closely associated with subsequent sporadic cases of porcine

idiopathic vesicular disease (PIVD) in the USA (Bracht et al., 2016;

K. et al., 2012) and Canada (Pasma et al., 2008). Interestingly, a

series of outbreaks of PIVD occurred in Brazil between 2014 and

2015, subsequently confirmed to be caused by SVA infection. This

confirmed that SVA is the pathogen responsible for swine vesicular

disease (Vannucci et al., 2015). Since then, two outbreaks of SVA

infections have been reported in the Brazilian region in 2018 and

2020 (Leme et al., 2019; Vieira et al., 2022). Additionally, several

countries within the areas of Europe, Southeast Asia, and Asia have

published reports of SVA infections (Arzt et al., 2019; Hause et al.,

2016; Saeng-chuto et al., 2017; Sun et al., 2017; Wu et al., 2017; Xu

et al., 2017). The above situation implies that SVA is gradually

prevalent, which will pose a severe economic threat to the swine

industry worldwide. Therefore, the prevention and control of SVA

is crucial to avoid further dissemination.

Currently, a number of detection methods for SVA have been

developed in the laboratory, including PCR (Pinheiro-de-Oliveira

et al., 2019; Zhang et al., 2019), qPCR (Mu et al., 2020; Zhang et al.,

2019), and ELISA (Dvorak et al., 2017; Yang et al., 2012). These

methods are designed to prevent SVA infections from affecting the

economy of the pig farming industry. However, these detection

methods require a thermocycler for target gene amplification or

proficient laboratory techniques, rendering them unsuitable for

laboratories with limited infrastructure or field inspections.
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Isothermal nucleic acid amplification is a technique developed

in recent years that uses specific enzymes to amplify target genes

under constant temperature conditions, with methods including

methods such as Loop-mediated isothermal amplification (LAMP)

(Peng et al., 2024; Wang et al., 2024) and recombinase-aided

amplification (RAA) (Feng et al., 2024; Zhou et al., 2024). These

methods require only a constant-temperature heating block or even

body heat to achieve target gene amplification, significantly

reducing the reaction time and complexity of nucleic acid

amplification (Kolm et al., 2019). However, the design of the

LAMP primer is more complex and technically challenging. In

contrast, the primer design for RAA is straightforward, requiring

only the control of the target gene length within 500 bp and the

design of two primers with lengths of 30~35 bp. The RAA reaction

primarily utilizes recombinase, single-stranded binding proteins

(SSBs), and DNA polymerase with strand displacement activity to

initiate the reaction. It can complete nucleic acid amplification in

less than 40 minutes. This method has been used to detect a variety

of pathogens (Hai, 2010; He et al., 2021; Li et al., 2023; Wu et al.,

2022; Zhao et al., 2024b).

Lateral flow dipstick (LFD) is a technique for rapidly detecting

nucleic acid samples based on capillary chromatography, molecular

hybridization, and colloidal gold (Jaroenram et al., 2009). The

method is utilized to detect biomarkers in nucleic acid samples,

requiring neither specialized equipment nor operational expertise,

thus rendering it accessible to a broad range of users (Jaroenram

and Owens, 2014). The combination of RAA and LFD is based on

the principle that the RAA reaction forms amplified products

labeled with biotin and specific fluorescent antibodies, which then

interact with the colloidal gold-labeled antibodies in the LFD,

further cross-linking with biotin on the test (T)-line, ultimately

achieving the visual detection of the target product (Chow et al.,

2008). The RAA-LFD assay has been successfully used for the

detection of a variety of pathogens (Bienes et al., 2022;

Homklinkaew et al., 2023; Hou et al., 2022; Li et al., 2022).

In this study, the most optimal RAA primers and probes were

designed for the most conserved region of the SVA 3D gene. The

RAA products were detected using LFD, and a highly sensitive and

specific SVA RAA-LFD rapid visualization assay was established.

This method overcomes the difficulties of ordinary PCR and qPCR,

which require expensive nucleic acid amplifiers. It provides a

reliable method for the initial screening and detection of SVA in

ordinary laboratories and the field.
2 Materials and methods

2.1 Viruses

SVA, foot and mouth disease virus (FMDV), african swine fever

(ASFV), porcine circovirus type 2 (PVC2), japanese encephalitis virus

(JEV), classical swine fever virus (CSFV), and porcine parvovirus

(PPV) were obtained from the Laboratory of Veterinary

Microbiology and Immunology, South China Agricultural University.
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2.2 Clinical swine samples

In 2018, forty-four clinical swine samples suspected of SVA

infection were obtained from multiple pig farms in Guangzhou and

were stored at -80°C for further utilization. RNA was extracted from

each clinical sample using the E.Z.N.A.® FFPE RNA Kit (Omega

Bio-Tek, Inc., Connecticut, USA) and stored at -80°C in

our laboratory.
2.3 Design and screening of primers

According to previous studies conducted in our laboratory and

the research conducted by Li et al (Li et al., 2019), the most conserved

region of SVA is located within the 3D gene, which can be a suitable

target for RAA amplification. Thirty-seven SVA sequences were

obtained from the National Center for Biotechnology Information

(NCBI) (GenBank accession numbers: MF615501.1, MF615506.1,

MF615507.1, MF615508.1, MF615509.1, MF189001.1, MF189000.1,

KR063107.1, MF460448.1, MH885100.1, MH885099.1, MH634510.1,

MH634508.1, MH634506.1, MH634518.1, MH634522.1,

MH634516.1, MH716015.1, MHS88717.1, MH779611.1,

MH817445.1, MH316117.1, MH316116.1, MK357117.1,

MN781984.1, MN781983.1, MN781981.1, KRO63107.1,

ON369394.1, ON868377.1, KR063109.1, MZ818785.1, MZ375462.1,

KY486166.1, KY486165.1, MZ395819.1, MZ733980.1). The 3D gene

regions of the above sequences were aligned using MegAlign 7.1

(DNAStar, USA) to confirm the most conserved region.

Subsequently, six primer pairs were designed within this region

using Oligo 7.0 (Molecular Biology Insights, Inc, USA) and Primer

Premier 5 (Premier Biosoft International, Canada) (Table 1). The

specificity of the six pairs of primers for SVA was verified by the RAA

reaction provided by the RAA nucleic acid amplification kit based on

agarose gel electrophoresis (AGE) (Jiangsu Qitian Gene

Biotechnology Co., Ltd., Jiangsu, China), and the most specific

primers were screened. Components including 25 mL rehydration
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buffer V, 2.0 mL forward primer (10 mM), 2.0 mL reverse primer (10

mM), and 17.5 mL nuclease-free water were sequentially added to the

lyophilized enzyme base reaction unit in the kit. Then, the walls of the

tubes were flicked by hand and centrifuged transiently for 10 seconds.

To stimulate the reaction, 2.5 mL magnesium acetate was introduced

into the inside of each tube cap, and 1mL of genomic DNA was added

as a template. Additionally, the ddH2O and positive samples were

added to the separately formulated reaction system as negative and

positive controls, respectively. After 40 minutes incubation period at

37°C, 50 mL of chloroform and phenol mixture (1:1) was added to

purify the amplicons. Finally, the supernatant was extracted for

analysis using 2% AGE.
2.4 Establishment of the SVA
RAA-LFD assay

Following the primer screening, a specific probe was developed

and situated within the middle of the primer pairs. This probe was

labeled with 6-carboxy-fluorescein (FAM) at the 5’ end, modified

with a polymerase extension blocking group (C3 spacer) at the 3’

end, and integrated with a tetrahydrofuran abasic-site mimic (THF)

moiety positioned 30 nucleotides away from the 5’ end.

Additionally, the reverse primer’s 5’ end was biotin-labeled. All

primers were synthesized by Sangon Biotech (Sangon Biotech

(Shanghai) Co., Ltd, Shanghai, China). The RAA basic reaction

for LFD was performed according to instructions provided in the

nfo-based RAA nucleic acid amplification kit (Jiangsu Qitian Gene

Biotechnology Co., Ltd., Jiangsu, China). The nfo-based RAA

reaction system was based on the AGE-based RAA reaction

volume with the addition of 0.6 mL of fluorescent probe (10 mM)

and an adjusted volume of nuclease-free water (16.9 mL). The
reaction was carried out under the same time and temperature

conditions, following 10 mL of nfo-based RAA amplicons were

taken and diluted with 50 mL of PBS and later inserted into the LFD

strips (Nanjing Wobo Biotechnology Co., Ltd., Nanjing, China) for
TABLE 1 The primers of the 3D-based RAA basic reaction for SVA were used in this study.

Primer Sequences (5’-3’) Length (bp)

SVA RAA-F1 TCTGGTTGGTACGGATTACGATCTGGACTTCA
100

SVA RAA-R1 GAAGACAGAACCCTTGTTGGCAGGAGTCATCT

SVA RAA-F2 TCTAAACACACTGCCAACGTCCCTTATCAACC
284

SVA RAA-R2 TAGTCACCGTCTAAGAATTTTTGGATTTGCAT

SVA RAA-F3 TAAACACACTGCCAACGTCCCTTATCAACCTC
282

SVA RAA-R2 TAGTCACCGTCTAAGAATTTTTGGATTTGCAT

RAA SVA-F4 AAACTGGGGTACAAGATGACTCCTGCCAAC
212

SVA RAA-R4 GCCAACATAGAAACAGATTGCAGCTTCTCG

SVA RAA-F5 TCTGGTTGGTACGGATTACGATCTGGACTT
99

SVA RAA-R5 AAGACAGAACCCTTGTTGGCAGGAGTCATC

SVA RAA-F6 GCCAAACTGGGGTACAAGATGACTCCTGCCAACA
216

SVA RAA-R6 AGCCAACATAGAAACAGATTGCAGCTTCTCGAGT
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2 minutes. The design of RAA primers, Nfo-probe, and the

principle of the RAA-LFD assay are illustrated in Figure 1.
2.5 Optimization of the SVA RAA-LFD assay

Initially, the RAA basic reaction was conducted with a fixed

reaction time of 40 minutes at a gradient temperature from 34°C to

40°C. The results were visualized using a nucleic acid test strip. The test

strips were positioned against a white backdrop, and the T-lines were

digitally outlined using ImageJ 2 software (National Institutes of

Health; Bethesda, MD, USA) to quantify color intensity. This process

was conducted three times, and the collected data were subsequently

inputted into GraphPad 8.0 software (Graph Pad Software, La Jolla,

CA, USA) to generate a line graph illustrating the grayscale values of

the T-lines at the different reaction temperatures. Subsequently, the

RAA basic reaction was executed at the optimal temperature

determined in the preliminary step, with reaction times varying from

5 to 40 minutes. The results were visualized using a nucleic acid test
Frontiers in Cellular and Infection Microbiology 04
strip. Applying the methodology above, a line graph was formulated to

assess the grayscale values of the T-line at various reaction durations.
2.6 Construction of the
recombinant plasmid

The SVA 3D gene was amplified by PCR with designed primers

(SVA 3D-F: 5’-TGATGACTGAGCTAGAGCCTGG-3’, SVA 3D-R:

5’-TCGAACAAGGCCCTCCATCTTG-3’). The amplicon was

ligated to pMD18-T Vector (Takara Biomedical Technology Co.,

Ltd., Japan) and transformed into Escherichia coli DH5a. The
pMD18-SVA-3D plasmid was subsequently confirmed in LB solid

medium containing 1‰ ampicillin and expanded in LB broth for

overnight incubation at 37°C. Finally, the plasmid was extracted using

the Plasmid Mini Kit II (Omega Bio-Tek, Inc., Connecticut, USA)

according to the manufacturer’s instructions. A NanoDrop™ 1000

Spectrophotometer (Thermo Fisher Scientific, WymanStreet, USA)

was used to measure the concentration of the extracted plasmid and
FIGURE 1

The principle of RAA primers, nfo-probe, and the RAA-LFD assay.
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calculate copies using the following equation: Copy number per unit

(copies/µL) = (concentration of DNA (ng) × 6.022 × 1023)/(entire

length of template × 109 × 650) (dsDNA copy number

calculator (uri.edu).
2.7 Analysis of the specificity and sensitivity
of the SVA RAA-LFD assay

SVA and other laboratory-preserved viruses were used as

templates to validate the specificity of the developed assay. The

lowest detection limit of SVA RAA-LFD was determined using ten-

fold serial dilutions of pMD18-SVA-3D plasmid, DNA

amplification products, and viral fluid at a concentration of 108.25

TCID50/mL as templates. PCR and RT-qPCR methods were

employed as parallel experiments for comparison.
2.8 RCR assay

The reaction system for PCR (Nanjing Vazyme Biotech Co., Ltd.,

China) is as follows: 25 µL of 2×Phanta Max Buffer, 1µL of dNTP Mix

(10 mM each), 1µL of Phanta Max Super-Fidelity DNA Polymerase, 2

µL of forward primer (10 µM), 2 µL of reverse primer(10 µM), 1 µL of

DNA template, and 19 µL of ddH2O. SVA specific forward primer:

SVA PCR-F (5’-CAAGGAATTTGAATATGACATGG-3’) and

reverse primer: SVA PCR-R (5’-GCAGCTTCTCGAGTAGTGT

TCC-3’) were described previously (Qian et al., 2016). Amplicon

product size was 298 bp. The thermal cycling conditions: one cycle

at 95°C for 2 min; 35 cycles at 95°C for 15 s, 57°C for 30 s, and 72°C for

30 s, and one cycle at 72°C for 5 min. Amplicon products were

analyzed by 2% AGE.
2.9 RT-qPCR assay

The reagent HiScript II Q Select RT SuperMix for qPCR (Nanjing

Vazyme Biotech Co., Ltd., China) was used to reverse transcribe RNA

into cDNA. 9 µL 2 × ChamQ SYBR qPCR Master Mix. The reaction

system for qPCR is as follows: 5 µL 2 × ChamQ SYBR qPCR Master

Mix (Nanjing Vazyme Biotech Co., Ltd., China), 0.2 µL forward

primer (10 µM), 0.2 µL reverse primer (10 µM), 1 µL of DNA

template, and 3.6 µL of ddH2O. SVA specific forward primer(SVA

qPCR-F: 5’-GGGTAACACTGACACCGATTT-3’) and reverse

primer (SVA qPCR-R: 5’-TCGAGATCGATCAAACAGGAAC-3’)

were designed based on the VP1 gene region with a length of 87 bp

(Bracht et al., 2016). The thermal cycling conditions: 48°C for 5 min,

95°C for 10 min, 40 cycles of 95°C for 5 sec, and 60°C for 1 min.
2.10 Analysis of repeatability of the SVA
RAA-LFD assay

Several concentrations of the pMD18-SVA-3D plasmid were

used as templates to assess the reproducibility of the established

assay, including 3.86 × 104 copies/µL (strongly positive), 3.86 × 102
Frontiers in Cellular and Infection Microbiology 05
copies/µL (moderately positive) and 3.86 × 101 copies/µL (weak

positive). The experiment was repeated three times.
3 Results

3.1 Design and screening of SVA
RAA primers

The six candidate primers were evaluated using the RAA basic

assay, conducted at 37°C for 40 minutes, with the GD-SVA2-2018

strain as the template. The 2%AGE results (Figure 2) demonstrated

that the primer pair SVA RAA-F2/R2 produced the brightest

specific bands compared to the other groups. These findings

indicate that the SVA RAA-F2/R2 primer pair exhibits the

highest specificity. Consequently, the SVA RAA-F2/R2 primer

pair was selected for further research in the RAA-LFD assay.
3.2 Establishment of initial SVA
RAA-LFD assay

To establish the SVA RAA-LFD assay, we have successfully

designed an ideal fluorescent probe according to the gene sequence

amplified by the SVA F2/R2 primer pair, nfo-probe (5’-6-FAM-

TTTGTTCTACACATACATGTCAGAGTACGC-THF-

CATCGGGTTTTCTCC-C3 spacer-3’) (Figure 3A). This design fully

complies with the criteria for a good nfo-probe. The 5’ end of the

reserve primer SAV RAA-R1 was also modified with biotin as RAA-

FB: 5’-(Biotin) TAGTCACCGTCTAAGAATTTTTGGATTTGCAT-

3’. Subsequently, the nfo-probe and modified and screened primers

were used in the nfo-based RAA basic reaction, and LFD detected the

amplicons. The results (Figure 3B) showed that the control (C)-line in

both the negative control and the positive test groups was blue,

indicating that the test strip was valid. The T-line in the negative
FIGURE 2

Amplification results of the RAA primer pairs. Serial number 1 to 6
are SVA RAA-F1/R1, SVA RAA-F2/R2, SVA RAA-F3/R2, SVA RAA-F4/
R4, SVA RAA-F5/R5, and SVA RAA-F6/R6. M, 500 bp DNA marker; P,
Positive control; N, Negative control.
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control group showed no color, and the T-line in the SVA

experimental group was red, indicating that the test result was

positive and that the SVA RAA-LFD assay was initially established.
3.3 Optimization of SVA RAA-LFD
reaction conditions

To achieve the optimal reactivity performance of the SVA RAA-

LFD assay, the preferred temperature and time for the RAA basic

reaction were evaluated. RAA basic reactions were carried out at

seven different temperatures from 34°C to 40°C (34°C, 35°C, 36°C,

37°C, 38°C, 39°C, and 40°C) for 40 minutes in a thermostatic.

Subsequently, the RAA basic reaction target amplicon was detected

by LFD under different temperature gradients. The results indicate

that the T-lines of all test strips appeared red, demonstrating the

effectiveness of the test strips within the temperature gradients. The

result of the gray value analysis of the T-line (Figure 4A) showed

that 35°C was the optimal reaction temperature for the SVA RAA-

LFD assay. Furthermore, the highest value gray value analysis of the

T-line was observed at 15 min (Figure 4B), indicating that 15

minutes was the optimal reaction time for the RAA basic reaction.
3.4 Analytical specificity of the SVA
RAA-LFD assay

As shown in Figure 5, in the analytical specificity analysis, the

SVA RAA-LFD only produced visible red bands on the T-line for

SVA. None of the other clinically important porcine pathogens,

such as FMDV, ASFV, PCV2, JEV, CSFV, and PPV, produced

visible bands on the T-line. The specificity of the SVA RAA-LFD
Frontiers in Cellular and Infection Microbiology 06
assay was further validated by three independent technicians,

confirming its high specificity.
3.5 Analytical sensitivity of the SVA RAA-
LFD assay

To analyze the sensitivity of SVA RAA-LFD detection, this

method was used to detect SVA pMD18-SVA-3D plasmids, DNA

amplification products, and viral diluted tenfold (3.86×1010~3.86×100

copies/µL, 8.76×101~8.76×10-9 ng/µL, and 1×108.25~1×10-1.75

TCID50/mL, respectively). PCR and RT-qPCR were performed as

parallel experiments. The results (Figure 6) showed that the lowest

concentration of template detection of RAA-LFD for SVA plasmids

(Figure 6A), DNA amplification product (Figure 6B), and viral fluid

(Figure 6C) were 3.86×101 copies/µL, 8.76×10-7 ng/µL, and1×100.25

TCID50/mL, respectively. The sensitivity of the SVA RAA-LFD assay

was significantly higher than that of the PCR assay, yet slightly less

than 10 times that of the RT-qPCR assay. However, the sensitivity of

this method in detecting the plasmid concentration remained

consistent with that of the RT-qPCR assay.
3.6 Repeatability and reproducibility of the
SVA RAA-LFD assay

The SVA RAA-LFD assay for three different concentrations of the

pMD18-SVA-3D plasmid showed all positive reaction signals at the T-

line, with good reproducibility across three replicates. There was a

slight difference in the intensity of the detection line positive response

signal for the lowest detection concentration repeatability experiments,

but all three replicates resulted in positive results (Figure 7).
FIGURE 3

Partial results of multiple sequence alignment for SVA 3D gene and establishment of SVA RAA-LFD assay. (A) Red boxes represent nucleotide
mutation sites in the alignment results. Blue boxes represent the binding sites of screened primers. Green boxes represent the binding sites of the
nfo-probe. (B) Preliminary results of RAA-LFD for SVA detection.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1474676
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Song et al. 10.3389/fcimb.2024.1474676
3.7 Diagnostic performance of the SVA
RAA-LFD assay evaluated with clinical
swine samples

To further assess the clinical performance of the SVA RAA-LFD

assay, forty-four clinical samples were tested using the assay. Parallel

experiments were conducted using PCR and RT-qPCR methods. The
Frontiers in Cellular and Infection Microbiology 07
results of the PCR and RAA-LFD methods are presented in Figure 8,

while the comparative outcomes of these three methods are displayed

in Table 2. Specifically, the RAA-LFD method successfully detected 27

positive samples, the RT-qPCR method identified 27 samples, and the

PCR method identified 24 samples. Notably, the RAA-LFD and RT-

qPCR methods exhibited consistent detection rates, demonstrating

the clinical feasibility of the SVA RAA-LFD assay in this study.
FIGURE 5

Specificity of the SVA RAA-LFD assay. The nucleic acids of a batch of pathogens, including FMDV, ASFV, PCV2, JEV, CSFV, and PPV, were used to
evaluate the specificity of the SVA RAA-LFD assay.
FIGURE 4

Optimization of SVA RAA-LFD reaction conditions. (A) Optimization of temperature for the RAA basic reaction. (B) Optimization of time for the RAA
basic reaction.
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4 Discussion

SVA is a recently emerged pathogen of pigs that is both

pathogenic and infectious, and it is clinically indistinguishable

from other pathogens causing vesicular lesions in pigs, including

FMDV. Furthermore, contemporary SVA isolates exhibit

significant genetic divergence and evolution compared to

historical strains, demonstrating a trend toward greater

pathogenicity (Chen et al., 2019; Fernandes et al., 2018; Jiang

et al., 2021; Joshi et al., 2016, 2020; Li et al., 2024; Wang et al.,
Frontiers in Cellular and Infection Microbiology 08
2019; Zhang et al., 2020). Early diagnosis of SVA is critical not only

for providing valuable epidemiological information and for the

rapid initiation of prevention and control strategies but also for

facilitating the accurate diagnosis, prevention, and control of other

porcine vesicular epidemics, particularly FMD. Therefore,

developing a highly specific and sensitive rapid diagnostic method

for SVA is essential to provide effective technical support for

these needs.

RAA is a novel molecular biology assay that allows for the

amplification of large amounts of target nucleic acids in a short
FIGURE 6

Sensitivity of the SVA RAA-LFD assay. (A) The results of detecting serially diluted pMD18-SVA-3D plasmids using the three methods. (B) The results of
detecting serially diluted SVA DNA amplification product using the three methods. (C) The results of detecting serially diluted SVA viral fluid using the
three methods. M: 500 bp DNA marker, N: Negative control, Cycles>35: Negative.
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period, which has been widely used in the detection of a variety of

pathogens that infect livestock or humans (Chen et al., 2022; Fan

et al., 2020; Liu et al., 2023; Tian et al., 2023; Zhao et al., 2024a). In

this study, we first established a rapid visualization assay specific to

SVA by combining RAA with LFD. Initially, to ensure optimal

sensitivity and specificity during the development of the SVA RAA-

LFD assay, we identified the conserved region of the SVA 3D gene
Frontiers in Cellular and Infection Microbiology 09
as the target sequence by aligning the nucleotides of multiple

sequences obtained from GenBank. We successfully screened for

the optimal primer pair and designed the nfo-probe with the

highest match.

Furthermore, building upon the preliminary SVA RAA-LFD

assay, we fine-tuned the reaction time and temperature parameters.

This adjustment allows the assay to be completed in just 17 minutes

at 35 °C, comprising 15 minutes for the RAA basic reaction and 2

minutes for LFD processing. These modifications enhance the

accuracy and efficiency of the developed assay. Subsequently, we

further evaluated the specificity and sensitivity of the optimized

assay. The final detection data showed that the lowest detection

limits of the established assay for pMD18-SVA-3D plasmid, DNA

amplification product, and viral were 3.86×101cpoies/µL, 8.76×10-7

ng/µL, and 1×100.25 TCID50/mL, respectively. The SVA RAA-LFD

assay we developed is 100 times more sensitive to plasmids than the
FIGURE 7

Repeatability of the SVA RAA-LFD assay. (A) Strong positive duplicate test of the SVA RAA-LFD assay for plasmid concentration of 3.86×104 copies/
µL. (B) Moderate positive duplicate test of the SVA RAA-LFD assay for plasmid concentration of 3.86×102 copies/µL. (C) Weak positive duplicate test
of the SVA RAA-LFD assay for plasmid concentration of 3.86×101 copies/µL.
FIGURE 8

Performance of SVA RAA-LFD on clinical swine samples. (A) The result of clinical swine samples detection by the SVA RAA-LFD assay. (B) The result
of clinical swine samples detection by conventional PCR method. Lanes1–44 Different clinical swine samples were preserved in our laboratory. N,
Negative control; P, Positive control; M, 500 bp DNA marker.
TABLE 2 Clinical application of the SVA RAA-LFD assay.

Detection
method

Positive
samples

Negative
samples

Positive
rate (%)

RAA-LFD 27 17 61

PCR 24 20 54

RT-qPCR 27 17 61
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SVA 3D-based PCR method studied by Qian et al. (Qian et al.,

2016) and nearly consistent with the VP1-based RT-qPCR studied

by Bracht et al (Bracht et al., 2016).

To assess clinical applicability, we tested forty-four clinical

samples using the RAA-LFD assay, which showed a positive

detection rate consistent with RT-qPCR. In comparison with the

other two detection methodologies, the PCR assay detected three

fewer positive samples. This discrepancy may arise from the low

viral load present in the clinical samples, which could be beneath

the PCR assay’s limit of detection, or it may be attributable to the

primers’ insufficient specificity for the identification of SVA within

the clinical samples. The RAA-LFD assay established in this study

produced T-line specific positive reaction signals only for SVA, with

no cross-reactivity to other common swine pathogens, including

FMD, and demonstrated good reproducibility. In summary, the

developed SVA RAA-LFD assay exhibits excellent sensitivity,

specificity, and clinical applicability, making it a promising

method for detecting SVA.

It is well known that the primary advantage of RAA is that it

does not require an expensive thermal cycler to amplify the target

gene. Compared to standard laboratory molecular biology detection

techniques such as PCR and qPCR, RAA is more convenient and

time-efficient, requiring only a water bath or a portable suitcase lab

for operation, thereby enabling on-site diagnosis of the target gene

(El Wahed et al., 2021). In recent years, other isothermal

amplification techniques, such as LAMP, have been used for SVA

detection (Armson et al., 2019; Zeng et al., 2018). However,

compared to LAMP, RAA offers two distinct advantages.

First, while LAMP necessitates a reaction temperature range of

60~65°C, RAA operates efficiently at a lower temperature,

approximately 37°C. In our study, target gene amplification

occurred within a temperature range of 34~40°C, with 35°C being

the most favorable; notably, the reaction can even proceed at body

temperature. Second, LAMP requires 4~6 primers to support the

amplification reaction. In contrast, the RAA reaction can be

accomplished with just two conventional primers or by adding a

specific probe.

The combined application of RAA and LFD integrates the high

sensitivity of polymerase chain reaction with immunochromatographic

techniques, enabling rapid visualization of detection results

(Homklinkaew et al., 2023; Li et al., 2022; Yu et al., 2019). In brief,

this method involves the combination of target genes labeled with

specific probes with antibodies conjugated to colloidal gold

encapsulated on the test strip, ultimately translating the detection

results into visible color signals discernible to the naked eye. The

simplicity of operation and lack of requirement for expensive

instrumentation make this method suitable for application in remote

areas and field settings.

Regrettably, the method established in this study was not validated

with clinical samples from multiple countries. However, previous

studies have shown that the RAA reaction can accommodate

mismatches of 5-9 nucleotide bases (Abd El. Wahed et al., 2013).

Upon aligning multiple SVA sequences from various countries,

including China, the USA, and Brazil, we found that the individual

base differences in the selected amplification sequences were less than 5

nucleotides, indicating the potential applicability of the assay used in
Frontiers in Cellular and Infection Microbiology 10
this study. Testing a large variety of clinical swine samples would

provide more robust evidence for the feasibility of the developed

method. Therefore, we intend to seek out multiple clinical samples

for further validation in subsequent investigations.

In summary, this study has established a convenient and

sensitive RAA-LFD assay based on the conserved region of the

SVA3D gene. The assay provides visually detectable results in under

17 minutes using an instrument-free technique. This makes it

suitable for point-of-care diagnosis for SVA in the field or remote

areas lacking instrumentation.
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