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Non-classical roles of bacterial
siderophores in pathogenesis
Elliot Arnold*†

Department of Biosciences, Durham University, Durham, United Kingdom
Within host environments, iron availability is limited, which instigates competition

for this essential trace element. In response, bacteria produce siderophores,

secondary metabolites that scavenge iron and deliver it to bacterial cells via

specific receptors. This role in iron acquisition contributes significantly to

bacterial pathogenesis, thereby designating siderophores as virulence factors.

While prior research has primarily focused on unravelling the molecular

mechanisms underlying siderophore biosynthesis, uptake, and iron

sequestration, recent investigations have unveiled additional non-iron

chelating functions of siderophores. These emerging roles are being

consistently shown to support bacterial pathogenesis. In this review, we

present the current understanding of siderophores in various roles: acquiring

non-iron metal ions, supporting tolerance to metal-induced and reactive oxygen

species (ROS)-induced stresses, mediating siderophore signalling, inducing ROS

formation, and functioning in class IIb microcins. By integrating recent findings,

this review aims to provide an overview of the diverse roles of siderophores in

bacterial pathogenesis.
KEYWORDS

siderophores, virulence factors, bacterial pathogenesis, signalling, reactive oxygen
species, metals, microcins
Introduction

Iron is essential for most microorganisms. Yet, despite being the fourth most abundant

element in the Earth’s crust, iron is not readily available to bacteria. This is due to the

oxygen-rich atmosphere oxidising soluble ferrous iron (Fe2+) to insoluble ferric iron (Fe3+)

in neutral and basic pH levels. As bacteria require iron in concentrations far exceeding

those available in their environment, microbes have evolved mechanisms to acquire iron,

including siderophores. These low molecular weight secondary metabolites form soluble

siderophore-Fe3+ complexes to scavenge iron before active uptake via specific receptors. As

most bacteria produce siderophores, these chelators have become increasingly chemically

diverse (Hider and Kong, 2010). Despite this variability, siderophores are classified into

catecholate, phenolate, carboxylate and hydroxamate, depending upon the moiety of the

oxygen ligands used for Fe3+ coordination (Raymond and Dertz, 2004).
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Siderophores are well-established virulence factors due to their

ability to acquire iron from the host (Bullen et al., 1999), and are

implicated in the virulence of many pathogenic bacteria, including

Pseudomonas aeruginosa (Meyer et al., 1996); Staphylococcus aureus

(Dale et al., 2004); Yersinia pestis (Fetherston et al., 2010);

uropathogenic Escherichia coli (UPEC; Torres et al., 2001);

Staphylococcus epidermidis (Oliveira et al., 2021) and Klebsiella

pneumoniae (Russo et al., 2014). However, it is now recognised

that siderophores have more complex roles in pathogenesis. While

the non-classical roles of siderophores have been excellently

reviewed previously (Johnstone and Nolan, 2015), we review

recent research that has significantly expanded the non-classical

roles of siderophores in supporting bacterial pathogenesis (Table 1).
Siderophores and toxic
metal tolerance

Some metals are toxic to bacteria; however, even useful metals,

such as iron, zinc, and copper, become toxic at high concentrations.

The immune system exploits this; for instance, neutrophils deliver

zinc and macrophages deliver copper in toxic levels to the

phagosome of phagocytosed bacteria (Stafford et al., 2013; Ong

et al., 2014). Although the primary role of siderophores is to

increase Fe3+ bioavailability, the structure of siderophores

prevents them from being selective to one metal ion. Previously

Braud et al (2009a, b). determined the wide diversity of non-ferric

metal ion binding of the siderophores pyochelin and pyoverdine.

In addition, Braud et al. (2010) determined that Cd2+, Co2+, Cu2+,

Ga3+, Ni2+, TI+ and Zn2+ were more toxic in a pyochelin- and

pyoverdine-deficient P. aeruginosa strain with both siderophores

supporting resistance to metal-induced toxicity.

Expanding from this in vitro work, Lear et al. (2022) linked

siderophore-based heavy metal detoxification and virulence in vivo,

using the Galleria mellonella virulence model. They found that

pyoverdine-producing P. aeruginosa virulence increased in copper-

rich conditions, while the non-pyoverdine-producing strain virulence

decreased. They suggested pyoverdine contributes to copper tolerance,

which increases virulence; however, further study is required to

determine the extent of siderophore-mediated protection in

virulence. Additionally, as Lear et al. (2022) used a pyochelin- and

pyoverdine-deficient strain to study pyoverdine’s effect on virulence in

copper-replete conditions, it would be interesting to study the

individual effects of pyochelin and pyoverdine on copper tolerance in

vivo. Interestingly, pyochelin protects P. aeruginosa in high copper

conditions in vitro (Braud et al., 2009a, 2010); however, both copper

and pyoverdine suppress pyochelin production (Teitzel et al., 2006;

Dumas et al., 2013), hinting that pyochelin may not be involved in the

copper stress response. Finally, copper increased pyoverdine gene

expression (Braud et al., 2009b; Lear et al., 2022), suggesting an

evolved trait that links pyoverdine and copper. Unlike other

siderophores, pyoverdine is not linked with copper acquisition

(Braud et al., 2009b), which suggests pyoverdine increases in copper-

rich conditions for copper tolerance. Also, this poses the question of

how copper regulates pyoverdine synthesis.
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Beyond pyoverdine, the phenolate siderophore yersiniabactin

binds Cu2+ to prevent catechol-mediated reduction to Cu+, reducing

copper-mediated toxicity. Notably, yersiniabactin-producing urinary

isolates had significantly greater copper tolerance compared to non-

producing isolates (Chaturvedi et al., 2012). Opposingly, catecholate

siderophores, such as enterobactin (which is commonly co-expressed

with yersiniabactin in UPEC), can reduce Cu2+ to Cu+, increasing

copper toxicity (Chaturvedi et al., 2012). Interestingly, this ability of

enterobactin increases the sensitivity of E. coli to copper. However, the

CueO multicopper oxidase recovered the sensitivity of E. coli by

oxidising enterobactin to prevent the catechol-mediated reduction of

Cu2+ (Grass et al., 2004). Furthermore, E. coli strains that produced

enterobactin but not enterobactin uptake and hydrolysis proteins had

increased copper sensitivity and reactive oxygen species (ROS) levels

compared to wild-type (Peralta et al., 2022). This research

demonstrates the importance of enterobactin hydrolysis (and hints at

the importance of the co-expression of yersiniabactin and enterobactin)

for the protection of E. coli from copper toxicity. Notably, although this

role of yersiniabactin has not been directly linked to enhanced

pathogenesis, its importance is likely given the copper toxicity

pathogenic bacteria face in the host.
Siderophores and non-iron metal
ion acquisition

The ability of siderophores to bind multiple metal ions has led

to research exploring their role in acquiring metals like copper, zinc,

and nickel.

First, Y. pestis acquires zinc through the Zn2+ ABC transporter

ZnuABC, like other pathogens. However, a Y. pestis DznuABC
mutant retained its virulence, suggesting an alternative

mechanism of zinc acquisition (Desrosiers et al., 2010). Notably, a

siderophore secreted by Pseudomonas putida scavenges zinc

(Cortese et al., 2002; Leach et al., 2007), and pyochelin,

structurally similar to yersiniabactin, binds multiple metals

(Braud et al., 2009a). From this, Bobrov et al. (2014) investigated

the potential of yersiniabactin in zinc acquisition. Unlike the

DznuABC mutant, the Dirp2DznuABC (incapable of producing

yersiniabactin and ZnuABC) was attenuated in zinc-depleted

media and a mouse model of septicaemic plague, suggesting

yersiniabactin-mediated zinc acquisition compensates for the

absent zinc transporter (Bobrov et al., 2014).

More recently, Behnsen et al. (2021) performed research to

show that yersiniabactin facilitates zinc uptake in E. coli Nissle 1917

(EcN), aiding its colonisation of the inflamed gut where zinc is

scarce due to the high expression of the zinc-chelator calprotectin

(Corbin et al., 2008; Behnsen et al., 2014). Behnsen et al. (2021)

showed that EcN lacking both the ZnuABC zinc transporter and

ZupT zinc permease significantly outcompete EcN lacking

ZnuABC, ZupT and yersiniabactin in calprotectin-supplemented

media and the zinc-limited inflamed mouse gut. Significantly,

beyond previous research, yersiniabactin was confirmed to bind

zinc using native electrospray metabolomics. Furthermore,

yersiniabactin preferentially binds iron at pH 4, zinc at pH 10,
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and zinc and iron equally at pH 7, potentially enhancing the

ecological effectiveness of yersiniabactin. Beyond this research on

probiotic EcN, Price et al. (2021) demonstrated that yersiniabactin

supports Y. pestis pathogenesis in the zinc-limited flea midgut,

highlighting it as a zinc-acquiring virulence factor. Interestingly,

siderophores have been noted as pro-inflammatory (Choi et al.,

2004; Nelson et al., 2007; Holden et al., 2016); therefore,

whether siderophores promote colonisation through inducing

inflammation-associated metal ion scarcity is noteworthy.

As yersiniabactin binds copper (Chaturvedi et al., 2012; Koh

et al., 2015) and UPEC lacks copper import systems, Koh et al.

(2017) hypothesised that UPEC may be able to import
Frontiers in Cellular and Infection Microbiology 03
yersiniabactin-Cu2+. The group used mass spectrometry to

determine yersiniabactin-Cu2+ forms in low-copper conditions

and 64Cu radiolabelling to show the yersiniabactin-Cu2+ complex

is imported via the FyuA-YbtPQ import system for utilisation in

cuproenzymes. In addition, Robinson et al. (2018) used quantitative

mass spectrometry to identify yersiniabactin forms yersiniabactin-

Ni2+ complexes, which are imported for utilisation in nickel

enzymes. Although yersiniabactin-mediated copper and nickel

acquisition are not directly linked to virulence, they likely aid the

survivability of UPEC in metal-depleted conditions. Furthermore,

copper, zinc, and nickel acquisition by yersiniabactin likely

contributes to its classification as a virulence factor in numerous
TABLE 1 Siderophores and their non-classical functions.

Siderophore Type Non-classical
Function(s)

Reference(s)

1Desferrioxamine Hydroxamate Pro-inflammatory Autenrieth et al. (1991)
Choi et al. (2004)

Metallophore Evers et al. (1989)

DHBS3 Catecholate Oxidative Stress Response Bogomolnaya et al. (2020)

Enterobactin Catecholate Cell Signalling Anderson and Armstrong (2004)
Brickman and Armstrong (2009)

Pro-inflammatory Nelson et al. (2007)

Oxidative Stress Response Adler et al. (2012, 2014)
Achard et al. (2013)
Peralta et al. (2016, 2022)

Pyochelin Phenolate Cell Signalling Michel et al. (2005, 2007)

Metallophore Braud et al. (2009a, 2010)

Oxidative Stress-Inducing Coffman et al. (1990)
Britigan et al. (1994, 1997)
Adler et al. (2012)
Ong et al. (2017)

Toxic Metal Sequestering Braud et al. (2010)

Pyoverdine 3Mixed type Cell Signalling Lamont et al. (2002)
Dumas et al. (2013)
Mridha and Kümmerli (2022)

Metallophore Braud et al. (2009b)

Oxidative Stress Response Jin et al. (2018)

Toxic Metal Sequestering Braud et al. (2010)
Lear et al. (2022)

2Staphyloferrin Carboxylate Oxidative Stress Response Nobre and Saraiva (2014)
Oliveira et al. (2021)

Yersiniabactin Phenolate Cell Signalling Katumba et al. (2022)
Heffernan et al. (2024)

Metallophore Bobrov et al. (2014, 2017)
Koh et al. (2017)
Robinson et al. (2018)
Price et al. (2021)
Behnsen et al. (2021)

Toxic Metal Response Chaturvedi et al. (2012)

Oxidative Stress Response Paauw et al. (2009)
Chaturvedi et al. (2014)
1desferrioxamine B and E. 2Staphyloferrin A and B. 3Catecholate and hydroxamate. DHBS, 2,3-Dihydroxybenzoylserine.
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pathogens (Koczura and Kaznowski, 2003b, 2003; Lawlor et al.,

2007; Fetherston et al., 2010).
Siderophores and signalling

Siderophores can act as signalling molecules. Pyoverdine has been

widely investigated as a signalling agent after being first identified by

Lamont et al. (2002). When pyoverdine-Fe3+ binds to the outer

membrane receptor FpvA, it triggers the proteolytic cleavage of the
Frontiers in Cellular and Infection Microbiology 04
anti-sigma factor, FpvR, in the inner membrane. This releases

the extracytoplasmic sigma factors, PvdS and FpvI, which induce the

expression of pyoverdine (Cunliffe et al., 1995), and FpvA (Rédly and

Poole, 2003) genes. Both regulators also promote the transcription

of virulence factors, such as PrpL protease, exotoxin A, T3SS

toxins, and haem uptake genes (Figure 1A; Wilderman et al., 2001;

Gaines et al., 2007; Chevalier et al., 2019). Virulent P. aeruginosa often

produce pyoverdine and pyochelin (Cox, 1982; Meyer et al., 1996).

Unlike pyoverdine, pyochelin-Fe3+ directly binds the AraC-type

regulator PchR (Heinrichs and Poole, 1993; Michel et al., 2005;
FIGURE 1

Siderophore translocation and signalling. Siderophore translocation in Gram-negative bacteria involves a siderophore-metal ion complex binding a
specific b-barrel receptor in the outer membrane. Binding causes a conformational change in the receptor, translocating the loaded siderophore
into the periplasm with the support of a TonB complex. The iron-loaded siderophore is typically transported through an inner membrane ATP-
binding cassette transporter into the cytosol, as shown for pyochelin (PCH) and yersiniabactin (Ybt). For pyoverdine (PVD) and pyochelin, iron can be
reduced in the periplasm, and the ferrous form is imported into the cytosol. (A) PVD signalling is mediated by FpvR, increasing PVD, virulence
factors, and FpvA. PCH directly interacts with the AraC-type regulator PchR, increasing PCH and its cognate outer membrane receptor. Notably,
ferrous iron inhibits PVD and PCH synthesis through the ferric uptake regulator (Fur). (B) In Pseudomonas aeruginosa, enterobactin (Ent) signalling
involves PfeS, a cytoplasmic membrane-associated histidine kinase sensor, which is thought to interact with Ent (Dean et al., 1996) and trigger PfeR-
mediated increase in Ent and PfeA. (C) Ybt-Cu2+ increases Ybt synthesis and fyuA expression through the AraC-type regulator, YbtA. The ‘?’ indicates
a potential direct interaction between Ybt-X/Cu2+ and YbtA. Here I have added a mechanism with Ybt-X, due to the significant potential for other
Ybt-metal ion mediated signalling pathways, such as Ybt-Ni2+, Ybt-Fe3+ and/or Ybt-Zn2+.
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Linet al., 2013) after being imported via the outer membrane receptor

FptA, and the inner membrane transporter, FptX (Cuıv́ et al., 2004).

PchR upregulates pyochelin and FptA biosynthesis (Figure 1A;

Ankenbauer and Quan, 1994; Serino et al., 1997; Reimmann et al.,

1998, 2001). Enterobactin also mediates signalling in P. aeruginosa.

Unlike pyochelin, enterobactin-Fe3+ is transported into the periplasm

by PfeA, where it binds to the histidine kinase PfeS, inducing

autophosphorylation (Dean et al., 1996). Subsequently, this

phosphoryl group is transferred to PfeR, enabling PfeR to upregulate

enterobactin and PfeA (Figure 1B; Dean and Poole, 1993).

Pyoverdine and pyochelin signalling support efficient

P. aeruginosa colonisation, as described by Mridha and Kümmerli

(2022) in a three-phase model. When P. aeruginosa colonise, levels of

iron stocks vary within a population; therefore, some iron stocks

deplete rapidly, reducing Fur-mediated repression of siderophore

synthesis. Interestingly, Fur de-repression occurs earlier for pyochelin

than pyoverdine (Dumas et al., 2013), causing a difference in

siderophore production. Therefore, in phase I, few cells highly

produce pyochelin (Mridha and Kümmerli, 2022). In phase II, cell

density and siderophore production increase, partly through

siderophore-mediated self-upregulation. The increased siderophore

concentrations mediate reliable signalling between cells,

homogenising siderophore expression (Ross-Gillespie and

Kümmerli, 2014; Mridha and Kümmerli, 2022). In phase III,

pyoverdine inhibits pyochelin synthesis (Dumas et al., 2013) while

increasing autoinduction and further homogeneity in the population

(Mridha and Kümmerli, 2022). Here, siderophore signalling delays

the production of the metabolically expensive, but efficient,

pyoverdine until high cell density and low iron availability are

reached, ensuring efficient iron and pyoverdine uptake by the

population. Additionally, this siderophore signalling increases

homogeneity, a factor that supports siderophore production

(Buckling et al., 2007) and virulence (West and Buckling, 2003).

More recently, yersiniabactin has been revealed as an autoinducer.

Intriguingly, Katumba et al. (2022) hypothesised that Fur-mediated

regulation is inadequate to regulate the role of yersiniabactin in copper

tolerance and acquisition. Subsequently, the group saw copper ions

stimulate yersiniabactin synthesis, but determined that yersiniabactin-

Cu2+, not Cu2+, elicits transcription of yersiniabactin and its cognate

outer membrane receptor gene, fyuA. The AraC-type regulator, YbtA,

was necessary for yersiniabactin-Cu2+-associated transcriptional

upregulation (Katumba et al., 2022). This regulator is predicted to

possess an N-terminal ligand-binding domain, similar to PchR

(Fetherston et al., 1996); however, the mechanism of the

yersiniabactin-Cu2+-YbtA interaction is unknown (Figure 1C).

Yersiniabactin’s involvement in copper acquisition and tolerance

requires an understanding of yersiniabactin-Cu²+ signalling at varying

copper levels. During colonisation, the host limits iron and copper. In

response to low iron, Fur repression is reduced, increasing

yersiniabactin production. As yersiniabactin chelates both iron and

copper, Fur regulates iron and copper acquisition. Additionally,

yersiniabactin-Cu²+ formation triggers autoinduction. In high

copper conditions, increased yersiniabactin-Cu²+ formation

enhances signalling, increasing yersiniabactin levels to sequester

copper to prevent toxicity (Katumba et al., 2022). This model links

the regulation of yersiniabactin for copper acquisition and tolerance.
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Beyond copper, nickel increases yersiniabactin biosynthesis

(Katumba et al., 2022). As yersiniabactin chelates nickel for

metabolic use (Robinson et al., 2018), yersiniabactin-Ni2+ may act

as a signalling agent.

Supporting Katumba et al. (2022); Heffernan et al. (2024)

demonstrated that yersiniabactin production in early transferrin-

supplemented UPEC culture is density-dependent, with delayed

expression at low cell density and increased expression through

(YbtA-dependent) autoinduction as cell density increases. Notably,

the group did not elaborate on the mechanism of yersiniabactin

autoinduction; therefore, this mechanism could be mediated by

yersiniabactin-Cu2+, or one or more novel mechanism(s) of

yersiniabactin-metal complex signalling (Figure 1C).
Siderophores and reactive oxygen
stress tolerance

The immune system utilises ROS against bacterial infections,

but siderophores support bacterial resistance to ROS-mediated

killing. For example, ROS stress increases intracellular

enterobactin (Peralta et al., 2016), which protects against ROS

damage (Adler et al., 2012, 2014). Interestingly, this mechanism

requires the hydrolytic enzyme, Fes - suggesting enterobactin is

hydrolysed to release iron and free hydroxyl groups on the catechol

moieties for radical stabilisation (Povie et al., 2010; Peralta et al.,

2016). This is supported by later work showing that E. coli strains

with impaired enterobactin hydrolysis had higher ROS levels than

wild type (Peralta et al., 2022). More recently, the necessity of linear

enterobactin trimer dihydroxybenzoylserine (DHBS3) for

Salmonella enterica serovar Typhimurium survival in extracellular

peroxide was revealed (Bogomolnaya et al., 2020). The mechanism

of DHBS3 protection was not clarified, but the known role of

catechol moieties in terminating radical chain reactions hints at

the potential mechanism of protection.

Interestingly, pyoverdine increases in the P. aeruginosa

periplasm following photon- and tobramycin-induced ROS

accumulation (Jin et al., 2018), preventing ROS-mediated killing.

Intriguingly, P. aeruginosa downregulates the PvdRT-OpmQ

efflux pump under photon stress to reserve pyoverdine for

internal use, an event termed ‘conditional privatisation’ (Jin et al.,

2018). Notably, loss of the enterobactin efflux pump in E. coli did

not alter ROS levels compared to the wild type (Adler et al., 2014),

raising the possibility of a ‘conditional privatisation’ mechanism

in E. coli.

Pyoverdine and enterobactin upregulation in oxidative stress

suggests an alternative mechanism of regulation. Notably, key

regulators of ROS response mechanisms, SoxS and OxyR, regulate

siderophores in Azotobacter vinelandii (Tindale et al., 2000),

enterobactin in E. coli (Peralta et al., 2016) and PvdS in

P. aeruginosa (Wei et al., 2012). However, OxyR and SoxSR

activate Fur (Zheng et al., 1999), which suggests these proteins

regulate siderophores through a Fur-independent mechanism in the

oxidative stress response.

Unlike other siderophores, yersiniabactin-Cu2+ may function as

a superoxide dismutase (SOD), supporting UPEC survival within
frontiersin.org
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macrophage-like RAW264.7 cells (Chaturvedi et al., 2014). When

phagocytes engulf microbes, the phagosome NADPH oxidase

catalyses the formation of superoxide anions (O2
•-). As O2

•-

cannot cross the membrane to mediate killing, Cu2+ ions are

transported into the phagosome via ATP7A (White et al., 2009),

where the superoxide reduces Cu2+ to Cu+. Cu+ ions are more freely

diffusible and are directly (via iron displacement from iron-sulphur

proteins), or indirectly (by reacting with H2O2 to form OH- and

OH•) toxic. Although yersiniabactin protects UPEC in

macrophage-like cell phagosomes in the presence of NADPH

oxidase- and Cu2+-derived superoxide, further experimental

validation is required to confirm the SOD-like role of

yersiniabactin-Cu2+ and its biological relevance. As phagocytes

can release superoxide extracellularly (Panday et al., 2015), it

would be interesting to determine whether yersiniabactin has

protective qualities outside the phagosome.

Notably, neutrophils clear UPEC through copper-dependent

ROS generation (Babu and Failla, 1990; Fang, 2004). Therefore,

yersiniabactin has dual-function - protecting UPEC by sequestering

copper to reduce ROS generation and by its SOD-like activity.

Beyond catecholate siderophores, S. epidermidis staphyloferrin-

like siderophores detoxify ROS (Oliveira et al., 2021). However, the

absence of catechol moieties makes the mechanism of this

protection currently elusive.
Siderophores and reactive oxygen
stress generation

Alternatively to ROS sequestering, pyochelin has been

associated with ROS production. For example, Ong et al. (2017)

discovered the bacterium Burkholderia paludis produced pyochelin,

which increased intracellular ROS, causing lipid peroxidation and

cell death of Enterococcus faecalis.

Similarly, Gdaniec et al. (2020) saw pyochelin-enhanced ROS kill

S. aureus in vitro when co-expressed with a high-affinity siderophore.

The group proposed that, in the S. aureus cytosol, apo-pyochelin

increases ROS by capturing Fe3+ produced by the Fenton reaction.

However, this mechanism generates limited ROS; therefore, the

mechanism of pyochelin-enhanced killing of S. aureus is unclear.

Interestingly, S. aureus possesses the staphylococcal pyochelin

methyltransferase (Spm), which methylates pyochelin (on the

carboxylic acid group) to reduce intracellular ROS production,

increasing survival during co-infection with P. aeruginosa in a

murine model, compared to an Spm-deficient strain (Jenul et al.,

2023). Furthermore, the fungus Phellinus noxius (Ho et al., 2021)

and soil bacterium Bacillus amyloliquefaciens (Molina-Santiago

et al., 2021) deactivate pyochelin through the esterification of the

carboxylic acid moiety.

Together, these results hint that pyochelin is used as an

antimicrobial to support pathogenesis.
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Microcins

Microcins are low-molecular-weight, antimicrobial peptides

made by Enterobacteriaceae and used as narrow-spectrum

antibiotics (Baquero and Moreno, 1984). Here, we focus on class

IIb microcins due to their chromosomally-encoded, C-terminal

post-translational catechol-siderophore modification (Patzer et al.,

2003; Vassiliadis et al., 2010).

UPEC provide an example of pathogenic bacteria that use

microcins. UPEC mainly belong to phylogroup B2 (Johnson et al.,

2005), which possess microcins MccH47 and MccM more often

than other phylogroups (Micenková et al. , 2016). The

overrepresentation of microcins in UPEC is selected for due to

low iron availability in urine; therefore, the high expression of

siderophore receptors inadvertently increases the uptake of

microcins, which allows microcin-producing strains to dominate

the environmental niche.

Notably, probiotic bacteria also produce microcins to support

colonisation. However, the common opportunistic pathogen

nature of Enterobacteriaceae makes the nature of a bacterium

context-dependent.

The bacteriocin nisin has been demonstrated to act as an

autoinducer of its own expression (Kuipers et al., 1995). In

addition, exogenous siderophores mediate autoinduction and

induction of their outer membrane receptors (Ankenbauer and

Quan, 1994; Guan et al., 2001). Therefore, whether the siderophore

motif in microcins can regulate the production of their cognate

outer membrane receptors to increase uptake is notable.
Concluding remarks

Recently, there has been increased focus on the non-iron

acquisition roles of siderophores. Notably, for progressively more

siderophores the term siderophore (in Greek: sidero = iron and

phore = bearer) is limiting to their range of roles. This review

highlights that virulence-associated siderophores often have non-

classical roles, suggesting that these roles contribute to their

virulence and the producer’s pathogenesis. Furthermore, more

studies have used ecologically relevant environments to explicitly

show siderophores contribute to pathogenesis through non-classical

mechanisms. Future research should continue using relevant

environments to further understand these roles in infection.

Additionally, most previous studies have focused on pyoverdine

and pyochelin in P. aeruginosa, or yersiniabactin and enterobactin

in E. coli. The study of more varied siderophores and siderophore-

producing pathogens will elucidate more varied roles of

siderophores, and their diverse contribution to pathogenesis.

Finally, class IIb microcins are poorly characterised; therefore,

further research in pathogens will enhance our understanding of

these antimicrobials as virulence factors.
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