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Influenza A virus (IAV) can cause seasonal epidemics and global pandemics,

posing serious threats to public health, making a deeper understanding of its

biological characteristics and effective countermeasure strategies essential.

Autophagy not only maintains cellular homeostasis but also plays an important

role in host defense against IAV infection. However, the relationship between IAV

and autophagy is complex, and effective antiviral drugs are not yet available.

Natural products have shown excellent potential in disease control due to their

diversity and multi-targeting. This review focuses on the relationship between

IAV and autophagy and discusses the potential of targeting autophagic pathways

for the development of new antiviral therapies. Particularly, the use of plant

extracts as autophagy modulators has garnered attention due to their non-toxic

nature and cost-effectiveness, which provides strong support for the

development of future antiviral drugs that can help to inhibit viral infections

and slow down disease progression.
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1 Introduction

Autophagy is a cellular process of self-degradation and recycling (Glick et al., 2010).

When cells are stimulated by various stress factors, they can generate specialized vesicles

that encapsulate cellular components such as damaged organelles, lipid droplets,

superfluous proteins, and pathogenic microorganisms (He and Klionsky, 2009). These

vesicles elongate, curve, and eventually close to form autophagosomes, which then fuse

with lysosomes for breakdown and degradation. This degradation process helps maintain

the stability of the intracellular environment. In mammalian cells, autophagy is broadly

categorized into three main types: macroautophagy, microautophagy, and molecular

chaperone-mediated autophagy (Levine et al., 2011). Among these, macroautophagy is

the predominant form (Kaur and Debnath, 2015; Levine et al., 2011). Recent research has

further classified autophagy into selective and non-selective types based on its specificity for

degrading substrates (Yamamoto and Noda, 2020). Non-selective autophagy involves the
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random transport of cytoplasmic components to lysosomes,

whereas selective autophagy targets specific substrate proteins for

degradation (Chung et al., 2020; Li Y. et al., 2019). Depending on

cellular conditions and the presence of stimuli, autophagy can also

be classified as induced autophagy and basal constitutive autophagy

(Inuzuka et al., 2009). Basal autophagy operates at a low, continuous

level in most cells, crucial for the routine turnover of intracellular

substances and maintenance of cellular homeostasis. In contrast,

induced autophagy occurs at a heightened level in response to

external stressors, serving as a protective mechanism to rapidly

elevate cellular degradation processes (Sun Y. et al., 2018).

Influenza A virus (IAV) is associated with high morbidity and

mortality. They are extremely pathogenic and cause significant

economic losses, posing a constant threat to public health

(Ampomah and Lim, 2020). IAV belongs to the family

Orthomyxoviridae and typically exhibits filamentous or spherical

morphology with a diameter ranging from 80 to 120 nm (Horiguchi

et al., 2019). These viruses are characterized as single-stranded,

negative-sense RNA viruses with a genome length of approximately

13.6 kb. They encode a total of 11 viral proteins, including essential

polymerase proteins (PB1, PB2, PA, and PB1-F2), hemagglutinin

(HA), neuraminidase (NA), nucleoprotein (NP), matrix proteins

(M1 and M2), and non-structural proteins (NS1 and NS2) (Luo,

2012; Li R. et al., 2024). When the virus invades, its surface HA

binds to sialic acid residues on the host cell surface, forming a

swallowing vesicle, and enters the host cell via endocytosis (Jin et al.,

2017). Subsequently, the M2 ion channel opens, causing the viral

envelope to fuse with the engulfing vesicle, releasing the

nucleocapsid into the cytoplasm through the M1 channel. Under

the action of NP, PA, PB1, PB1-F2, and PB2, the nucleocapsid

enters the host cell nucleus. Inside the nucleus, newly synthesized

negative-sense RNA (vRNA) binds to NP, PB1, PB2, and PA to

form the ribonucleoprotein complex (vRNP). Simultaneously, HA,

NA, M1, and M2 synthesized in the host cell’s endoplasmic

reticulum and Golgi apparatus are utilized for assembly at the cell

membrane with vRNP (Zou et al., 2022; Li R. et al., 2024). Finally,

viruses are cleaved from the cell membrane by the enzymatic

activity of the NA protein, completing the release process (Figure 1).
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When host cells are attacked by viruses, the autophagy

mechanism is activated as a defense strategy that helps to

recognize, encapsulate and degrade viral particles, thereby

limiting viral replication and spread (Ammanathan et al., 2020;

Dreux and Chisari, 2009). Viral infection can promote the increase

of autophagy in host cells through multiple pathways, including

direct manipulation of the expression of autophagy-related genes,

regulation of autophagosome formation and degradation processes,

as well as indirectly by interfering with cellular metabolism,

activating immune responses, or triggering cellular stress (Roldán

et al., 2019; Zhang L. et al., 2023). For example, the IAV, measles

virus and human immunodeficiency virus type I are capable of

inducing autophagy (Hoenigsperger et al., 2024; Wang et al., 2012).

However, herpes simplex virus type I and human cytomegalovirus

can inhibit autophagy (Ripa et al., 2024; Li H. et al., 2024). The

complex interactions between viruses and autophagy are receiving

extensive attention from the scientific community, and targeting

autophagy is expected to be a new strategy for antiviral therapy.

Natural products have long been widely used in the development

of antiviral drugs because of their multi-targeting and low side effects

(Xiao et al., 2018; Xu et al., 2020). Research reveals the complex

relationship between these compounds and autophagy. For instance,

andrographolide has been shown to promote autophagy by the

RAGE/PI3K/AKT/mTOR pathway, thereby ameliorating sepsis-

induced acute lung injury (Qin et al., 2024), while saikosaponin D

has been found to inhibit the proliferation and metastasis of

colorectal cancer cells by increasing LC3B and p62 autophagic

factor levels (Lee et al., 2024). In addition, more and more studies

have shown that natural products can exert antiviral effects by

regulating autophagy (Liu et al., 2018; Xing et al., 2021; Vidoni

et al., 2022). Statistics show that from 1981 to 2019, 186 antiviral

drugs have been successfully approved, including 49 antiviral drugs

related to natural products (Newman and Cragg, 2020). However,

compared to the huge number of biological species in nature, there

are still a large number of natural products with potential antiviral

abilities that have not yet been discovered. Therefore, exploring

natural products remains an important direction for current

antiviral drug development. With the advancement of chemical
FIGURE 1

Structure and cellular invasion mechanism of IAV.
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and pharmacological technologies, the application of these natural

compounds has gradually become ordered and standardized,

providing new perspectives for drug discovery (Liu L. et al., 2022).

In this review, we will summarize the relationship between autophagy

and viruses and explore the potential pharmacological mechanisms

by which natural products exert antiviral effects through modulating

autophagy, to provide a reference for the development of novel

antiviral drugs.
2 Autophagic processes and detection

2.1 Autophagy

The essence of autophagy is the process of rearrangement of

intracellular membranes, a process that includes initiation, vesicle

formation, vesicle extension and closure, fusion with lysosomes, and

disassembly (Kaur and Debnath, 2015). During the initiation phase,

the mTORC1 complex (composed of mTOR, Raptor, Deptor,

PRAS40 and mLST8) regulates the activation of autophagy.

During vesicle formation, the ULK complex (composed of ULK1/

2, Atg101, Atg13 and FIP200) and PI3K complex (composed of

Beclin 1, Barkor, NRBF2, VPS15 and VPS34) play key roles. Vesicle
Frontiers in Cellular and Infection Microbiology 03
extension and closure are dependent on the Atg12-Atg5-Atg16

system and the LC3 system, with the lipidation of LC3-II being the

hallmark event of this process (Figure 2). Mature autophagosomes

fuse with lysosomes to form autolysosomes, a fusion process that

involves molecules such as SNARE proteins. Finally, in autophagic

lysosomes, the encapsulated material is broken down by lysosomal

enzymes, releasing essential molecules that are reused by the cell

(Chen T. et al., 2023; Dossou and Basu, 2019; Xi et al., 2019).
2.2 Detection of autophagy

There are numerous methods for the detection of autophagy,

and each technique has its unique advantages and limitations

(Mizushima et al., 2010). Western blotting (WB) is effective for

assessing autophagic activity by measuring the expression levels of

autophagy-related proteins such as LC3-II/I and p62 (Mizushima

and Murphy, 2020). Mang used WB analysis to show that

the M2 protein in IAV inhibits the autophagy process by

assessing the expression levels of p-Akt, Akt, p-mTOR, mTOR,

becn1, ATG5, and LC3-I/LC3-II proteins (Wang et al., 2019a).

Immunofluorescence uses fluorescently labeled autophagy proteins

to observe autophagic vesicle formation, and the researchers used
FIGURE 2

The process of intracellular autophagy and its related proteins (By Figdraw).
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LC3 labeled with green fluorescent protein (GFP-LC3) to observe

autophagic vesicle formation by fluorescence microscopy (Tang

et al., 2012). Moreover, the unique properties of Keima proteins,

which exhibit spectral changes under neutral and acidic conditions,

make them a powerful tool for monitoring the process of autophagy

from cytoplasm to lysosomes. This assay applies only to living cells

and can be analyzed using fluorescence zymography or fluorescence

microscopy (Nagata et al., 2018). According to reports, Zhang et al.

utilized mito-Keima for immunofluorescence to assess

mitochondrial autophagy levels, demonstrating that the NP

protein encoded by the PR8 virus induces mitochondrial

autophagy (Zhang B. et al., 2023).

In addition, the researchers developed a GFP-RFP-LC3 dual-color

fluorescent fusion protein system that exploits the pH differences

between autophagosomes and autolysosomes. In autophagosomes,

where GFP and RFP coexist, fluorescence microscopy shows yellow

fluorescence. In the acidic environment of autolysosome, GFP

fluorescence is quenched, leaving only red fluorescence from RFP

(Chen M. M. et al., 2023; Sun W. L. et al., 2018). Although

fluorescence microscopy can visualize and localize autophagy, its

quantification remains challenging. Transmission electron

microscopy (TEM), with its high resolution, can observe the

autophagy process in detail and provide direct visual evidence but is

technically demanding and expensive (Liu et al., 2017). Beale et al.

utilized TEM and immunofluorescence to discover that M2 disrupts

autophagy by binding to the highly conserved LIR motif (LC3-

interacting region) in the cytoplasm, thereby promoting filamentous

budding and viral particle stability (Beale et al., 2014). Flow cytometry

can detect autophagic activity using the ratio of GFP to RFP. The

GFP-RFP-LC3 fusion protein expressed in cells is processed by Atg4

endopeptidase and breaks into GFP-LC3 and RFP-LC3DG, where the
shift in the ratio of GFP-LC3 as an autophagic substrate to the internal

control RFP/LC3DG reflects the level of autophagic activity

(Date et al., 2022). Among these methods, WB, TEM, and

immunofluorescence are commonly used. In recent years, several

studies have also begun to use flow cytometry to detect autophagy

levels, but it is still relatively rarely used compared to other methods.

In recent years, emerging technologies such as proteomics,

metabolomics, transcriptomics, and network pharmacology have

significantly advanced autophagy research. Metabolomics provides

crucial insights into metabolic changes during autophagy by

analyzing key metabolites, including amino acids, carbohydrates,

and lipids (Stryeck et al., 2017). Transcriptomics elucidates the

expression patterns of autophagy-related genes and their regulatory

mechanisms (Jiao et al., 2020), while proteomics offers detailed

information on protein alterations associated with autophagy by

identifying and quantifying relevant proteins (Cudjoe et al., 2017).

The integration of these technologies has unveiled key molecules

and mechanisms involved in autophagy. For instance, the combined

analysis of metabolomics and proteomics identified phospholipase

A2 as a critical target in autophagy related to gouty arthritis (Fu

et al., 2023). Additionally, transcriptomics has highlighted the role

of autophagy in the infection process of the pepper mild mottle

virus (Jiao et al., 2020). Network pharmacology has also been
Frontiers in Cellular and Infection Microbiology 04
instrumental in predicting drug targets related to autophagy, such

as HSPA5 and PARP1 (Guo et al., 2024), which are crucial for

regulating lysosomes and autophagosomes and are involved in viral

replication. Overall, the synergistic application of these techniques

not only enhances the understanding of autophagy mechanisms but

also advances research in related diseases and drug development.
3 IAV infection and cellular autophagy

The relationship between autophagy and IAV is complex. The

specific mechanism of influence between different pathogens and

autophagy can be based on the genome sequence, antigenicity,

pathogenicity, replication efficiency, and transmissibility of specific

pathogens (Khandia et al., 2019). Autophagy was closely associated

with the duration of IAV infection, promoting autophagosome

formation in the early stages of infection and inhibiting

autophagosome maturation in the later stages (Gannagé

et al., 2009). Many studies have demonstrated that autophagy

promotes viral self-replication (Zhang et al., 2021; Wang X. et al.,

2020; Wang et al., 2019b). Interestingly, the virus exhibited complex

regulatory interactions with autophagy (Table 1), as seen with H3N2

and H1N1 viruses (Choi et al., 2019; Gannagé et al., 2009), which

could both inhibit and promote autophagy. However, H9N2 and

H5N1 viruses typically induce autophagy (Zhang et al., 2021; Zhou

et al., 2009; Zhang et al., 2019; Ma et al., 2011; Pan et al., 2014).
3.1 IAV infection promotes
autophagosome formation

Autophagosomes are abundant in cells infected with IAV (Cui

et al., 2020). H1N1 virus-induced autophagy in dendritic cells

through endocytosis, and autophagy-deficient bone marrow-

derived dendritic cells (BMDC) showed significant deficiencies in

eliciting innate and adaptive immune responses to H1N1 (Zang

et al., 2016). Zhou et al. found that after infection of MDCK cells

with either H1N1 or H9N2, fluorescence and electron microscopy

observed a significant increase in the amount of LC3-II, which

further confirms that viral infection promotes increased

autophagosome formation (Zhou et al., 2009). In addition, the

H5N1 virus also stimulated the mTOR-related autophagy pathway

by regulating TSC2 expression (Ma et al., 2011). Dai et al. found

that IAV infection increased the expression of ATG5, ATG12,

Beclin1 and ATG9, increased LC3-I to LC3-II conversion, and

promoted autophagosome formation (Dai et al., 2012a).
3.2 IAV infection inhibits autophagosome

Viruses can suppress autophagy by disrupting its initiation

signals and altering the formation of autophagosomes, thus

evading host immune responses and delaying their clearance. The

study found that H1N1 infection in A549 cells significantly reduces
frontiersin.org
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TABLE 1 Relationship between IAV and autophagy.

Virus Autophagy genes
Experimental

cells or animals
Impact on Autophagy

A/duck/Hubei/Hangmei01/2006
(H5N1) (HM/06)

LC3 A549
The binding of NP to LC3 promoted vRNP export, while M2 interaction
with LC3 boosted infectious viral particle production (Wang
et al., 2019b).

A/Hong Kong/8/68 (H3N2) (A/
HK/68)

Atg5, Atg7, Beclin 1, Ulk1,
Rb1cc1, Maplc3a, Maplc3b,
Gabarap, Atg14, Uvrag

Alox5-/-B/Atg7-/-mice
Autophagy played a key role in maintaining the survival of memory B
cells and regulating their protective antibody response to viral infection
(Chen et al., 2014).

A/WSN/1933 (H1N1) LC3 A549
During early-stage IAV induced autophagic degradation of antioxidant
enzyme SOD1, leading to increased reactive oxygen species (ROS)
production and enhanced viral infectivity (Jung et al., 2018).

A/WSN/33 (H1N1), A/chicken/
Beijing/04 (H9N2)

LC3-I/LC3-II, Beclin 1 MDCK
The virus increased the amount of LC3-II and enhanced the autophagy
flux (Zhou et al., 2009).

A/Aichi/68 (H3N2), A/WSN/33
(H1N1), A/PR8/34 (H1N1)

Atg8/LC3-II
A549, MDAMC,
HaCat, MLE-12,
MDCK, HeLa

IAV inhibited the fusion of autophagosome and lysosome through its M2
protein, thus inhibiting the autophagy pathway and promoting cell
apoptosis (Gannagé et al., 2009).

H5N1 p-Akt, p-S6, S6, LC3-II
Tsc2-/- and
Pten-/- MEF

The H5N1 virus caused autophagy cell death by inhibiting the mTOR
signaling pathway (Ma et al., 2011).

A/Hongkong/8/68 (H3N2), A/
Wisconsin/33 (H1N1)

LC3, p62
HEK293, TREx-293,
MCF-7, MDCK

The M2 protein in the virus could block the fusion of autophagosomes
with lysosomes (Ren et al., 2016).

A/WSN/33 (H1N1), A/PR8/
34 (H1N1)

LC3
Atg7-/- MEFs, A549,
MDCK, HeLa

Autophagy participated in the accumulation of viral components (RNA
and protein) of IAV, which was linked to Hsp90 and mTOR signaling
pathways (Liu et al., 2016).

H3N2 p-mTOR, LC3, ATG5, p62
C57BL/6 male
mice, A549

The combination of LPS with viruses activated autophagy (Wang W.
et al., 2023).

A/Virginia/ATCC2/2009 (H1N1),
A/Weiss/43 (H1N1), A/California/
2/2014 (H3N2)

P62
A549, MDCK, SPF
BALB/c mice

The virus reduced the autophagic protein p62 (Ge et al., 2023).

A/duck/Hubei/Hangmei01/2006
(H5N1) (H5N1/HM) (PB1-F2HM),
A/PR8/H1N1 (PB1-F2PR8)

LC3
HEK 293T,
A549, MDCK

PB1-F2 interacted with LC3B to induce mitochondrial autophagy (Wang
et al., 2021).

H9N2 LC3, Atg5 A549
H9N2 induced autophagy, and autophagy regulated oxidative stress via
the Akt/TSC2/mTOR signaling pathway, thereby promoting the
replication of the virus (Zhang et al., 2021).

A/new.Coledonia/20/1999 (H1N1),
A/Jilin/9/2004 (H5N1)

mTOR, p-mTOR, Akt, p-
Akt, S6, p-S6, LC3, TSC2,
Atg5, Atg6

A549
The HA protein of the H5N1 virus induced autophagy, and inhibiting
autophagy ameliorated virus-induced acute lung injury (Sun et al., 2012).

A/PR/8/34 (H1N1), A/FPV/
Rostock/34 (H7N1)

LC3-I/LC3-II, Beclin 1 MDCK, CV-1
NS1 indirectly stimulated autophagy by up-regulating the synthesis of
HA and M2 (Zhirnov and Klenk, 2013).

A/PR/8/34 (H1N1), KBPV-VR-
32 (H3N2)

autophagosome MDCK Virus induced autophagy in MDCK cells (Choi et al., 2019).

A/Vic/3/75 (H3N2, VR-822), A/
PR/8/34
(H1N1, VR-1469)

ATG-5, ATG-7 and LC3 MDCK
The expression level of the autophagy gene (ATG-5, ATG-7 and LC3)
increased significantly after the virus infection (Gansukh et al., 2016).

A/swine/HeBei/012/2008 virus
(H9N2 virus)

LC3, p62, Atg5, mTOR, p-
mTOR, Akt, p-Akt

A549, BALB/c mice
H9N2 infection resulted in a significant increase in the level of
autophagy, and autophagy contributes to the process of viral replication
(Zhang et al., 2019).

A/Quail/Hong Kong/G1/97
(H9N2/G1), A/Hong Kong/54/
98 (H1N1)

LC3B, Atg5, p62, p70S6K
Human
blood macrophages

H9N2/G1 viruses infected cells more effectively induced autophagy than
H1N1 viruses (Law et al., 2010).

H5N1 beclin1, Atg5 HEK293T, A549
NF-kB activation enhanced H5N1-induced autophagosome formation,
thereby exacerbating H5N1-induced lung inflammation (Pan et al., 2014).
F
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A549, human lung epithelial cells; MDCK, Madin-Darby canine kidney; MLE-12, mouse lung epithelial cells; MDAMC, human breast carcinoma cells; HaCat, human keratinocyte cells; MEF,
mouse embryonic fibroblasts; Hela, human cervical carcinoma cell; HEK293, Human Embryonic Kidney 293; MCF-7, Michigan Cancer Foundation-7; TREx-293, Modified HEK293 cell line with
T-REx™ (Tight-Regulated Expression) system; CV-1, Monkey Kidney Cells 1.
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the expression of p62 protein within 24 h (Ge et al., 2023).

Autophagosomes are typically referred to as transient vesicles that

are quickly degraded by lysosomes. Therefore, the accumulation of

autophagosomes induced by IAV may indicate an increase in their

formation or a decrease in their degradation (Klionsky et al., 2012).

The study by Team Gannagé et al. identified M2, the first viral

protein that blocks autophagosome degradation, this protein

inhibited the fusion process of autophagosomes with lysosomes,

thus contributing to the accumulation of autophagosomes in IAV-

infected A549 cells (Gannagé et al., 2009). Corresponding studies

showed that autophagosomes also accumulated in dendritic cells

(DCs) during IAV infection, while the fusion of autophagosomes

with lysosomes was inhibited (Deng et al., 2021). Further studies

using defective virus-infected cells with knockdown of the M2

protein and detected by the mCherry-GFP reporter system found

that the fluorescence intensities of the two groups did not show a

significant difference when compared with normal virus-infected

DCs, suggesting that the M2 protein may not play a role in blocking

the fusion of autophagosomes with lysosomes during IAV-induced

autophagy. This is contradictory to the results of previous studies

(Deng et al., 2021; Gannagé et al., 2009), probably because of the

different experimental methods - the former involves transfection of

M2 protein into A549 cells, while the latter involves the use of M2

protein-deficient virus-infected cells. Thus, further studies are

needed to elucidate whether the M2 protein is specifically

involved in or interferes with the fusion mechanism of

autophagosomes and lysosomes. However, IAV infection certainly

blocks the fusion of autophagosomes with lysosomes, thereby

inhibiting the autophagic process (Figure 3).
Frontiers in Cellular and Infection Microbiology 06
3.3 Effects of PB2, M2, HA and NS1
proteins of IAV on autophagy

PB2, M2, HA, and NS1 proteins are involved in regulating the

autophagy process in host cells, and the M2 protein alone can induce

the initial formation of autophagosomes (Kuo et al., 2017; Zhirnov

and Klenk, 2013; Guo et al., 2023). Gannagé et al. demonstrated that

the expression of the autophagosome marker LC3-II was increased in

M2-transfected cells, but the fusion of autophagosomes with

lysosomes was hindered. Meanwhile, autophagosomes accumulated

to a significantly lower extent in virus-infected cells lacking M2.

These results suggested that the M2 protein regulated the autophagy

mechanism in IAV replication by interfering with the fusion process

between autophagosomes and lysosomes (Gannagé et al., 2009). In

another study, Liu et al. found that the PB2 protein of IAV interacted

with the p62 autophagy receptor, which promoted the viral

replication process (Liu et al., 2021). Specifically, depletion of p62

prevented the formation of vRNP aggregates in cells infected with the

avian PB2(627E) virus, suggesting that p62 was essential for the

formation of vRNP aggregates in virus-infected cells. The avian PB2

(627E) virus-induced higher levels of autophagic responses in

infected cells compared to the mammalian-type PB2(627K) virus

(Liu et al., 2021). Additionally, the HA protein, the major surface

glycoprotein of the virus, activated autophagy, with the lysis products

of H5 and H7 leading to a significant up-regulation of the LC3-II

protein (Zhirnov and Klenk, 2013). Another study showed that heat

shock protein 90AA1 (HSP90AA1) on the cell surface was directly

bound to the HA1 subunit of IAV and induced autophagy via the

AKT-mTOR pathway (Wang X. et al., 2020). Furthermore, NS1
FIGURE 3

Effects of IAV infection on autophagy (By Figdraw).
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inhibited apoptosis in the early stages of infection by inhibiting viral

replication, and may indirectly stimulate autophagy by increasing the

synthesis of HA andM2 proteins (Baskin et al., 2009). These different

mechanisms show that viruses have diverse strategies in regulating

host cell autophagy, which helps them to adapt to and exploit the host

cell environment, thereby facilitating viral replication and survival.
3.4 Autophagy promotes IAV replication

Autophagy is a cellular protective mechanism that helps cells

cope with oxidative stress or inflammatory damage (Ornatowski

et al., 2020; Lin et al., 2019), and can also be utilized by viruses to

promote their survival and reproduction (Figure 4). It has been

reported that when H1N1 or H9N2 infected MDCK cells, the level

of autophagy was significantly increased, and the virus titers were

significantly decreased with pharmacological inhibition (3-

methylademine and wortmannin) or RNA interference targeting

autophagy, indicating that autophagy actively participated in the

replication of IAV (Zhou et al., 2009). Consistent with this,

following transfection with the Beclin-1 expression plasmid, the

cells showed significantly increased viral titers with the H1N1 virus

at 24 h. However, after 48 h, there was no significant difference in

viral titers compared to the control group (Feizi et al., 2017). This

suggests that increasing autophagy before infection may promote

early viral replication. Autophagy influences viral replication not

only through the PI3K complex, but also by regulating mTOR and

the fusion of autophagosomes with lysosomes (Liu H. et al., 2022;

Wang M. et al., 2023).
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3.5 Autophagy inhibits IAV replication

Most studies indicate that autophagy promotes influenza A

virus (IAV) replication. However, some studies have suggested the

opposite, proposing that autophagy inhibits viral replication. One of

these studies observed a significant increase in H1N1 titers in

VPS34-deficient cells. In contrast, cells that re-expressed VPS34

showed a significant decrease in H1N1 titers (Yu et al., 2019).

VPS34, a class III phosphatidylinositol 3-kinase, is crucial for

autophagy, particularly in the formation of autophagic vesicles.

These findings suggested that restoring autophagy function can

effectively reduce the replication of the H1N1 virus within cells. On

the other hand, Guo et al. proposed that the fusion of

autophagosomes and lysosomes facilitates the degradation of IAV

enclosed in autophagosomes, thereby inhibiting viral replication

(Guo et al., 2024).
4 Antiviral effects of natural products

4.1 Safety of natural products

In recent years, natural products have garnered widespread

attention as antiviral agents. However, their safety is equally

important in both research and clinical applications. Various

natural products (such as flavonoids, polyphenols, and

polysaccharides) have been evaluated to explore their safety and

potential uses in treating viral infections. Trehalose (a-D-

glucopyranosyl-a-D-glucopyranoside) is a natural disaccharide
FIGURE 4

Autophagy mediated IAV replication (By Figdraw).
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approved as a safe food ingredient by the U.S. Food and Drug

Administration (FDA) (Schiraldi et al., 2002). Trehalose is widely

found in plants, insects, microorganisms, and invertebrates and is

recognized as an effective autophagy inducer (Wu et al., 2015).

Studies indicated that trehalose promoted the fusion of

autophagosomes with lysosomes, preventing viruses from

entering exosomes and thus inducing Zika virus degradation

(Yuan et al., 2017). Additionally, it increased the expression levels

of LC3B-II, Beclin-1, and ATG5/ATG12, thereby inhibiting human

cytomegalovirus infection (Belzile et al., 2016). Resveratrol (3,5,4′-
trihydroxy-trans-stilbene) is a polyphenol that demonstrates good

safety. No significant cytotoxicity was observed in MDCK cells

exposed to 10-20 mg/mL of resveratrol. Continuous intraperitoneal

injection of resveratrol (1 mg/kg/day) for 7 days in mice also

showed no toxicity and effectively inhibited H1N1 virus

replication both in vitro and in vivo (Palamara et al., 2005).

Moreover, resveratrol showed an IC50 of 24.7 mM against H1N1

and H3N2 viruses in A549 cells, indicating significant antiviral

effects (Lin et al., 2015). Additionally, research showed that

quercetin 3-rhamnoside (10 mg/mL) did not exhibit noticeable

toxicity toward MDCK cells and could effectively inhibit IAV

infection (Choi et al., 2009). Although these natural products
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exhibit good safety profiles and significant antiviral activity at

recommended concentrations, their practical application requires

careful consideration. It is particularly important to monitor their

long-term safety and effectiveness against different types of viruses

and stages of infection. A thorough evaluation is crucial for guiding

further research and clinical application of these natural products.
4.2 Effective anti-IAV components in
natural products

Natural products are derived from the constituents of animals,

plants, microorganisms, insects and marine organisms or their

metabolites, and are known for their wide range of sources,

diverse compositions, unique structures, low side effects and low

susceptibility to drug resistance. In recent years, studies have

continued to reveal the activity of natural products such as

mycobacterial metabolites, polyphenols, flavonoids, alkaloids and

terpenoids in antiviral infections (Figure 5) (Li R. et al., 2024; Li J. J.

et al., 2024; Zhang J. et al., 2024). Asperterrestide A inhibited A/

WSN/33 (H1N1) and A/Hong Kong/8/68 (H3N2) viruses with half

inhibitory concentration (IC50) values of 15 mM and 8.1 mM,
FIGURE 5

Structures of representative natural products with anti-IAV activity.
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respectively (He et al., 2013). In addition, a new aspergillus toxin,

Asteltoxin E, from Aspergillus sp. SCSIO XWS02F40, showed

similarly significant inhibitory activity against the H1N1 and

H3N2 viruses, with an IC50 of 3.5 ± 1.3 mM and 6.2 ± 0.08 mM,

respectively (Tian et al., 2015). Perovic et al. utilized the ZINC

Natural Product database, the ligand-based virtual screening and

molecular docking technique, 3-(1H-indol-3-yl)-N-[(1R)-1-

methyl-3-phenyl-propyl] propanamide was successfully identified

as a promising anti-influenza virus natural drug candidate (Perovic

et al., 2024). Aloe vera ethanol extract showed the potential to

inhibit autophagy in H1N1 or H3N2 infected MDCK cells (Choi

et al., 2019). The main components were found to include

quercetin, catechin hydrate and kaempferol by ultra-performance

liquid chromatography-tandem mass spectrometry (UPLC-MS/

MS). Molecular docking simulations showed that these

components are bound with high affinity to M2 proteins. M2

proteins can inhibit the fusion of lysosomes and autophagosomes,

thus further inhibiting autophagy (Deng et al., 2021). Therefore,

Choi et al. hypothesized that the inhibition of viral infections by

Aloe vera ethanol extract may be through affecting M2 proteins in

the regulation of autophagy-related mechanisms (Choi et al., 2019).

However, further in-depth studies are needed to verify this putative

mechanism. The ethanolic extract of Cleistocalyx operculatus leaves

contains compounds such as 2’,4’-trihydroxy-6’-methoxy-3’,5’-

dimethylacetophenone and myricetin-3’,5’-dimethylether 3-O-b-
D-galactopyranoside, which have demonstrated inhibitory activity

against IAV including H1N1 A/PR/8/34, H9N2 A/Chicken/Korea/

O1310/2001, wild-type novel swine influenza, and oseltamivir-

resistant strains (H274Y mutation) (Ha et al., 2016). These

findings not only enrich the candidate pool of anti-IAV drugs but

also provide new directions and possibilities for the development of

novel antiviral drugs and therapeutic strategies.
4.3 Autophagy regulation by
natural products

4.3.1 Regulation of autophagy-related signaling
pathways by natural products

Studies in recent years have gradually revealed the potential role

of natural products in regulating cellular autophagy signaling

pathways (Chen F. et al., 2024; Chen Y. L. et al., 2024; Jung et al.,

2024). Salidroside was found to inhibit the autophagy process by

binding to key proteins such as mTOR, SIRT1 and AKT1 with high

affinity through the systemic pharmacological study of Chinese

medicine by Chai et al (Chai et al., 2024). Baicalin can affect the

expression of LC3-II proteins and thus trigger autophagy by

regulating signaling pathways such as PI3K/Akt/mTOR, ERK1/2

and b-catenin (Abbott and Ustoyev, 2019). Selenizing Astragalus

polysaccharide (Liu et al., 2018) and Platycodon grandiflorus

polysaccharides (Xing et al., 2021) regulate autophagy triggered

by viral infection by modulating the Akt/mTOR signaling pathway.

The total flavonoids of Abelmoschus manihot were able to regulate

autophagy through the AMPK/mTOR pathway (Zhang D. et al.,

2024). And other natural products such as Atractylodes

macrocephala polysaccharide (Qi et al., 2024), total flavone of
Frontiers in Cellular and Infection Microbiology 09
Abelmoschus Manihot (Zhang D. et al., 2024), luteolin, apigenin,

and chrysin (Lo et al., 2024), Hesperidin (Kumar et al., 2023),

phosphorylated Codonopsis pilosula polysaccharide (Ming et al.,

2020) and Chrysanthemum indicum polysaccharide (Ming et al.,

2019) also showed the ability to regulate autophagy. These findings

suggested that natural products could regulate autophagy by

affecting cellular signal transduction pathways such as AMPK/

mTOR and PI3K/Akt/mTOR, which was important for the

development of novel anti-IAV therapeutic strategies. However,

whether they possess antiviral activity remains to be clarified

through further research to elucidate the complex relationship

between these factors. Therefore, we will explore natural products

that exhibit both autophagy-regulating and anti-IAV properties.

4.3.2 Natural products targeting autophagy to
prevent IAV infection

With the increase of global public health awareness and the

emergence of viral mutations, the research of natural products in

the field of antiviral will be of even greater significance. Autophagy

is almost a process that promotes viral replication by observing the

relationship between autophagy and the IAV in sections 3.4 and 3.5,

and therefore inhibiting autophagy may help to suppress viral

infection. This finding provides a theoretical strategy for the

development of antiviral drugs.

4.3.2.1 Flavonoids

Natural products that can regulate autophagic processes have

become a hot topic in research on the treatment of viral infections,

especially flavonoids (Chang et al., 2020; Song and Choi, 2011).

Baicalin inhibited H3N2 or H6N6 virus-induced autophagy and

down-regulated the expression levels of autophagy-related factors

(LC3II, ATG12 and ATG5) in RAW264.7 or A549 cells, suggesting

that baicalin may reduce viral infectivity by inhibiting autophagy

(Zhu et al., 2015; Yang et al., 2024). In addition, procyanidin, a

natural product enriched in a variety of traditional Chinese

medicines, has been shown to significantly inhibit the

accumulation of LC3II and the aggregation of GFP-LC3, as well

as reduce the expression levels of Atg7, Atg5 and Atg12 in MDCK

cells. Through further molecular mechanism studies, procyanidin

inhibited the formation of Atg5-Atg12/Atg16 heterotrimer and the

dissociation of beclin1/bcl2 heterodimer, which provided a

scientific basis for their use as novel anti-IAV drugs (Dai et al.,

2012a). These in vitro experiments above provided a preliminary

understanding of the role of natural products at the cellular level,

but did not fully reflect their actual effects in complex organisms. In

vitro experiments usually lack factors such as biotransformation,

metabolism and drug transport in vivo. Therefore, the results of in

vitro environments need to be further validated for their actual

effects and safety through animal models and clinical trials.

The activation of toll-like receptor (TLR) 4 plays an important

role in IAV infection (Ma et al., 2024; Wang et al., 2022). He et al.

constructed a human TLR4 promoter dual luciferase reporter gene

assay system and screened 161 TCM-based TLR4 inhibitors. The

results showed that could effectively inhibit viral infection and

replication. Further studies showed that Apigetrin not only

effectively reduced the accumulation of autophagy markers LC3-II
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and p62 in vitro, but also showed similar effects in vivo, which

reinforces its reliability as an antiviral therapeutic candidate (He

et al., 2023). Meanwhile, other studies have found that

overexpression of TLR4 promotes autophagic activity (Wang S.

et al., 2020). Unfortunately, no study has yet definitively confirmed

whether the natural product regulates autophagy by inhibiting

TLR4, thereby inhibiting IAV infection and transmission.

Nevertheless, these findings provide a theoretical basis for the

possibility that natural products may regulate autophagy by

inhibiting TLR4, thereby inhibiting IAV infection and

transmission, and opening up new research directions for

exploring alternative drug targets for autophagy regulation.

4.3.2.2 Other natural products

In addition to the above flavonoids, natural products such as

Tanreqing injection (Guo et al., 2024), Moringa A from Moringa

oleifera seeds (Xiong et al., 2021), gallic acid (Chang et al., 2024b),

Isatis indigotica (Chang et al., 2024a), eugenol (Dai et al., 2013b)

and Hochuekkito (Takanashi et al., 2017) have been recognized for

their ability to anti-IAV virus infections by modulating autophagy.

The reduced production of H1N1 virus proteins (M1, M2, and NP

proteins), the significant decrease in LC3B II conversion, and the

decrease in the accumulation of autophagosomes with the increase

in gallic acid concentration in gallic acid-treated H1N1 IAV suggest

that gallic acid maybe suppresses H1N1 viral infectivity by

inhibiting the autophagy pathway and suppressing the production

of virulent M1, M2, and NP proteins (Chang et al., 2024b).

Interestingly, Dai et al. developed a new drug screening method

based on autophagy signaling pathway to screen novel anti-IAV

drugs using a bimolecular fluorescence complementation-

fluorescence resonance energy transfer (BiFC-FRET) assay. This

approach not only enables the screening of potential anti-IAV drugs

but also elucidates the molecular mechanisms underlying their

action, thereby providing a crucial foundation for future drug

development. Evodiamine (the main active ingredient of Evodia

rutaecarpa Benth) (Dai et al., 2012b), 23-(S)-2-amino-3-phenyl-

propanoyl-silybin (an amino acid derivative of silymarin) (Dai

et al., 2013a), and eugenol (the main active ingredient of

Syzygium aromaticum L.) (Dai et al., 2013b) were found to have

anti-IAV potential, each through distinct mechanisms. Among

them, Evodiamine and 23-(S)-2-amino-3-phenyl-propanoyl-

silybin inhibit IAV replication by inhibiting the formation of the

Atg5-Atg12/Atg16 complex, whereas eugenol exerts its anti-IAV

effect by effectively blocking the dissociation of the Beclin1-Bcl2

complex. Beclin1 is a key regulator of autophagy, while Bcl2 is an

important inhibitor of Beclin1 (Dai et al., 2013b). Normally, the

binding of Bcl2 to Beclin1 inhibits the initiation of autophagy.

Therefore, Dai et al. concluded that eugenol inhibited autophagy by

preventing the dissociation of this binding, thus exerting its anti-

IAV ability.

Differently, Moringa A from Moringa oleifera seeds inhibited

the expression and nuclear translocation of transcription factor EB

(TFEB) (Xu et al., 2020), a key regulator of autophagy and

lysosomal biogenesis. This suggested that Moringa A impaired

autophagy by blocking lysosome production (Xiong et al., 2021).
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These studies not only reveal the potential application of natural

products in the treatment of viral infections but also provide

important clues for understanding the mechanism of autophagy

in viral infections. The above findings indicated that natural

products could regulate autophagy through various mechanisms

to inhibit viral replication, providing important clues to our

in-depth understanding of the autophagy mechanism in

viral infections.

Although current research showed that certain natural products

could modulate autophagy and exhibited potential against IAV, it

remained to be determined whether their antiviral activity was

directly related to their effects on autophagy. In this review, we

observed that the focus of research on these natural products has

primarily been on their ability to inhibit IAV by suppressing

autophagy, which is an intriguing and noteworthy finding.

However, natural products may exhibit both autophagy-

promoting and autophagy-inhibiting effects to achieve antiviral or

virus-suppressing outcomes. Therefore, future research should

comprehensively investigate the relationship between the antiviral

mechanisms of natural products and their modulation of

autophagy. This will help uncover the complex mechanisms

involved and provide a solid scientific basis for developing

effective antiviral drugs.
5 Conclusion and prospects

Natural products provide new strategies and directions for the

development of novel antiviral drugs by regulating the function of

autophagy in viral infections. However, it is noteworthy that natural

products like polysaccharides (Liu et al., 2018; Ming et al., 2020,

2019), saponins (Li C. et al., 2019; Cheng et al., 2006), polyphenolic

compounds (Wang X. et al., 2023; Zhu et al., 2023), and alkaloid

(Liu et al., 2020; Wang et al., 2018) have demonstrated the ability to

modulate autophagy and exhibit antiviral activity against other

viruses, while researchers have not extensively explored their

connection with autophagy and IAV. Therefore, future studies

should investigate the role of these natural products in regulating

autophagy triggered by IAV. Additionally, advanced technologies

should be developed, such as BiFC-FRET and histological

techniques, which will facilitate more efficient and rapid

screening of natural products for their antiviral and autophagy-

regulating properties.

Natural products exhibit potential for bidirectional regulation

of autophagy. On one hand, they can inhibit autophagy to prevent

IAV replication; on the other hand, some natural products can

promote the fusion of autophagosomes with lysosomes, accelerating

the degradation of viruses within autophagic lysosomes. This

bidirectional mechanism allows natural products to modulate

autophagy levels to restore homeostasis. However, accurately

quantifying autophagy levels is crucial due to the dynamic

nature of viral infections and autophagy. The different

influenza strains, infection duration, and individual responses to

autophagy necessitate the use of standardized techniques such

as immunofluorescence staining, electron microscopy,
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western blotting, transcriptomics, and proteomics to measure

autophagy markers. Additionally, gene editing technologies or

pharmacological interventions should be used to regulate the

expression of autophagy factors, and suitable animal models and

in vitro cell models should be established to simulate different states

of autophagy. These approaches will help to explore the antiviral

mechanisms in greater depth.

Autophagy’s effects on viruses are bidirectional and involve

complex interactions with oxidative stress, apoptosis, and

inflammatory responses (Ishfaq et al., 2021; Hsueh et al., 2024).

However, it is unclear how IAV proteins coordinately regulate

autophagy to support their propagation and how the host can

IAV replication by modulating autophagy. To gain a deeper

understanding of the mechanism of autophagy in viral infections,

future studies need to pay more attention to the specific roles of

autophagy in different stages of infection, especially how the host

influences viral replication and propagation by regulating

autophagy. This will enable a more comprehensive understanding

of the role of autophagy and provide stronger support for future

drug development.

Most of the current research on natural products and autophagy

regulation focuses on single targets, such as LC3II, Atg5-Atg12/

Atg16 heterotrimer, beclin1/bcl2 heterodimer, and research is still
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in its infancy (Figure 6). There is a need for more comprehensive

research on multiple targets, phenotypes, and pathways to better

reveal the deeper roles of natural products. Despite the advantages

of natural products, such as multi-targeting and low toxicity, they

face challenges like low bioavailability, poor absorption, and rapid

metabolism, which can impact drug efficacy. Additionally, the

unclear composition and structure of herbal extracts (e.g.,

flavonoids and polysaccharides) limit research progress.

Addressing these challenges requires strengthening the research

on the composition and structure of natural products. The targeting

and efficacy of drugs can be improved through structural

modification and the development of related derivatives. In

addition, toxicity studies also need improvement, as some natural

products may exhibit toxicity at high doses.

The modulation of autophagy by natural products can affect viral

infections through various mechanisms, including endocytosis,

autophagosome formation, and maturation. Therefore, selecting

natural products as therapeutic agents requires consideration of

appropriate delivery strategies. These strategies should be based on

the developmental stage of autophagy and its role in different periods

of viral infection. In summary, natural products show promise in

modulating autophagy and antiviral, further research is essential,

particularly on the signaling pathways and mechanisms of autophagy
FIGURE 6

Schematic diagram of the mechanism by which natural products prevent IAV infection via autophagy pathway.
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in viral infections, to uncover new therapeutic potentials of

plant compounds.
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