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Deciphering the gut microbiota’s
role in diverticular disease:
insights from a Mendelian
randomization study
Biaohui Zheng, Dongbo Chen, Hao Zeng and Shuangming Lin*

Department of Gastrointestinal Surgery, Longyan First Hospital, Longyan, China
Background: Previous studies have indicated a potential association between gut

microbiota and diverticular disease. However, the precise nature of this

relationship remains unclear. In light of this, we decided to use a bidirectional

two-sample Mendelian randomization (MR) study to investigate the causal

relationship between gut microbiota and intestinal diverticular disease in

greater depth.

Methods: To investigate the potential causal relationship between gut

microbiota and intestinal diverticular disease, we conducted a two-sample MR

study in a European ancestry. Genetic instrumental variables for gut microbiota

were obtained from a genome-wide association study (GWAS) involving 5,959

participants. Summary statistics for intestinal diverticular disease were sourced

from the IEU Open GWAS project, which included data from 5,193 cases and

457,740 controls. The analysis was primarily conducted using the inverse

variance weighted method, with additional sensitivity analyses to assess the

robustness of the findings.

Results: With regard to the findings, 11 microbial taxa were identified as having a

potential causal relationship with intestinal diverticular disease. Specifically, the

microbial taxa Caryophanales, Paenibacillaceae, Herbinix, Turicibacter,

Turicibacteraceae, and Staphylococcus fleurettii were found to be positively

associated with the risk of developing intestinal diverticular disease, while

Chromatiales, Arcobacter, Herbidospora, Ligilactobacillus ruminis, and

Megamonas funiformis were found to be negatively associated with the risk.

Further reverse MR analysis did not reveal a reverse causal effect between these

microbial taxa and intestinal diverticular disease.

Conclusion: Our MR analyses revealed a potential causal relationship between

certain gut microbiota and intestinal diverticular disease, which may provide new

directions for future intestinal diverticular disease prevention and

treatment strategies.
KEYWORDS

gut microbiota, instrumental variables, diverticular disease, Mendelian
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1 Introduction

Diverticular disease, a prevalent gastrointestinal disorder, is

particularly significant in Western countries, with prevalence rates

as high as 30% in people in their 50s and more than 70% in people

older than 80 (Everhart and Ruhl, 2009). In the United States,

diverticular disease results in significant healthcare utilization, with

more than 1.7 million outpatient visits and over 300,000

hospitalizations annually. Additionally, it leads to approximately

38,740 30-day readmissions and 4,780 deaths, contributing to

healthcare expenditures of around $9 billion annually (Peery

et al., 2022).Typical symptoms of the disease include abdominal

pain, diarrhea, and bleeding. Depending on the severity, diverticular

disease can be subdivided into simple diverticulosis (presence of

symptoms but no evidence of inflammation), diverticulitis, and

diverticular hemorrhage (Tursi et al., 2020). It is important to note

that diverticulitis may occur in approximately 10% to 25% of

patients with diverticular disease (Strate and Morris, 2019).

Therefore, studying the pathogenesis of diverticular disease

(especially intestinal diverticular disease) can provide valuable

references for better prevention and treatment, holding significant

clinical and social value.

The gut microbiota is a complex and diverse ecosystem

composed of bacteria, fungi, viruses, and other microorganisms

(Lozupone et al., 2012). These microbes co-evolved with the host

and play crucial roles in regulating metabolism (Hacquard et al.,

2015), immunity (Hooper et al., 2012), nervous system function

(Cryan and Dinan, 2012), and maintaining the intestinal barrier

(Adak and Khan, 2019), earning the title of the body’s “second

genome”. However, when the gut microbiota is affected by internal

and external factors, an imbalance may occur, leading to reduced

microbial diversity or a disrupted balance between commensal and

pathogenic bacteria (Ha et al., 2014). Studies have shown that such

imbalance is closely associated with various diseases, particularly

gastrointestinal disorders like intestinal diverticular disease

(Canakis et al., 2020; Quaglio et al., 2022; Marasco et al., 2023).

For instance, research indicates that a decrease in Clostridium

cluster IV bacteria, known for their anti-inflammatory properties,

is associated with the development of intestinal diverticular disease

(Barbara et al., 2017). Another prospective study found that a

decline in gut microbiota diversity, coupled with a reduction in

commensal bacterial families and genera (such as Faecalibacterium

and Ruminococcus) and an increase in potentially pathogenic

bacteria (such as Fusobacteria), may be linked to a higher risk of

diverticulitis (Mj et al., 2022). These commensal bacteria ferment

undigested dietary fiber, producing metabolites such as short-chain

fatty acids (SCFAs) that not only provide energy but also protect the

gut by supporting the intestinal barrier and regulating the immune

system (Arumugam et al., 2011; Vinolo et al., 2011). In contrast,

pathogenic bacteria release enterotoxins that disrupt tight junctions

in intestinal epithelial cells, weakening the barrier function (Hecht

et al., 1992). These changes collectively may damage the structure

and function of the intestinal wall, thereby increasing the risk of

intestinal diverticular disease (Tursi, 2016). Although a few studies

(Jones et al., 2018) have suggested that there may be no direct
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relationship between the composition of the gut microbiota and

intestinal diverticular disease, the potential impact of microbiota

alterations on this condition is increasingly recognized as more

research emerges. Given the lack of conclusive causal evidence,

further studies remain essential.

Mendelian randomization (MR) is widely recognized for its

reliability as a statistical method. The core of the method is to utilize

genetic variations as instrumental variables (IVs), which in turn

provide an effective assessment of the causal relationship between

exposure and outcome. In comparison to traditional observational

studies, MR offers significant advantages in reducing bias, avoiding

confounders, and guarding against reverse causality. Currently, MR

has been applied in numerous fields, and has demonstrated its

unique value in exploring the causal relationship between gut

microbiota and various diseases, including appendicitis, anxiety

disorders, and lymphoma (Wang et al., 2023; Liang et al., 2024; Li

et al., 2024).

To date, however, few studies have employed MR to explore the

causal relationship between gut microbiota and diverticular disease,

particularly intestinal diverticular disease. To address this gap, our study

leverages summary statistics from genome-wide association studies

(GWAS) and applies a bidirectional two-sample MR approach. This

methodology enables us to rigorously test the potential association

between gut microbiota and intestinal diverticular disease, enhancing

both the stability and reliability of our findings.
2 Materials and methods

2.1 Study design

In the forward MR analysis, we investigated the potential influence

of gut microbiota on the development of intestinal diverticular disease.

In reverse MR, we examined the effect of intestinal diverticular disease

on gut microbiota. In this process, each gut microbiota and intestinal

diverticular disease-associated single-nucleotide polymorphisms (SNP)

serve as IVs for inferring causal effects between them. To ensure the

validity of the IVs, the study had to fulfill the three core assumptions of

MR (Figure 1). These assumptions are as follows: 1. The “correlation”

assumption, where IVs are strongly associated with exposure factors; 2.

The “independence” assumption, IVs are not associated with

confounders; 3. The “exclusivity” assumption, where IVs are not

associated with the outcome.
2.2 Data sources

The GWAS data on gut microbiota were obtained from the

FINRISK 2002 study in Finland, a large population-based prospective

cohort study (Qin et al., 2022). The study conducted a comprehensive

genetic analysis of fecal samples from 5,959 participants. This entailed

an exhaustive sample collection and analysis process, which covered

2,801 microbial taxa and 7,967,866 human genetic variants.

Following rigorous statistical analysis and screening, the study

identified 471 gut microbiota taxonomic groups, including 11
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phyla, 19 classes, 24 orders, 62 families, 146 genera, and 209 species.

Following further data cleansing, taxonomic units that could not be

accurately identified were eliminated, and 410 units were included as

the main subjects of the study.

The GWAS data for intestinal diverticular disease were

obtained from the IEU Open GWAS program “ukb-b-14796”

(https://gwas.mrcieu.ac.uk/). The study covered 462,933 people, of

which 5,193 were intestinal diverticular disease patients and

457,740 were controls. It is worth mentioning that the population

participating in the above study was of European ancestry (Table 1).
2.3 Selection of IVs

To ensure the accuracy of the causal conclusion between gut

microbiota and intestinal diverticular disease, we extracted SNPs that

were significantly associated with exposure as IVs. The final screened

SNPs were required to satisfy the following conditions: 1) Threshold p

< 5x10-6; 2) Consistent with linkage disequilibrium (LD) with R2 <

0.001 and LD > 10,000; 3) F-statistic > 10. In addition, we utilized the

LDlink to exclude SNPs that may be significantly associated with

potential confounders (https://ldlink.nih.gov/?tab=home).
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2.4 Data analysis

In assessing the causal relationship between exposure and

outcome, we used a variety of MR methods, including inverse

variance weighted (IVW), MR-Egger, weighted median, simple

mode, weighted mode, leave-one-out sensitivity analysis, and MR-

PRESSO. where IVWwas used as the main analytical method to derive

a combined causal estimate by combining the Wald ratios of all IVs

based on the assumption that all IVs are valid variables (Burgess et al.,

2023). At the same time, we corrected the p-values using the

Bonferroni method by setting different significance p-values at

different classification levels (phylum p< 4.545×10-03, class p<

2.632×10-03, order p< 2.083×10-03, family p< 8.065×10-04, genus p<

3.425×10-04, species p< 2.392×10-04) (Sedgwick, 2014). If the p-value is

between the above significance p-value and 0.05, we consider that they

have a potential causal relationship. MR-Egger and MR-PRESSO can

be used to detect horizontal pleiotropy (p< 0.05). When the intercept of

MR-Egger is not zero, it may imply the existence of horizontal

pleiotropy, which may violate the basic assumptions of MR analysis.

Leave-one-out sensitivity analysis was used to assess the degree of

dependence of the results on a single IV by removing each SNP one by

one and rerunning the MR analysis to observe the stability of the

results. The Q-statistics of IVW and MR-Egger were used to assess the

degree of heterogeneity among IVs. The presence of heterogeneity was

indicated when the p-value of the heterogeneity test was less than 0.05.

All analyses were based on “TwoSampleMR”, “MRPRESSO”,

“ggplot2”, “foreach” and “foreach” software packages in R version 4.3.2.
3 Results

3.1 Selection of IVs

Based on the initially set criteria, we screened 410 gut

microbiota taxonomic groups and intestinal diverticular disease
TABLE 1 Data sources and information used in this study.

Variable ID
Sample
size

Web resource

Gut Microbiota
PMID:
35115689

5,959
https://www.nature.com/
articles/s41588-021-00991-z

Intestinal
Diverticular
Disease

ukb-
b-14796

462,933
https://gwas.mrcieu.ac.uk/
datasets/ukb-b-14796/
FIGURE 1

Schematic design of Mendelian randomization. Mendelian randomization requires valid genetic instrumental variables satisfying three assumptions.
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for suitable SNPs as IVs, and the detailed results are shown in

Supplementary Data Sheets 1–3.
3.2 MR results of the effect of gut
microbiota on intestinal diverticular disease

According to the results of the IVW analysis, there was a potential

causal association between 11 microbial taxa and intestinal diverticular

disease (p < 0.05) (Figure 2). Specifically, there was a positive

correlation between increasing abundance of Caryophanales and

diverticular disease risk at the order level (OR 1.031, 95%CI 1.029-

1.049, p=0.001), whereas Chromatiales was negatively associated with

diverticular disease risk (OR 0.991, 95%CI 0.983-1.000, and p=0.038).

At the family level, Paenibacillaceae (OR 1.011, 95%CI 1.002-1.019,

p=0.013) and Turicibacteraceae (OR 1.003, 95%CI 1.000-1.005,

p=0.036) were positively associated with diverticular disease risk. At

the genus level, Herbinix (OR 1.007, 95%CI 1.000-1.017, p=0.049) and

Turicibacter (OR 1.002, 95%CI 1.000-1.004, p=0.046) were positively

associated with the risk of diverticular disease, while Arcobacter (OR

0.994, 95%CI 0.990-0.999, p=0.222) and Herbidospora (OR 0.995, 95%

CI 0.990-1.000, p=0.039) were negatively associated with diverticular

disease risk. At the species level, Staphylococcus fleurettii (OR 1.002,

95%CI 1.000-1.004, p=0.035) was positively associated with the risk of

diverticular disease, while Ligilactobacillus ruminis (OR 0.997, 95%CI

0.995-0.999, p= 0.006) and Megamonas funiformis (OR 0.997, 95%CI

0.995-0.999, p=0.012) were negatively associated with diverticular

disease risk. Furthermore, the results of other MR methods are

provided in the Supplementary Table 1, and the OR in these results

are consistent with those of IVW. In order to more visually

demonstrate the causal relationship between these microbial taxa and

intestinal diverticular disease, we plotted a scatter plot (Figure 3).
3.3 Heterogeneity and pleiotropy of IVs

We used MR-Egger intercept and MR-PRESSO to detect

pleiotropy of all IVs, and the results showed nonexistent
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pleiotropy (p>0.05). Cochran’s Q test did not find significant

heterogeneity of IVs (p>0.05) (Table 2). Finally, in order to

present the results of the study visually, we used leave-one-out

sensitivity analysis, forest plot and funnel plot to visualize the

results (Supplementary Figures 1–3).
3.4 Reverse MR results

To further explore whether there was a causal effect of intestinal

diverticular disease on the above 11 microbial taxa, we further

performed reverse MR analysis. Finally, they were not found to be

statistically associated in the IVW method (Supplementary Table 2).
4 Discussion

This study is the first of its kind to use MR to explore potential

causal links between gut microbiota and intestinal diverticular

disease. Based on genomic data from 5,959 individuals, we

systematically analyzed the possible roles of 410 microbiota

taxonomic groups in the pathogenesis of intestinal diverticular

disease. Ultimately, our study revealed potential associations

between changes in the abundance of 11 microbial taxa and

intestinal diverticular disease. Specifically, an increased abundance

of the microbial taxa Caryophanales, Paenibacillaceae, Herbinix,

Turicibacter, Turicibacteraceae, and Staphylococcus fleurettii may

promote the development of intestinal diverticular disease. In

contrast, microbial taxa such as Chromatiales, Arcobacter,

Herbidospora, Ligilactobacillus ruminis, and Megamonas

funiformis demonstrated a potential protective effect against

intestinal diverticular disease.

The gut microbiota is a vast assemblage of microorganisms

that inhabit the human gut. It is comprised of hundreds of

millions of microorganisms that work in concert to form a

complex ecosystem (Sandler et al., 2002). They are mainly

composed of the phylum Firmicutes and Bacteroidota, with a

few belonging to the phylum Actinomycetota, Fusobacteria, and
FIGURE 2

Positive MR results of causal links between gut microbiota on intestinal diverticular disease. SNP, Single-nucleotide polymorphism; OR, odds ratios;
CI, Confidence interval.
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Pseudomonadota, among others (Eckburg et al., 2005). This

microbiota composition is highly dynamic and influenced by

factors such as age , d ie t , medicat ion, l i fes ty le , and

environmental exposures, which can all lead to shifts in

microbial balance, often referred to as dysbiosis (Rinninella

et al., 2019). Dysbiosis has been implicated in a range of
Frontiers in Cellular and Infection Microbiology 05
systemic diseases, spanning neurological conditions like

Parkinson’s disease (Wang et al., 2024), gastrointestinal

disorders like inflammatory bowel disease (Lloyd-Price et al.,

2019) and diverticular disease, and metabolic and immune-

related diseases such as obesity (Le Chatelier et al., 2013) and

autoimmune disorders (Alkader et al., 2023).
FIGURE 3

Scatter plots of gut microbiota with causal effects on intestinal diverticular disease. (A) Caryophanales; (B) Chromatiales; (C) Paenibacillaceae;
(D) Turicibacteraceae; (E) Herbinix; (F) Turicibacter; (G) Arcobacter; (H) Herbidospora; (I) Staphylococcus fleurettii; (J) Ligilactobacillus ruminis;
(K) Megamonas funiformis.
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A study conducted in Italy observed a notable increase in the

abundance of the phylum Firmicutes in patients diagnosed with

intestinal diverticular disease, particularly within the family

Ruminococcaceae, with levels exceeding twice those observed in

the general population (Lopetuso et al., 2018). In our study, an

increased abundance of five Firmicutes (Caryophanales,

Paenibacillaceae, Herbinix, Turicibacter, and Staphylococcus

fleurettii) was associated with an increased risk of intestinal

diverticular disease, whereas two Pseudomonadota (Chromatiales

and Arcobacter) demonstrated a protective effect against intestinal

diverticular disease. Further, an analysis of fecal samples from 28

patients with diverticulosis revealed a link between diverticulitis and

increased abundance of Pseudobutyrivibrio, Bifidobacterium, and

Christensenellaceae (Kvasnovsky et al., 2018). This supports the

observed pathogenic role of Herbinix in intestinal diverticular

disease, given its familial association with Pseudobutyrivibrio

(both belonging to Lachnospiraceae). Although the odds ratios of

these microbiota are not particularly large, it is important to note

that their cumulative effect, when acting synergistically, could still

have a meaningful impact on the development of intestinal

diverticular disease. Furthermore, the majority of microbiota

positively associated with intestinal diverticular disease in this

study belonged to the phylum Firmicutes, which aligns with

previous studies linking Firmicutes bacteria to this disease. This

consistency further reinforces the reliability of our findings.

Another descriptive, cross-sectional study showed a trend

toward a decrease in the number of Clostridium cluster IX and

Lactobacillaceae in symptomatic intestinal diverticular disease

patients, which is consistent with the protective effect of

Ligilactobacillus ruminis against intestinal diverticular disease

found in our study (Barbara et al., 2017). This mechanism may

be related to the ability of these bacteria to produce SCFAs

(including acetic, propionic, and butyric acids). SCFAs play a

multifaceted role in supporting intestinal health. They not only
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activate anti-inflammatory factors, such as IL-10, which help

modulate immune responses, but also stimulate B cells to produce

immunoglobulin A (IgA) (Hecht et al., 1992). This production of

IgA is essential for reinforcing the gut’s immune defense, as IgA

binds to pathogens and toxins, preventing them from penetrating

the intestinal lining. In line with this, Megamonas funiformis,

identified in our study as a protective bacterial group,

demonstrates similar beneficial functions. Originally isolated from

healthy human feces, Megamonas funiformis has recently been

shown to alleviate fatty liver disease associated with metabolic

dysfunction through its production of propionic acid (Sakon

et al., 2008; Yang et al., 2023). This finding suggests it may exert

comparable protective effects in intestinal diverticular disease by

enhancing gut health and resilience. These insights reinforce the

potential application of specific “probiotics” in treating or managing

intestinal diverticular disease.

Staphylococcus fleurettii belongs to the genus Staphylococcus.

Although there is a relative paucity of studies on its specific

association with intestinal diverticular disease, Staphylococcus are

widely recognized to be strongly associated with a variety of

infections involving multiple sites such as the intestinal tract,

urinary tract, and skin (Trautner and Darouiche, 2004; Raineri

et al., 2022; Severn and Horswill, 2023). In addition, it is also worth

noting that Staphylococcus fleurettii was initially isolated from goat

cheese, a finding that further corroborates speculation in previous

studies about a potential link between dietary patterns and intestinal

diverticular disease (Lemes et al., 2021). Herbidospora has been

isolated primarily from soil and plant samples. Although studies on

its functionality in the gut are still insufficient, scientific studies have

found that its subspecies, such as Herbidospora daliensis, have

significant anti-inflammatory properties (Kudo et al., 1993; Chen

et al., 2022). Based on this finding, it is reasonable to hypothesize

that Herbidospora may have a protective effect against intestinal

diverticular disease.
TABLE 2 Heterogeneity and horizontal pleiotropy of IVs.

Exposure

Heterogeneity Pleiotropy

MR-Egger IVW MR-Egger MR-PRESSO

Q P-value Q P-value Intercept P-value P-value

Caryophanales 3.227 0.665 3.379 0.760 1.590x10-04 0.713 0.802

Chromatiales 5.933 0.747 6.101 0.807 1.239x10-04 0.691 0.812

Paenibacillaceae 4.141 0.529 4.435 0.618 -2.539x10-04 0.611 0.649

Turicibacteraceae 1.976 0.853 2.185 0.902 -2.708x10-04 0.666 0.902

Herbinix 11.312 0.126 11.353 0.182 1.030x10-04 0.878 0.233

Turicibacter 3.259 0.860 3.368 0.909 -1.895x10-04 0.751 0.925

Arcobacter 6.597 0.472 6.598 0.581 -1.331x10-05 0.982 0.637

Herbidospora 10.246 0.594 10.473 0.655 -1.550x10-04 0.642 0.648

Staphylococcus fleurettii 10.721 0.295 11.510 0.319 -2.717x10-04 0.437 0.340

Lactobacillus ruminis 7.089 0.420 7.343 0.500 1.791x10-04 0.632 0.544

Megamonas funiformis 4.504 0.922 4.504 0.953 3.703x10-06 0.990 0.957
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This study has significant advantages. First, this study is based

on MR analysis of large-scale GWAS data, which effectively

overcomes the limitations of insufficient sample size, confounding

factor interference and reverse causation in observational studies.

Second, by selecting a study population of European origin, this

study effectively reduces the influence of ethnic differences on the

study results.

However, there are several limitations to this study. First, the

research focuses exclusively on a European cohort, which may limit

the generalizability of the findings to other populations.

Additionally, we acknowledge that the pathogenic mechanisms of

intestinal diverticular disease may vary depending on its location

and type. Due to data limitations, our study was unable to further

differentiate between specific locations or types of intestinal

diverticular disease. However, the majority of the data are based

on patients with colonic intestinal diverticular disease, meaning that

the results primarily reflect the relationship between gut microbiota

and colonic intestinal diverticular disease. Finally, the lack of

detailed information on age and lifestyle factors restricted further

stratified analyses. Future research should aim to validate these

findings, address these limitations, and explore in more detail the

biological mechanisms underlying the relationship between gut

microbiota and intestinal diverticular disease.
5 Conclusion

This study, employing a bidirectional two-sample MR approach,

identifies potential causal relationships between 11 gut microbiota

taxa and intestinal diverticular disease. The findings suggest that

variations in microbiota abundance may influence the onset and

progression of intestinal diverticular disease, with some taxa

providing a protective effect and others increasing risk. Future

research should validate these results across diverse ethnic groups

and regions (such as Asia and Africa) to assess the impact of racial

and geographic differences on the gut microbiota–disease

relationship. Integrating functional genomics and experimental

studies will be essential to further investigate the role of symbiotic

and pathogenic bacteria in the pathogenesis of intestinal diverticular

disease and gut ecological balance. Additionally, considering lifestyle

factors, dietary habits, and their interactions with microbiota will be

crucial in understanding their influence on disease risk. The effect of

gut microbiota on intestinal diverticular disease in various sites and

forms should also be explored.

In summary, this study expands our understanding of the gut

microbiota–intestinal diverticular disease relationship, providing

valuable insights for the development of personalized treatment

and prevention strategies.
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