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Structural proteins of
human coronaviruses: what
makes them different?
Nail Minigulov, Kuandyk Boranbayev, Ayaulym Bekbossynova,
Bakhytgul Gadilgereyeva and Olena Filchakova*

Biology Department, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
Following COVID-19 outbreak with its unprecedented effect on the entire world,

the interest to the coronaviruses increased. The causative agent of the

COVID-19, severe acute respiratory syndrome coronavirus – 2 (SARS-CoV-2)

is one of seven coronaviruses that is pathogenic to humans. Others include

SARS-CoV, MERS-CoV, HCoV-HKU1, HCoV-OC43, HCoV-NL63 and

HCoV-229E. The viruses differ in their pathogenicity. SARS-CoV, MERS-CoV,

and SARS-CoV-2 are capable to spread rapidly and cause epidemic, while

HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E cause mild

respiratory disease. The difference in the viral behavior is due to structural and

functional differences. All seven human coronaviruses possess four structural

proteins: spike, envelope, membrane, and nucleocapsid. Spike protein with its

receptor binding domain is crucial for the entry to the host cell, where different

receptors on the host cell are recruited by different viruses. Envelope protein

plays important role in viral assembly, and following cellular entry, contributes to

immune response. Membrane protein is an abundant viral protein, contributing

to the assembly and pathogenicity of the virus. Nucleocapsid protein

encompasses the viral RNA into ribonucleocapsid, playing important role in

viral replication. The present review provides detailed summary of structural

and functional characteristics of structural proteins from seven human

coronaviruses, and could serve as a practical reference when pathogenic

human coronaviruses are compared, and novel treatments are proposed.
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1 Introduction

Coronaviruses are single-stranded RNA viruses, which belong to the family

Coronaviridae. The family consists of four genera: a, b, g, and d. There are seven

pathogenic to humans coronaviruses: SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-

HKU1, HCoV-OC43, HCoV-NL63, and HCoV-229E. HCoV-NL63 and HCoV-229E

belong to a-coronaviruses, the rest are considered b-coronaviruses. HCoV-HKU1,
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HCoV-OC43, HCoV-NL63, and HCoV-229E usually cause mild or

moderate respiratory diseases, while SARS-CoV-2, SARS-CoV, and

MERS-CoV cause severe respiratory diseases. The viruses differ in

their replication potential, with SARS-CoV-2 virus outperforming

other viruses, and having high spreading potential. SARS-CoV

caused severe acute respiratory syndrome (SARS) outbreak in

2003 leading to over 8000 cases with fatality rate of 11% (World

Health Organization, 2003). The Middle East Respiratory

Syndrome (MERS) is a viral respiratory disease caused by the

Middle East Respiratory Syndrome Coronavirus (MERS‐CoV).

This virus was identified in Saudi Arabia in 2012 (Bermingham

et al., 2012). MERS-CoV can cause a variety of symptoms and

сlinical manifestations that range from mild to severe, including

acute respiratory distress syndrome (ARDS) and organ failure. The

latter two conditions are often associated with uncontrolled

cytokine production, leading to a cytokine storm. According to

WHO, the mortality rate among cases of MERS-CoV disease was

36% (WHO, 2024), which is higher compared to both SARS-CoV

and SARS-CoV-2. In comparison, the mortality rate of SARS-CoV-

2 and SARS-CoV varies between 2% and 10% (Meo et al., 2020). In

contrast, HCoV-NL63, OC43, 229E, HKU1 infections are

associated with mild respiratory tract diseases, and there is no

extensive data on mortality among those infected. A retrospective

cohort study, conducted from October 2012 to December 2017,

investigated adults infected with HCoV-229E and HCoV-OC43

coronaviruses, and suggested that HCoV-229E is more virulent

compared to HCoV-OC43. The study reported a 30-day all-cause

mortality rate of 25% for patients infected with HCoV-229E and

9.1% for HCoV-OC43- infected adult patients (Choi et al., 2021).

There are multiple factors that contribute to the MERS

pathogenicity which potentially could explain its higher mortality

rate. Among those factors are difference in structural proteins as

well as in accessory proteins. For example, MERS is the only

coronavirus that utilizes dipeptidyl peptidase IV (DPP4) or CD26

for cellular entry (Wang et al., 2013). Such difference in the target

receptor is due to difference in the receptor binding domain of

structural protein S (Wang et al., 2013). Within S protein of MERS-

CoV there are two furin-cleavage sites which facilitate virus entry

into the host cell. Besides this, multiple studies demonstrate that

MERS accessory protein ORF4a is a potent inhibitor of antiviral

stress response (Menachery et al., 2017; Rabouw et al., 2016).

Together with ORF4a, accessory proteins ORF4b, ORF5, and

structural proteins M and N are potent inhibitors of interferon

(Yang et al., 2013; Chang et al., 2020).

The severe disease manifestation seen following infection with

MERS, SARS-CoV, and SARS-CoV-2 could be explained by

massive cytokine storm triggered by viruses. All three viruses

infect airway epithelial cells, where they replicate. MERS-CoV,

besides airway epithelial cells, was also detected within human T

cells where it was shown to cause apoptosis (Chu et al., 2016). Such

ability to infect and cause apoptosis of T cells is not observed in

other human coronaviruses, and can contribute to the difference

seen in MERS-CoV pathogenesis. As reported by Liu et al.

SARS-CoV-2, SARS-CoV and MERS-CoV could infect dendritic

cells, mononuclear macrophages and other peripheral blood

mononuclear cells, inducing the cells to release large amounts of
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cytokines and chemokines (Liu et al., 2021; Zhou et al., 2015).

Together with infection of dendritic cells, mononuclear

macrophages and other peripheral blood mononuclear cells,

MERS-CoV virus was suggested to be replicated in them, further

causing apoptosis and abnormal cytokine release from infected cells

(Lau et al., 2013). This sets MERS-CoV virus apart from other

coronaviruses. In summary, it is possible that MERS-CoV’s higher

mortality are due to unique properties of the virus, such as

replication in immune cells, leading to their apoptosis, delayed

interferon response, and abnormal cytokine release. High levels of

IL-6, IP-10, IL-8, RANTES, and IFN-a were detected in the serum

of patients with severe MERS compared to those with mild MERS

(Min et al., 2016; Kim et al., 2016). Serological studies of patients

with MERS-CoV have shown that low levels of IFN-alpha secretion

were observed in patients with severe disease up to death, while low

levels of type I IFN correlate with recovery and positive outcome

(Faure et al., 2014). Factors such as the time interval between the

onset of symptoms and hospitalization, age, and comorbidities

influence the further course of the disease, up to and including a

fatal cytokine storm (Ahmadzadeh et al., 2020).

Overall, the differences in the viral infection outcome are due to

difference in viruses’ structure and function. This review summarizes

similarities and highlights differences in the structure and function of

structural proteins in all seven human coronaviruses.

The genome of all seven coronaviruses is similar in

organization. It contains coding regions for four structural

proteins (spike glycoprotein (S), nucleocapsid phosphoprotein

(N), membrane protein (M), and envelope (E) protein), 15 non-

structural proteins (nsp) and 7 accessory proteins (Brant et al.,

2021). The detailed summary of structural features of four structural

proteins is provided along with their main functions in viral

lifecycle as well as in host cell physiology.
2 Structure and function of S protein

2.1 Structure

For all seven types of human coronaviruses, the spike protein is

a key structural element that plays a crucial role in viral infection. S

proteins form large crown–like spikes on the surface of the virus,

the feature that gave the name of the taxonomic group of viruses -

coronaviruses. In coronaviruses, including SARS-CoV-2, SARS-

CoV, MERS-CoV, HCoV-HKU1, HCoV-OC43, HCoV-NL63 and

HCoV-229E, the spike protein acts as a type I transmembrane

fusion glycoprotein. During viral entry, the spike protein interacts

with the protein receptors of the host cell and is split into two

functional subunits: S1 and S2. Depending on the coronavirus type,

the S1/S2 spike protein site is cleaved either by furin in the infected

cell or by host cell proteases during viral entry (Kirchdoerfer et al.,

2016; Hoffmann et al., 2020; Shang et al., 2020). The presence of

multiple arginine residues at the S1/S2 site is believed to make the

protein more susceptible to cleavage. Besides SARS-CoV-2, three

(MERS-CoV, HCoV-OC43 and HCoV-HKU1) of the six other

HCoVs have furin cleavage sites (Liu et al., 2021). Within SARS-

CoV-2 virus the furin-cleavage site is distinguished by four amino
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acids: 681-PRRA-684. Knockout of furin with CRISPR-Cas9

showed a significant reduction in cleavage in the S1/S2 region of

SARS-CoV-2 spike glycoprotein, but did not completely prevent

this process (Wrapp et al., 2020; Papa et al., 2021; Ou et al., 2020). In

vitro studies of the S1/S2 region of the SARS-CoV-2 spike protein

highlighted the importance of residue R683 in the RRAR motif for

furin recognition. Besides this, serines at the edges of this motif,

specifically S680 and S686, can be phosphorylated by basophilic and

proline-directed kinases, which negatively affects furin cleavage

at this site (Örd et al., 2020). Substituting proline with arginine

at residue 681 disrupts the proline motif necessary for

phosphorylation, which in turn increases the potential for furin

cleavage at this site (Beaudoin et al., 2022).

It is worth mentioning here that MERS-CoV virus is a unique in

its structure compared to other human coronaviruses as far as it has

two furin-recognition motifs (RXXR): at S1/S2 border and at S2’

site. This factor was suggested to contribute to high pathogenicity of

MERS-CoV (Millet and Whittaker, 2014; Wu and Zhao, 2020).

As far as S protein has to be proteolytically activated in order to

be able to fuse with host cell membrane, it is of interest to focus on

proteases that activate coronaviruses without furin-recognition site.

The SARS-CoV S protein contains several sites that are subject to

cleavage, but the major furin cleavage site has not been identified.

For SARS-CoV it was shown that endosomal cysteine protease –

cathepsin L plays role in membrane fusion (Simmons et al., 2005).

Besides cathepsin L, other proteases, such as elastase and

coagulation factor Xa were shown to be active on SARS-CoV

(Matsuyama et al., 2005; Du et al., 2007). The furin cleavage site

is absent in HCoV-229E, while for HCoV-NL63 it is located in S2’

site (Wu and Zhao, 2020). Human coronavirus 229E uses various

proteases, such as cathepsin L, TMPRSS2, and trypsin, to activate

cell entry (Kawase et al., 2009). The I577S mutation in the spike

protein allowed increased cathepsin utilization by the 229E virus,

however, reduced cell replication ability was observed. This may

indicate that the endosomal route of coronavirus entry is less

preferable for 229E compared to activation via TMPRSS2 (Shirato

et al., 2017; Bonnin et al., 2018).

Interestingly, peptides with amino-acid sequences which are

similar to the furin cleavage-sites of original SARS-CoV-2 virus as

well as its variants (Alpha, Delta, and Omicron) are potent
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inhibitors of a7 and a9a10 nicotinic acetylcholine receptors

(Hone et al., 2024). Considering that both a7 and a9a10
receptors are abundantly expressed in lung epithelial cells

(Hollenhorst and Krasteva-Christ, 2021), it could be hypothesized

that the receptors are used by SARS-CoV-2 as an alternative to

ACE2 entry point to the host cell. a7 and a9a10 receptors are also
expressed by immune cells, where they modulate cytokine release

(Fujii et al., 2017). It is possible that these receptors contribute to the

immune response observed in SARS-CoV-2 infection.

The S1 subunit is responsible for primary contact, while the

highly conserved S2 subunit promotes membrane fusion between the

host cell and the virus (Heald-Sargent and Gallagher, 2012; Holmes et

al, 1981; Perlman and Netland, 2009; Künkel and Herrler, 1993; Qian

et al., 2013). The S1 subunit contains the N-terminal domain (NTD),

and C-terminal domain (CTD), harboring receptor-binding domain

(RBD) and receptor-binding motif (RBM) (Peng et al., 2021) in all

but HCoV-OC43 virus (Figure 1 and Supplementary Table 1).

According to Caetano-Anolles et al. the NTD is characterized by a

galectin-like structure, a common target of mutations, which helps

the virus evade the physiological responses of the host (Guruprasad,

2021; Caetano-Anollés et al., 2022).

Mutations within S protein change the affinities of the RBD to the

host receptor, and lead to emergence of new viral variants with

increased infectivity and transmissibility. There are five variants of

concern of SARS-CoV-2 that emerged during the COVID-19

pandemic: Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta

(B.1.617.2) and Omicron (B.1.1.529). The alpha variant of

SARS-CoV-2 has 23 mutations, 9 of which are within S protein.

Mutations that change the biological processes of the virus include

N501Y (increases binding to the target receptor), P681H (improves

transmissibility) and D614G (Liu et al., 2022; Mohammadi et al.,

2021; Yang et al., 2021). D614G mutation in the wild type of SARS-

CoV-2 increased the infectivity and transmissibility of the virus

(Daniloski et al., 2021). Also, the S1/S2 junction cleavability has

been increased by the D614Gmutation (Gobeil et al., 2021). The beta

variant has three mutations in the RBD, these include K417N, E484K

and N501Y, and six mutations in the remaining regions of the spike.

Similarly to the N501Y alpha variant, the K417N and E484

substitutions improve the affinity of the virus for its target receptor,

angiotensin-converting enzyme 2 (ACE2) (Funk et al., 2021).
FIGURE 1

General scheme of the S protein structure. Following color code is used: light blue- signal sequence, orange - N-terminus domain of S1 subunit,
blue – C-terminus domain of S1 subunit, grey – receptor binding motif, red – fusion peptide, pink – heptad repeat 1, green – heptad repeat 2,
brown – transmembrane domain. Purple vertical line - S1/S2 cleavage site, blue vertical line - S2’ cleavage site.
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The gamma variant of SARS-CoV-2 has 17 nonsynonymous

mutations, ten of which are located in the S protein genes. Among

them K417T, E484K and N501Y mutations which help the virus to

escape immune surveillance (Chen et al., 2021; Faria et al., 2021;

Naveca et al., 2021; Wang et al., 2021). In the delta variant of SARS-

CoV-2, 17 mutations were found. In S1, two deletions occurred:

E156del and F157del (Chen et al., 2020; Tatsi et al., 2021). The P681R

mutation increases the cleavability of the S1/S2 site, which leads to

increased replication in the delta variant of SARS-CoV-2 (Takeda,

2022; Saito et al., 2022). The F306L mutation of the SARS-CoV-2

delta variant may lead to strengthened binding between ACE2 and

spike protein, and this mutation has been reported to be associated

with increased mortality during infection (Sila et al., 2024). In the

omicron variant, 39 mutations were identified in the spike protein, 15

of which were found in the RBD region. The mutations Q498R and

Q493K were reported to weaken the RBD-ACE2 interaction, while

P681H resulted in high transmissibility of the virus (Kim et al., 2021).

Similarly to SARS-CoV-2, S protein of other human

coronaviruses was shown to have mutations that influence the

pathogenicity of the viruses. For example, using next generation

sequencing, a subgenotype of the HCoV NL63 virus with the I507L

mutation was identified, which enhanced the penetration of the

virus into the host cells, and was associated with severe course of the

lower respiratory tract disease (Wang et al., 2020). Point mutations

H183R and Y241H in the spike protein of the HCoV-OC43 virus

resulted in weakened protein synthesis and increased

neuroinvasiveness of the virus, which caused apoptosis in mouse

neuronal cells (Favreau et al., 2009).

The amino acid sequence of the S protein and RBD of SARS-

CoV compared to SARS-CoV-2 is 76% and 74% identical,

respectively (Jaimes et al., 2020). The RBD of the SARS-CoV-2 S

protein is located between 319 and 541 residues. The SARS-CoV

RBD is located between residues 306 and 526 with residues. It forms

an extended tyrosine-rich loop and binds directly to the

angiotensin-converting enzyme 2 (ACE2) receptor (Li et al.,

2005). According to Li and colleagues, the region spanning 577-

597 residues of the SARS-CoV RBD matches the S1 region of

HCoV-NL63 (Li et al., 2007).

The RBD has a core subdomain characterized by a five-stranded

antiparallel b-sheet (found in b-HCoV) or a six-stranded

b-sandwich (found in a-HCoV) and a receptor-binding

subdomain. The differences in the receptor-binding subdomain

explain the affinities of the virus to the target receptor. For

example, MERS-CoV has unique features within its receptor-

binding subdomain, enabling it to bind to DPP4. Particularly,

unlike SARS-CoV and SARS-CoV-2 which have extended loop

between two short antiparallel b-strands, MERS-CoV has a b-sheet
structure made up by four antiparallel b-strands (Wang et al., 2013).

In almost all HCoVs, the RBD was found in the CTD of the S1

subunit. Only OC43 is distinguished by the location of the RBD in

the NTD. It is also known that the S1-NTD of the HCoV-HKU1

virus mediates primary attachment via glycan binding (Qian et al.,

2015; Kirchdoerfer et al., 2016).

Following interaction of the RBD with the cell receptor, viral

entry into the host cell requires the use of proteases to activate the

spike protein (Bestle et al., 2020; Hoffmann et al., 2020).
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The S2 subunit of the spike protein is highly conserved

compared to the S1 subunit. S2 consists of fusion peptide (FP),

heptad repeat 1 (HR1), heptad repeat 2 (HR2) and transmembrane

domain (Figure 1). Interaction of the virus with the host cell leads to

refolding of HR1 and releasing of the fusion peptide. FP mediates

the fusion of the host cell membrane lipid bilayer with the viral

membrane and further cell hijacking (Zhang et al., 2018; Heald-

Sargent and Gallagher, 2012; Belouzard et al., 2012; Li, 2016; Huang

et al., 2020; Xia et al., 2020). The comparative structures of human

coronaviruses are presented in the Table 1.

According to the data provided by Song F. et al., using the

pseudotyping method with Modified Vaccinia virus Ankara, it was

determined that the full-length S protein of MERS-CoV, in its

N-glycosylated state, is estimated to be 210 kDa. Subsequent

investigations propose the cleavage of the mature full-length S

glycoprotein into an amino-terminal domain (S1) and an

approximately 85-kDa carboxy-terminal domain (S2), which is

membrane-anchored. The cleavage occurs between 751 and 752

residues (Song et al., 2013).

SARS-CoV-2, SARS-CoV and MERS-CoV exhibit structural

mimicry with several alternative receptors aside from primary ones.

For example, all three have similar receptor binding motifs (RBMs) to

complement Factor H and EGF-like domains. SARS-CoV showed

mimicry for clitocypin-5 cysteine protease, von Willebrand factor,

and intracellular adhesion molecule 5. The RBM of SARS-CoV-2

mimics TNF receptors, neuroserpin, IL-6 receptors, and ephrin-B2.

MERS-CoV mimics TNF ligands, fibronectin type III, transferrin

receptor protein 1, and toxoplasma gondii surface antigen 3. These

structural resemblances imply possibility for alternative pathways

through which coronaviruses could modulate host cell invasion,

cellular metabolism, immune responses, and disease severity

(Beaudoin et al., 2021).

The HCoV-HKU1 and HCoV-OC43 spike glycoproteins

consist of 1356 and 1362 amino acids. Similarly to HCoV-OC43,

HCoV-HKU1 utilizes 9-O-Acetylated-sialic acid as a receptor to

engage the host cells and initiate infection (Millet and Whittaker,

2014; Huang et al., 2015; Li et al., 2020).

HCoV-NL63 and HCoV-229E belong to the alpha subgroup of

coronaviruses. The HCoV-NL63 spike protein belongs to type I

single-chain transmembrane glycoprotein, the molecular weight of

which is estimated at 128-160 kDa before and 150-200 kDa after

glycosylation. Comparison of the amino acid sequence of HCoV-

NL63 with HCoV-229E, SARS-CoV-2 and SARS-CoV showed 50%,

17.1%, and 25% sequence identity, respectively. HCoV-NL63 shares

ACE2 receptor binding with SARS-CoV-2 and SARS-CoV, and uses

ACE2 as a target receptor required for cellular entry (Hofmann

et al., 2005). A distinctive feature of HCoV-NL63 is that the N-

terminus region of the spike protein contains 179 amino acids that

have no homology with any of the HCoVs (Smith et al., 2006;

Castillo et al., 2023; Pöhlmann et al., 2006; Brielle et al., 2020).

HCoV-229E is known to cause mild respiratory infections in

humans (Hamre and Procknow, 1966). The specific receptor for

HCoV-229E is aminopeptidase N (APN), also known as CD13. The

spike protein binds to the APN receptor, initiating the attachment and

fusion of the virus with the host cell membrane (Yeager et al., 1992).

The findings by Blau et al. suggest that HCoV-229E undergoes
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TABLE 1 Structural comparison of S protein from different coronaviruses, top and side views.

UniProt Ref.
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TABLE 1 Continued

PDB UniProt Ref.
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endocytosis following the binding of the spike protein at the plasma

membrane. Subsequently, the virion is sorted into endosomes, where

fusion between the viral envelope and endocytic membrane takes

place (Blau and Holmes, 2001).
2.2 Function

2.2.1 Cellular entry
The most crucial function of spike proteins is the facilitation of

cellular entry into the host cell via receptor binding and fusion

(Pillay, 2020). The trimeric protein in SARS-CoV-2 viruses

accomplishes that by binding to angiotensin-converting enzyme 2

of the host cell through the receptor binding domain within the S1

subunit. S protein of SARS-CoV-2 and MERS-CoV is cleaved into

S1 and S2 proteins during viral biosynthesis in a host cell, then S2

protein is cleaved at S2’ site. While S1 binds the receptor, the S2

subunit acts as an anchor of the S protein to the membrane of the

virus and facilitates membrane fusion.

SARS-CoV and SARS-CoV-2 can enter cells through non-

endosomal and endosomal routes (Hofmann and Pöhlmann,

2004; Peng et al., 2021; Cesar-Silva et al., 2022; Simmons et al.,

2005) (Figure 2). Non-endosomal route involves fusion of viral

envelope with host cell membrane. The process of initiation of

virion entry to the host cell occurs by binding of the spike protein to

a receptor on the cell surface. The endosomal route relies on
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clathrin-mediated endocytosis. When compared to non-

endosomal entry, endocytosis leaves no traces of viral proteins on

the membrane, which allows the virus to evade detection by

immune cells.

Proteolytic cleavages of S protein are essential for binding to

ACE2. Cleavages at the S1-S2 boundary are a requirement for virus

maturation, they occur in the trans-Golgi network of the viral-

producer host cell, and are carried out by Ca2+-dependent

proprotein convertase – furin (Johnson et al., 2020). Cleavage on

S2’ site occurs during the viral entry, and it is associated with target-

cell proteases. Depending on the type of viral entry pathway, two

major proteases are involved in the cleavage: cathepsin L in

endosomal entry pathway and transmembrane protease, serine 2

(TMPRSS2) in the cell surface entry pathway (Figure 2). Inhibition

of furin or/and TMPRSS2 results in deactivation of the S protein

(Shapira et al., 2022; Essalmani et al., 2022).

The engagement of spike protein with ACE2 for viral fusion and

entry is a complex multistep process. First, the RBD changes its

conformation to a slightly open state that allows binding to the

receptor. This in return exposes S2’ site as the protein refolds and

HR1 thrusts the cell membrane which inserts FP. The following

dissociation of S1 causes the folding back of HR2 that leads to the

juxtaposition of FP to the transmembrane region and the fusion of

the membranes. The process continues with the formation of the

fusion pore by the same HR2 leading to the facilitation of viral entry

(Jackson et al., 2022).
FIGURE 2

Viral entry into the cells through fusion (A) and endocytosis (B) Two pathways of cell entry are shown: endosomal and through fusion. The
endosomal route is mediated in the case of a deficiency of transmembrane protease, serine 2 (TMPRSS2), and the virus-ACE2 complex internalizes.
It does so through clathrin-mediated endocytosis, and the cleavage takes place inside the endosome via cathepsin L which requires a low pH
environment. In the case of sufficient amount of TMPRSS2, the cleavage is done on the surface of the host cell membrane by TMPRSS2. The figure
is created using BioRender.
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ACE2 is the main cellular receptor for coronaviruses SARS-

CoV-2, SARS-CoV, and HCoV-NL63 (Hofmann et al., 2005;

Jackson et al., 2022; Beyerstedt et al., . 2021; Li et al., 2007). It has

been found that early trypsin priming may enhance SARS-CoV-2

infection in cultured cells (Kim et al., 2022). Similarly, an increase in

the infectivity of SARS-CoV is seen in the presence of proteases

such as trypsin, elastase and thermolysin (Matsuyama et al., 2005).

Various receptor molecules are also known to facilitate the

penetration and infection of the SARS-CoV-2 virus (Alipoor and

Mirsaeidi, 2022; Mollentze et al., 2022; Xia, 2023), such as

neuropilin receptors (Daly et al., 2020; Cantuti-Castelvetri et al.,

2020), C-lectin type receptors, dendritic cell-specific intercellular

adhesion molecule-3-grabbing non-integrin, Liver/lymph node-

specific intercellular adhesion molecule-3-grabbing integrin,

Macrophage Galactose-type Lectin (Thépaut et al., 2021; Lempp

et al., 2021), glucose-regulated protein (Carlos et al., 2021; Shin

et al., 2022), heparan sulfate proteoglycans (Zhang et al., 2023;

Kearns et al., 2022; Bermejo-Jambrina et al., 2021), AXL Receptor

Tyrosine Kinase (Wang et al., 2021). Another receptor molecule

that also facilitates viral entry is CD147. Ragotte RJ et al. showed

that CD147-mediated facilitation is not via binding to the RBD

region of the virus (Ragotte et al., 2021).

The principle of the viral entry in MERS-CoV is similar in terms

of the process to the SARS-CoV. However, a major distinct feature is

a different receptor used by the virus for attachment and entry.

Human dipeptidyl peptidase 4, type II transmembrane ectopeptidase

serves as a receptor for MERS-CoV (Meyerholz et al., 2016).

Depending on the tissue type and host cell, entry of MERS-CoV

into cells can occur either through fusion or via endosomes.

Experiments by Qian et al. carried out on VERO E6 and 293T cell

lines show that if the MERS-CoV spike protein on pseudovirions is

not digested by trypsin or TMPRSS2/4 proteases, then the viruses

enter through endocytosis in a cathepsin L-dependent manner.

However, if the MERS-CoV S protein is cleaved either during virus

maturation by proteases or by trypsin in the extracellular fluid, the

viruses penetrate the plasma membrane at neutral pH. This induces

syncytia formation even in cells that express low or no levels of the

MERS-CoV receptor (Qian et al., 2013).

HCoV-OC43 utilizes sialic acids, specifically N-acetyl-9-O-

acetylneuraminic acid as an attachment receptor to bind to the

host cell surface. This is similar to the bovine coronavirus,

suggesting zoonotic origins for OC43. Unlike many other human

coronaviruses which employ receptors like aminopeptidase N or

angiotensin-converting enzyme 2, OC43 was found to use either

HLA class I molecules or sialic acids as its fusion receptor for

cellular entry.

Upon receptor binding, OC43 initiates a caveolin-mediated

endocytic pathway for internalization. The virus particles go to

caveolae, which are flask-shaped invaginations in the cell

membrane containing caveolin-1. This caveolar route allows

OC43 cellular entry in a manner distinct from other

coronaviruses that primarily use clathrin-mediated endocytosis.

While actin filaments are not directly required, unwinding of the

actin cortex at the cell surface seems necessary to facilitate OC43

receptor binding and initial entry via caveolae-mediated

endocytosis (Owczarek et al., 2018).
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Similar to OC43, HCoV-HKU1 uses sialic acids for binding to

the surface membrane of the host cell (Liu et al., 2021). However,

Saunders et al. (2023) showed that TMPRSS2 acts as a receptor for

HCoV-HKU1, facilitating viral entry in two ways. First, its

enzymatic activity primes the virus for membrane fusion at the

cell surface. Second, even when TMPRSS2 is inactive, it can still

bind the virus, allowing entry through endosomes. This dual role

suggests TMPRSS2 is crucial for HKU1 entry and a potential target

for antiviral strategies (Saunders et al., 2023).

The most probable receptor for HCoV-229E is human

aminopeptidase N (hAPN) which is identical to CD13, a

glycoprotein of monocytes, granulocytes and their progenitors

(Yeager et al., 1992).

2.2.2 Cellular effects of the S protein
The numerous studies show that spike protein initiate ER stress

induction and activation of unfolded protein response, which in

turn leads to innate immune response, microRNA modulation,

autophagy and cell death (Xue and Feng, 2021; Versteeg et al., 2007;

Chan et al., 2006).

It was investigated whether the SARS-CoV-2 spike protein

could prime the NLRP3 inflammasome in microglia cells, in

addition to directly activating it. The cells were exposed to the

spike protein, and induction of priming of inflammasomes through

NF-kB signaling was observed. Priming would make the cells more

responsive to subsequent inflammasome triggers. When ATP or

nigericin were added following spike protein exposure, higher IL-1b
release was observed compared to the control without prior spike

protein exposure. This showed that spike protein indeed induces

inflammasome activation in microglial cells through NF-kB
(Albornoz et al., 2023).

SARS-CoV-2 S protein engagement with the ACE2 receptor

reduces the expression of ACE2 on the cell over time. It also can

induce caspase activation with following apoptosis in endothelial cells.

Spike protein reduces the production of KLF2 (Krüppel-like Factor 2)

and increases the expression of vWF (von Willebrand factor) in

primary human arterial endothelial cells. This in turn leads to vascular

inflammation and coagulation due to endothelial cell dysfunction

(Panigrahi et al., 2021). In HEK293 cells presence of spike protein

results in syncytia formation and cell sloughing. The protein also

induced TNF-a, MCP-1, and ICAM1 mRNA expression as well as of

heme oxygenase-1 (Singh et al., 2022). It was also observed that S

protein’s RBD of SARS-CoV-2 upregulates secretion of the IL-6 and

IL-8 through ATP/P2Y2 and ERK1/2 signaling pathways in human

bronchial epithelia (Zhang et al., 2024). Recombinant subunits of

spike protein of SARS-CoV-2 contrary to the previous studies induce

CXCL10 chemokine expression that is attenuated via glycogen

synthase kinase-3 inhibitor, not through the NF-kB, but rather IRF

transcription factor that is TLR2-independent in human macrophage

cells (THP-1) (Ghazanfari et al., 2024). Through the Proliferating Cell

Nuclear Antigen (PCNA) expression it was identified that S protein of

SARS-CoV-2 suppresses cell proliferation of SiHa cell line. The

significant increase of expression of anti-proliferative p53 molecule

is a suggested mechanism for cellular apoptosis along with pro-

apoptotic TRAIL (TNF-related apoptosis-inducing ligand) that is

also upregulated (Willson et al., 2024).
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The findings of recent research by Monaco et al. (2024) suggest

that the S1 domain of spike protein inhibits lactate dehydrogenase B

which converts lactate to pyruvate through depletion of NAD+.

Such inhibition shifts the metabolism from aerobic to anaerobic

pathways. This shift is similar to the Warburg Effect, observed in

viral infections and cancers, with cells relying more on glycolysis

despite abundance of oxygen. Along with that, the upregulation of

proteins contributing to Warburg Effect such as hexokinase-2

(HK2), hypoxia up-regulated protein 1(HYOU1), and TBC1

domain family member 4 (TBC1D4) in the HEK-293T

transfected cell line with S1 domain of the S protein was observed

in comparison to the control (Monaco et al., 2024).

Another novel finding regarding alternative binding of S protein

to b1- and b2-ARs in cardiomyocytes suggests that the virus

contributes to cardiac dysfunction which is observed in post-acute

sequelae cardiovascular syndrome (PASC-CVS) of COVID-19.

Activation of those receptors increases cAMP accumulation in the

downstream signaling, and leads to cardiac sympathetic

hyperactivity and thus weakens heart function (Deng et al., 2024).

Incubated RAW 264.7 macrophages with truncated spike

protein of SARS-CoV induced secretion of IL-6 and TNF-a
cytokines through NF-kB pathway (Wang et al., 2007).

A single point mutation (Y241H) in the spike protein of HCoV-

OC43 was shown to modulate virus-induced neuropathogenesis in

mice, resulting in death. Mice infected with the recombinant virus

bearing this mutation (rOC/US241) developed a motor paralysis

syndrome with demyelination in the spinal cord, while the reference

virus caused only encephalitis. rOC/US241 replicated at a similar

levels as the reference virus in the brain but persisted longer in the

spinal cord. The Y241H mutation led to neuronal dysfunction

shown by abnormal neurofilament phosphorylation. It also

downregulated the glutamate transporter GLT-1 in astrocytes and

strongly activated microglia/macrophages compared to the

reference virus. Treatment with an AMPA receptor antagonist

reduced motor dysfunction in rOC/US241 infected mice by

attenuating neuronal and glial alterations as well as microglial

activation (Brison et al., 2011). The effects of the spike protein on

a host cell are summarized in the Table 2.
3 Structure and function of E protein

3.1 Structure

The coronavirus envelope (E) protein is а short, integrаl

membrаne protein consisting of 76 to 109 аmino аcids, with а

size rаnging from 8.4 to 12 kDа (Schoeman and Fielding, 2019).

Structurally, it comprises three distinct domаins, as shown in

Figure 3. Amino (N)-terminal domain (NTD) is a short,

hydrophilic region consisting of 7 to 12 amino acids.

Transmembrane domain (TMD) is a large hydrophobic region of

25 amino acids, consisting of at least one predicted amphipathic a-
helix. This domain enables the oligomerization of E proteins to

form an ion-conductive pore across membranes. Carboxy (C)-

terminal domain (CTD) is a hydrophilic region which makes up

most of the protein. This domain contains b-coil-b motif, which
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functions as a Golgi-complex targeting signal (Nieto-Torres et al.,

2015) (Figure 4A).

The E protein in coronaviruses adopts an N-ecto/C-endo

topology with one transmembrane domain. This topology implies

that the N-terminus of the protein is located outside the virus

(ectodomain), and the C-terminus is located inside the virus

(endodomain). This single transmembrane domain is crucial for

the integration of the E protein into the host cell membrane (Nieto-

Torres et al., 2015; Schoeman and Fielding, 2019).

Solid-state NMR spectroscopy revealed that the transmembrane

domain of the E protein of SARS-CoV-2 assembles into a

homopentameric structure, forming a narrow pore within

membranes (Mandala et al., 2020) (Figure 4B). However, the

recently conducted NMR study found that it can exist as a dimer

in lipid bilayers (Zhang et al., 2023). In addition, an ectodomain-

containing E construct (ENTM, aa 1-41) from SARS-CoV-2 forms

dimers instead of pentamers in lipid bilayers (Somberg et al., 2024).

They found that oligomeric state and drug binding of the E protein

is affected by the presence of ectodomain. This research clearly

demonstrates that E protein may adopt different oligomeric states,

and depending on that the binding of antivirals may be affected. It is

therefore hypothesized that E proteins using different oligomeric

states perform different functions, which are to be investigated in

future studies.

The CTD of the SARS-CoV-2 E protein contains a PDZ-

binding motif (PBM), which is crucial for establishing

interactions with host cell proteins. This PBM in the CTD of the

SARS-CoV-2 E protein interacts with host cell junction proteins

such as PALS1 (Chai et al., 2021) (Figure 4C). This interaction

induces relocation of PALS1 from the cell junction to the

endoplasmic reticulum–Golgi intermediate compartment

(ERGIC), where viral assembly and maturation take place (Chai

et al., 2021). One study found that amino acid variations within the

CTD of SARS-CoV-2 E protein, notably at residues Ser 55 -Phe 56,

Arg 69, and the C-terminal end (DLLV: 72-75), may alter its

binding affinity to PALS1 (Rahman et al., 2021).

Cellular studies showed that SARS-CoV-2 E protein PBM

interacts with syntenin and ZO1 (Ávila-Flores et al., 2023). Host

cell proteins associated with cellular junction and polarity such as

TJP1, PARD3, MLLT4, LNX2 interact with the E protein’s PBM,

leading to the sequestration of these PDZ domains to the Golgi

compartment (Zhu et al., 2022). All these findings show that the

coronavirus uses its E protein to disturb cellular communication

and integrity, thereby enabling viral propagation.

Like in SARS-CoV-2, the TM domain of the SARS-CoV E

protein forms a pentameric ion channel across membranes. It was

shown that leucine and valine rich region within the SARS-CoV E

protein TM domain is critical for the formation of the ion channel.

Additionally, SARS-CoV E protein possesses a triple cysteine motif,

which interacts with the spike protein of the virus (Aldaais

et al., 2021).

The MERS-CoV E protein has a single a-helical transmembrane

domain (Surya et al., 2015). This transmembrane domain can form

pentameric ion channels in membranes. Similar to the E proteins of

SARS-CoV and SARS-CoV-2, the MERS-CoV E protein also has a C-

terminal PBM. However, unlike the E proteins from SARS-CoV and
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TABLE 2 Cellular effects of spike protein of human coronaviruses.

Coronavirus Cellular effect Cell Line

SARS-CoV-2 Cellular entry facilitation via ACE2 with additional furin cleavage site (Hoffmann et al., 2020; Ou et al., 2020) MRC5, 293T, Huh7, A549,
HeLa, RS, LLCMK2,
Calu3, Vero

Activates the NLRP3 inflammasome in human microglia (Albornoz et al., 2023) MDMi

Through its engagement with the ACE2 receptor, reduces KLF2 expression while increasing vWF, induces endothelial
dysfunction, and activates caspases causing apoptosis in primary human aortic endothelial cells (Panigrahi et al., 2021)

Primary human
endothelial cells, lung
fibroblasts, HAEpCs,
CACO-2

Upregulates TNF-a, MCP-1, and ICAM1, cytoprotective gene HO-1 and relevant signaling pathways (p-Akt, p-STAT3,
and p-p38) (Singh et al., 2022)

HEK293, HEK293-ACE2+
(stably overexpressing
ACE2), and Vero E6

The spike protein’s RBD upregulates IL-6 and IL-8 through the ATP/P2Y2 and ERK1/2 signaling pathways ( Zhang
et al., 2024)

16HBE14o- (human
bronchial epithelial
cell line)

Spike protein subunits induce CXCL10 upregulation that involves a GSK-3 inhibitor and a TLR2-independent
mechanism (Ghazanfari et al., 2024)

THP-1
macrophages, PBMC

Inhibits the growth of cervical cancer cells via upregulation of p53 and pro-apoptotic TRAIL (Willson et al., 2024) SiHa

Inhibits lactate dehydrogenase B and depletes NAD+ shifting priority of metabolism from aerobic to anaerobic
pathway known as Warburg Effect (Monaco et al., 2024)

HEK-293T, Calu-3,
NCM460D, Caco-2, HK-2

Binds to b1- and b2-adrenergic receptors in heart cells, contributing to the cardiovascular problems seen in long
COVID. This interaction boosts cAMP levels, causing receptor overactivity, faster heart rates, increased sympathetic
activity, and weakened heart function (Deng et al., 2024)

HEK-293T, NMCMs
(Cultured neonatal
mouse cardiomyocytes)

SARS-CoV Cellular entry facilitation via ACE2 (Li et al., 2005) x-ray diffraction

Stimulates IL-6 and TNF-a release from RAW264.7 cells; induces NF-kB activation (Wang et al., 2007) RAW264.7

MERS-CoV Viral entry through binding to dipeptidyl peptidase IV (DPP4, or human CD26) (Lu et al., 2013) in vitro assay

HCoV-HKU1 Employs glycan-based receptors carrying 9-O-acetylated sialic acid for cellular entry (Hulswit et al., 2019; Huang
et al., 2015)

HAE cell culture, HRT18

HCoV-229E Binds to metalloprotease CD13, and to hAPN (human aminopeptidase N) (Yeager et al., 1992) Murine NIH3T3 cells
transfected with
hAPN cDNA

HCoV-NL63 Bind metallopeptidase angiotensin-converting enzyme 2 (Hofmann et al., 2005) Huh-7, HEK293T

HCoV-OC43 Utilizes HLA class I molecule or sialic acids for cell entry (Owczarek et al., 2018) HCT-8

A single Y241H mutation in the spike protein of HCoV- OC43 induced motor paralysis and death in mice by
dysregulating neuronal function, glutamate transport and exacerbating glial activation in the spinal cord (Brison
et al., 2011)

BHK-21, HRT-18
F
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FIGURE 3

Structural features of E protein. (A) Schematic representation of coronavirus E protein structure. (B) Multiple sequence alignment was conducted
using Clustal Omega and visualized in Jalview. Conserved residues are highlighted in purple.
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SARS-CoV-2, the PBM of MERS-CoV E protein does not interact

with the host cell protein PALS1 (Javorsky et al., 2021).

There was a recent study focused on the determination of the

structural properties of NL63 (Sučec et al., 2024). The study found

that the TMD of the E protein (ETM) of NL63 adopts an a-helical
conformation. Interestingly, they found that upon pH decrease or

the presence of Ca2+ ions, the ETM of NL63 does not show much

change in its water accessibility, whereas the water accessibility of

the SARS-CoV-2’s ETM increases upon the same conditions. These

functional differences can be attributed to the structural differences

between the two viruses. As discussed in the paper, NL63 ETM

possesses a 7DDN9 motif, which compared to the corresponding

motif (7EET9) present in the SARS-CoV ETM, is less able to

respond to the changes in pH and Ca2+ ions due to differences in

sidechain charge and lengths. As shown in sequence alignment in

Figure 3, 7EET9 motif is present in SARS-CoV and SARS-CoV-2,

while missing in less pathogenic HCoVs (HKU1, OC43,NL63,

229E). The previous structural studies conducted on the SARS-

CoV ETM identified three Phe residues positioned three residues

apart from each other in its hydrophobic segment, which played a

role in the channel’s gating function. In the case of the NL63 ETM,

three Phe residues are positioned successively, and thus may be

unable to participate in gating function. In Figure 3, it is shown that

three Phe residues positioned three residues apart from each other

are common to SARS-CoV and SARS-CoV-2, whereas less

pathogenic HCoVs do not share this feature. The experimental

conditions used with low pH and high Ca2+ concentrations highly

resemble the conditions in the ERGIC compartment, in the

membrane of which E protein is located. Thus, lower

pathogenicity of coronaviruses can partly be linked to their

reduced viroporin activity.

From the sequence alignment in Figure 3, we can see that M

residue located in the NTD and L, C and P residues located in the

CTD of the E protein are conserved across all HCoVs. Additionally,
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three Phe residues positioned three residues apart from each other

are common to SARS-CoV and SARS-CoV-2 (F22, F25, F28)

whereas less pathogenic HCoVs do not share this feature. This

may partly explain the enhanced pathogenicity of SARS-CoV and

SARS-CoV-2 in relation to other less virulent HCoVs.
3.2 Function

When compared to other coronavirus structural proteins, the E

protein is unique in the sense that only a small proportion of it

forms virions, while most gets incorporated into the membrane of

the ERGIC in infected cells (Venkatagopalan et al., 2015). Although

research on the coronavirus E protein is quite scarce, based on the

available data, it is certain that the E protein plays crucial roles in

the virus’s lifecycle (Figure 5; Table 3).

3.2.1 Virus assembly and budding
The viral E protein of SARS-CoV-2 plays a crucial role in

retaining the S protein inside infected cells, specifically localizing it

to the membranes of the ERGIC (Endoplasmic Reticulum-Golgi

Intermediate Compartment) or the Golgi apparatus by slowing

down the host cell’s secretory pathway (Boson et al., 2021).

Furthermore, the E protein, in collaboration with M protein,

facilitates the N-glycosylation of the S protein through a

mechanism that operates independently of its intracellular

retention (Boson et al., 2021). This coordinated action between

the E, M, and S proteins is essential for the proper assembly of virus-

like particles.

The E protein, in conjunction with the M protein, facilitates the

budding of the virus within the ERGIC. In a study, atomistic

molecular dynamics simulations were conducted to understand

this process better (Collins et al., 2021). The simulations utilized

refined structural models of the SARS-CoV-2 M protein dimer and
FIGURE 4

Solved 3D structures of coronavirus E protein. (A) SARS-CoV-2 E protein structure. Golgi complex-targeting signal located on the SARS-CoV CTD
(colored in purple) is shown in pink, and the TMD is colored in gray (PDB:2MM4); (B) Pentameric structure of SARS-CoV-2 E protein transmembrane
domain (PDB: 5X29); (C) Cryo-electron microscopy structure of SARS-CoV-2 E protein PBM (shown in magenta) interaction with host PALS1
(PDB: 7NTK).
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E protein pentamer. The results showed that while multiple M

protein dimers acted together to induce global membrane curvature

through protein-lipid interactions, the E protein pentamers helped

to keep the membrane planar. This cooperation between the E and

M proteins is fundamental for the budding process to

occur effectively.
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Another study found that the monomeric E protein both

generates and senses membrane curvature, preferring to localize

with its C-terminus at the convex regions of the membrane

(Kuzmin et al., 2022). This characteristic is also observed when

the protein is in its pentameric form. The localization to curved

regions is deemed favorable for the assembly of E protein oligomers,
FIGURE 5

Cellular effects of coronavirus E protein. (A) In early stage of disease, E protein dampens the activation of NLRP3 inflammasome, while in advanced
stage it activates NLRP3 inflammasome and exacerbates immune response; (B) E protein has ion channel activity and enables Ca2+ ions transport
across ERGIC membrane; (C) E protein interacts with human PDZ proteins (PALS1, syntenin, ZO-1) through its PBM. The figure is created
using BioRender.
TABLE 3 Cellular effects of human coronavirus E protein.

HCoV Cellular effect Cells

SARS-CoV-2 Induction of pyroptotic cell death (Chai et al., 2021; Zheng et al., 2021) THP-1, Vero E6, 16HBE, A549, HeLa, CaCO-2

Induction of expression of inflammatory cytokines (TNF-a, IL-6) and chemokines (CXCL9
and CCL12) (Xia et al., 2021)

RAW264.7

Activation of TLR2 signaling (Planès et al., 2022) HEK cells stably transfected with TLR2

Interaction with human PALS1 and ZO1 (Javorsky et al., 2021) In vitro assay with recombinant proteins

Induction of necroptosis and inflammatory response (Baral et al., 2023) Lung and colon cells

Activation of TLR 2/4 and downstream JNK signaling leading to increased Cl-

concentration and inflammation (Xu et al., 2024)
BEAS-2B cells, human primary cultured airway
epithelial cells (hPAECs)

SARS-CoV Ion channel (IC) activity and activation of NLRP3 inflammasome (Nieto-Torres
et al., 2015)

Vero E6

Interaction with human PALS1 (Teoh et al., 2010) HEK 293T

Interaction with Bcl-xL and subsequent T-cell apoptosis (Yang et al., 2005) Jurkat T-cells

Interaction with human syntenin and subsequent p38 MAPK activation (Jimenez-Guardeño
et al., 2014)

Vero E6

OC43 Infectious virus production (Stodola et al., 2018) HRT-18
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and the induction of curvature is suggested to facilitate the budding

of viral particles.

In summary, additional research is required to ascertain if the

SARS-CoV-2 E protein can directly cause membrane curvature.

Nonetheless, the role of the E protein in budding is unequivocal,

particularly for its CTD.

3.2.2 Host cell effects
Xia et al. showed that SARS-CoV-2 E protein forms a pH-sensitive

cation channel causing cell death resembling pyroptosis (Xia et al.,

2021). In addition, the E protein was shown to provoke robust immune

responses, notably upregulating cytokines (TNF-a, IL-6) and

chemokines (CXCL9, CCL12) both in vitro and in vivo, mirroring

the cytokine storm observed in COVID-19 patients (Xia et al., 2021).

SARS-CoV-2 E protein transfection triggered necrotic cell death

and inflammatory response in both lung and colon cells (Baral et al.,

2023). The cellular effects of E protein have been mediated by the

activation of the receptor interacting protein kinase 1 (RIPK1), which

is a necroptotic marker. Subsequently, RIPK1 promotes the

phosphorylation of NF-kB, a key transcription factor involved in

inflammation. Recently, there was an intriguing finding that SARS-

CoV-2 E protein switches the innate immune system to a tolerant

state upon secondary infections (Geanes et al., 2024). Though initially

E protein activates the innate immune system via its interaction with

TLR-2, its long-term effect is to make monocytes and macrophages

unresponsive to pathogens, contributing to immune dysregulation.

This could potentially explain why patients with severe forms of

COVID-19 are susceptible to secondary infections. SARS-CoV-2 E

protein has been shown to activate TLR-2/4 and subsequently JNK

signaling, which leads to a high intracellular Cl- concentration

through increased expression of phosphodiesterase 4D (PDE4D)

(Xu et al., 2024). The increased level of Cl- ions further drive

inflammation by enhancing the phosphorylation of serum/

glucocorticoid regulated kinase 1 (SGK1) (Xu et al., 2024).

Interestingly, blocking SGK1 or PDE4D helps to mitigate the

inflammatory response triggered by E protein. This highlights

novel therapeutic targets to treat COVID-19 related inflammation.

Previous research on SARS-CoV showed that strains lacking the

E protein couldn’t activate the NF-kB pathway, reducing

inflammatory cytokine production (DeDiego et al., 2014). Recent

studies on SARS-CoV-2 confirmed this finding, emphasizing the

significant role of viral E in eliciting robust immune responses both

in vitro and in vivo (Xia et al., 2021).

The SARS-CoV-2 E protein can induce the release of

inflammatory cytokines like TNF-a and IFN-g, and activate the

NLRP3 inflammasome (Zheng et al., 2021). This activation is linked

to the ion channel property of the E protein which facilitates ion

transport, providing an activation signal for the NLRP3

inflammasome assembly. Moreover, the interaction between the

SARS-CoV-2 E and Toll-like receptor 2 (TLR2) was identified,

which further underscores the role of E protein in innate immune

responses. The modulation of the NLRP3 inflammasome by E

protein varies across different infection stages (Yalcinkaya et al.,

2021). Initially, it may suppress the host NLRP3 inflammasome

response to viral RNA but might enhance the NLRP3

inflammasome response in later infection stages.
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The E protein disrupts cell polarity by interacting with certain

connexins. The interaction primarily occurs at a site known as the

PDZ-Binding Motif (PBM) in the E protein, which comprises the

last four carboxy-terminal amino acids (DLLV) (Chai et al., 2021).

PDZ domains are common protein interaction modules that

recognize short amino acid sequences at the C-terminus of target

proteins. These domains are found in a variety of connexins, and

they can recognize and interact with several human cell junction

proteins including PALS1, ZO-1, and syntenin. PALS1 is a crucial

protein associated with tight junctions and plays a vital role in

maintaining epithelial polarity. Interaction of SARS-CoV E protein

with PALS1 has been associated with lung epithelial cell destruction

in SARS patients (Teoh et al., 2010). Comparatively, the E protein of

SARS-CoV-2 showed an increased affinity for PALS1’s PDZ

domain which could be a contributing factor to SARS-CoV-2’s

increased virulence (Toto et al., 2020).

A study by Chai et al. used cryo-electron microscopy to

visualize the complex structure formed by PALS1 and SARS-

CoV-2 E protein, revealing how the DLLV motif of E protein

recognizes a hydrophobic pocket formed by PDZ and SH3 domains

of PALS1 (Chai et al., 2021). This interaction disrupts the apical cell

polarity complex, which could lead to loosened and leaky lung

epithelial junctions, promoting local viral spread and immune cell

infiltration into lung alveolar spaces.
4 Structure and function of M protein

4.1 Structure

The M protein, being the predominant structural protein of the

virus, plays a critical role in driving the assembly of the virus and

initiating the budding process from the membrane (Z. Zhang et al.,

2022). Structurally it consists of a short exterior N-terminal domain

(NTD), three transmembrane domains and a long C-terminal

domain, located inside the virion, as shown in Figure 6.

The M protein of SARS-CoV-2 creates a dimer resembling a

mushroom, made up of two three-helix bundles that are

transmembrane and domain-swapped, along with a pair of

intravirion domains (Zhang et al., 2022). Additionally, the M

protein forms into more complex oligomeric structures. The N-

terminal ectodomain of M contains the single N-glycosylation site

(Voß et al., 2009).

The study found that the MERS-CoV M protein localizes

intracellularly within the trans-Golgi network (Perrier et al., 2019).

Two motifs in the C-terminal domain were identified as being crucial

for this specific localization. The first motif identified is a diacidic

DxE ER export signal, essential for the protein’s movement out of the

ER. The second motif (199KxGxYR204) is crucial for retaining the M

protein within the trans-Golgi network. Mutations in these motifs

resulted in altered intracellular localization.

The researchers identified two specific epitopes, Mn2 and Md3,

from the M protein, which were found to stimulate strong cellular

immunity responses (Liu et al., 2010). The study employed various

methods like in vitro refolding, T2 cell-binding assays, and analysis

in transgenic mice and human cells. The results indicated that the
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M protein, particularly the identified epitopes, plays a crucial role in

cellular immune responses against SARS-CoV. This discovery is

significant for vaccine design, as it highlights the M protein as a

potential target for eliciting strong and protective immune

responses. The study ’s findings contribute to a deeper

understanding of the immunogenicity of SARS-CoV and offer

insights for developing effective vaccines.

The cytoplasmic tail of the M protein is necessary for the

localization of the S protein to the Golgi region when both

proteins are coexpressed in cells (McBride and Machamer, 2010).

A specific tyrosine residue (Y195) within the M protein’s

cytoplasmic tail is crucial for the interaction with the S protein.

Mutation of Y195 to alanine disrupts the S-M interaction,

preventing the retention of the S protein at the Golgi and

affecting the S protein’s carbohydrate processing and surface

levels. The study concludes that the Y195 residue plays a

significant role in the assembly of infectious SARS-CoV by

facilitating efficient S-M interaction. This interaction is involved

in the assembly process of the viral life cycle. As shown in the

Figure 6B, Y195 is present in all of the HCoVs, except for

the HKU1.
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The sequence alignment of C-terminus domain of M protein

shows 20 conserved amino acids (highlighted in purple

in Figure 6B).
4.2 Function

The SARS-CoV-2 M protein interacts with the mitochondrial

antiviral-signaling protein (MAVS), a central adaptor protein in the

innate immune response, to inhibit the antiviral immune response

(Fu et al., 2021). This interaction impairs MAVS aggregation and its

recruitment of downstream signaling components. The two N-

terminal transmembrane domains of the M protein are essential for

its inhibition of MAVS-mediated signaling.

The membrane glycoprotein of SARS-CoV-2 initiates caspase-

dependent apoptosis (a form of programmed cell death) by binding

to PDK1, a protein involved in cell survival signaling, and inhibiting

the PDK1-PKB/Akt pathway (Ren et al., 2021). This pathway is

crucial for cell survival, and its disruption leads to cell death. The

nucleocapsid protein N of SARS-CoV-2 was found to enhance this

apoptosis caused by M by facilitating the interaction between M and
FIGURE 6

Coronavirus M protein structure. (A) Structural organization of coronavirus M protein. (B) Multiple sequence alignment of M protein CTDs from
human coronaviruses was conducted in Jalview. The invariant residues are highlighted in dark purple, while conserved ones are in light shades.
(C) Cryo-EM structure of SARS-CoV-2 M protein homodimer. N-terminal domains are color coded in red and purple, transmembrane domains in
yellow and cyan, C-terminal domains in green and gray, respectively, for two chains.
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PDK1, thus further weakening the PDK1-PKB/Akt signaling.

Notably, when the interaction between M and N was disrupted by

specially designed peptides, the inhibitory effect on the PDK1-PKB/

Akt pathway was reversed, preventing the apoptosis enhanced by N.

Molecular simulations study found key residues in SARS-CoV-2 M

protein C-terminal domain responsible for its interaction with

nucleocapsid and spike proteins, which include Phe103, Arg107,

Met109, Trp110, Arg131, and Glu135 (Mahtarin et al., 2022).

The SARS-CoV-2 M protein inhibits the production of IFN-I by

promoting the degradation of TBK1 via K48-linked ubiquitination,

which leads to the enzyme’s breakdown (Sui et al., 2021). This

degradation impairs the assembly of a protein complex essential for

IFN-I production, resulting in a decreased immune response.

The M protein stabilizes the pro-apoptotic protein BOK (B-cell

lymphoma 2 (BCL-2) ovarian killer) by inhibiting its

ubiquitination, promoting its mitochondrial translocation, and

inducing apoptosis (Yang et al., 2022). Additionally, it was shown

that the M protein interacts with the BH2 domain of BOK,

amplifying its apoptotic effect. In vivo experiments demonstrate

that M protein expression via a lentivirus can cause lung cell

apoptosis and increase pulmonary permeability in mice,

suggesting the M protein’s role in exacerbating lung injury in

COVID-19.

Interaction between the SARS-CoV-2 membrane protein and

the human Proliferating Cell Nuclear Antigen (PCNA) protein was

demonstrated (Zambalde et al., 2022). This interaction is of interest

for its potential as a therapeutic target in COVID-19 treatment.

PCNA serves as an indicator of DNA damage and plays a crucial

role in both the replication and repair of DNA. The study found

that the SARS-CoV-2 M protein facilitates the transport of PCNA

from the nucleus to the cytoplasm, which may be a viral strategy to

manipulate cell functions. This translocation and interaction are

proposed as possible targets for COVID-19 therapy.

The recent study found that SARS-CoV-2 M protein interferes

with cleavage of S protein by furin, a step important for viral entry

to host cells via fusion. There are two mechanisms employed by M

protein for this role: one is to interact with S protein and render it in

the cytoplasm not allowing it to localize to the membrane; the other

one is to bind with furin and thus inhibit its enzymatic activity

(Xiang et al., 2024).

SARS-CoV M protein physically interacts with a component of

the immune signaling pathway (IKKb) and suppresses the

activation of NF-kB (Fang et al., 2007). This suppression leads to

a reduction in Cyclooxygenase-2 (Cox-2) expression, a protein

involved in inflammation and immune response. The research

suggests that the SARS-CoV virus might use this mechanism to

evade the host’s immune system, contributing to the pathogenesis

of SARS. The M protein of SARS-CoV specifically suppresses the

type I interferon (IFN) production, a critical part of the innate

immune response to viral infections (Siu et al., 2014). This effect was

not observed with the M protein from the human coronavirus

HKU1. The first transmembrane domain (TM1) of the SARS-CoV

M protein is essential for this suppression. The study showed that

this domain alone is sufficient to mediate the suppression of IFN

production. TM1 interacts with several key immune signaling

molecules like RIG-I, TRAF3, TBK1, and IKKe. Additionally, it
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was observed that TM1 is necessary for targeting the M protein to

the Golgi apparatus in cells, which is a crucial step in the

suppression mechanism. These findings provide insight into the

molecular mechanisms SARS-CoV uses to evade the host’s immune

response, contributing to its pathogenesis.

A study on SARS-CoV M protein was conducted to identify

amino acid residues critical for virus-like particle (VLP) production

(Tseng et al., 2013). Dileucine motif in the M protein’s endodomain

tail is crucial for incorporating the nucleocapsid protein into virus-

like particles. Cysteine residue C158 is significant for the M

protein’s interaction with the nucleocapsid, essential for virus-like

particle formation. Mutations at W19, W57, P58, W91, Y94, F95

reduce virus-like particle yields, indicating these residues’

importance in M protein secretion and assembly.

The MERS-CoV M protein interferes with the host’s innate

antiviral defense by inhibiting the activation of the interferon

regulatory factor 3 (IRF3), but not NF-kB (Lui et al., 2016). This

inhibition occurs through the M protein’s interaction with TRAF3,

a key adapter protein, which disrupts the association between

TRAF3 and TBK1, leading to decreased IRF3 activation.

Addit ional ly , the study revea ls that the N-terminal

transmembrane domains of the MERS-CoV M protein are

essential and sufficient for this inhibitory effect, while the C-

terminal domain is largely dispensable. The C-terminal

199KxGxYR204 and 211DxE213 sequences in the membrane

protein of the MERS coronavirus play a vital role in the assembly

of infectious viruses (Desmarets et al., 2023).

The HCoV-OC43 M protein significantly suppresses the

activation of IFN-b promoter, interferon (IFN)-stimulated

response element (ISRE), and nuclear factor kappa B response

element (NF-kB-RE), thereby reducing the expression of antiviral

genes (Beidas and Chehadeh, 2018).

The M protein of HCoV-NL63 facilitates attachment to host

cells by interacting with heparan sulfate proteoglycans (HSPGs), a

class of cellular receptors (Naskalska et al., 2019). The interaction is

mediated by amino acids 153 to 226 located in the C-terminal

domain of the M protein. The summary of M protein cellular

functions are presented in Figure 7 and Table 4.
5 Structure and function of N protein

5.1 Structure

Nucleocapsid protein (N protein) has modular organization with

two structural components: N-terminal Domain (NTD) and C-

terminal Domain (CTD) - separated by intrinsically disordered

linker region (LKR) (Wu et al., 2021; Huang et al., 2004; McBride

et al., 2014) (Figure 8). At the N- and C-termini of the protein there are

two intrinsically disordered regions (IDR): N-terminus and C-tail.

NTD is referred to as RNA-binding domain, though other domains

also have abilities to bind RNA molecules (Kang et al., 2020; Huang

et al., 2004). The sequence of NTD as well as its length varies in

different coronaviruses (Figure 8; Table 5). The molecular weight of N

protein is within 45 to 60 kDa range. HCoV-OC43 has the longest N

protein containing 448 amino acids, whereas HCoV-NL63 has the
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FIGURE 7

Cellular effects of coronavirus M protein. (A) M protein plays a major role in the assembly and formation of virus-like particle via its interaction with
other structural proteins and genomic RNA. (B) M protein induces mitochondrial apoptosis in lung epithelial cells via the stabilization of B-cell
lymphoma 2 (BCL-2) ovarian killer (BOK) and its translocation to mitochondria. (C) M protein inhibits TBK1-dependent phosphorylation of IRF3,
which further leads to the suppression of type I interferon (IFN) production. (D) M protein inhibits NF-kB activation through physically interacting
with IkB kinase (IKK). (E) The interaction between M protein and human PCNA leads to the translocation of PCNA from nucleus to cytosol. The figure
is created using BioRender.
TABLE 4 Cellular effects of M protein.

HCoV Cellular effect Cells

SARS-CoV-2 Interaction with human Proliferating Cell Nuclear Antigen protein (Zambalde et al., 2022) Vero E6, HEK293T

Induction of mitochondrial apoptosis (Yang et al., 2022) NCL-H292, HEK293T,
EA.hy926, Lewis lung cancer

Interaction with nucleocapsid and spike proteins (Kumar et al., 2023) protein docking assay

Suppression of MAVS-mediated innate antiviral response (Fu et al., 2021) HEK-293

Induction of caspase-dependent apoptosis due to the interaction with PDK1 (Ren et al., 2021) Vero E6, HEK393T, HepG2

TBK1 degradation through K48-linked ubiquitination (Sui et al., 2021) HEK293T

SARS-CoV Suppression of type I interferon (Siu et al., 2014) production HEK293, 293FT

Suppression of NF-kB activation (Fang et al., 2007) Vero E6, HeLa

Interaction with S protein (McBride and Machamer, 2010) HeLa, HEK293T

Interaction with N protein and VLP formation (Tseng et al., 2013) 293T, HeLa

Induction of apoptosis (Chan et al., 2007) HEK293T

(Continued)
F
rontiers in Cellular a
nd Infection Microbiology 16
 frontiersin.org

https://www.BioRender.com
https://doi.org/10.3389/fcimb.2024.1458383
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Minigulov et al. 10.3389/fcimb.2024.1458383
shortest N protein with 377 amino acids. Despite difference in length,

the secondary structures of NTDs of different coronaviruses are well

preserved, these include centrally located five-stranded antiparallel b-
sheet core domain with RNA-binding site within (Jayaram et al., 2006).

RNA-binding region is enriched in basic and aromatic amino acids.

Basic residues, such as arginine and lysine, help to neutralize negative
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charge on phosphate groups of nucleotides. Hydrophobic amino acids

interact with nucleotide bases.

LKR region is positioned between NTD and CTD, and it is within

an intrinsically disordered region (IDR). It demonstrates flexible

structure, and is capable of interacting with nucleic acids and

proteins (Wu et al., 2023). At its N-terminal LKR has serine/arginine
TABLE 4 Continued

HCoV Cellular effect Cells

MERS-CoV Inhibition of the interferon regulatory factor 3 (Lui et al., 2016) HEK-293

Formation of infectious viral paricles (Desmarets et al., 2023) Huh-7

OC43 Reduced transcriptional activity of ISRE, IFN-b promoter, and NF-kB-RE (Beidas and Chehadeh, 2018) HEK-293

NL63 Interaction with heparan sulfate proteoglycans (Naskalska et al., 2019) LLC-Mk2
FIGURE 8

N protein structure. (A) NTD and CTD are represented as yellow and green boxes respectively separated by unstructured linker region (LKR) with
serine-arginine rich part (SR). (B) The entire N protein length as well as lengths of NTD and CTD regions are shown for seven human coronaviruses.
(C) Clustal sequence alignment of N protein NTDs from human coronaviruses. The invariant residues are highlighted in dark purple, while conserved
ones are in light shades. The image is built with a help of Jalview program. The alignment suggests low degree of sequence conservation among
different coronaviruses.
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TABLE 5 Structural comparison of N protein from different coronaviruses.

UniProt Ref.

P0DTC9 (Peng et al., 2020)

P59595 (Huang et al., 2004)
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Coronavirus 3D structure PDB

SARS-CoV-2 7CDZ

SARS-CoV 2OFZ
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TABLE 5 Continued

UniProt Ref.

(Papageorgiou et al., 2016)

(Chen et al., 2013)
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Coronavirus 3D structure PDB

MERS-CoV 4UD1 K9N4V7

HCoV- HKU1 7N45 Q5MQC6

HCoV-OC43 4J3K P33469
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region, a potential phosphorylation site. The phosphorylation status

affects the function of N protein, and in particular, its nuclear

translocation through association with host cell 14-3-3 protein

(tyrosine 3-monooxygenase/tryptophane 5-monooxygenase activation

protein) (Surjit et al., 2005). N protein is a target for multiple kinases,

such as cyclin-dependent kinase (CDK), glycogen synthase kinase,

mitogen-activated protein kinase (MAPK), and casein kinase II (Wu

et al., 2009; Surjit et al., 2005; Tugaeva et al., 2021). SR-region is

important for viral replication, removal of SR region in SARS-CoV N

protein decreases the number of infectious virus particles within

infected cells (Tylor et al., 2009). Despite its disordered structure,

linker region is important for interaction between N protein and non-

structural protein 3 (nsp-3), which is a part of viral replication-

transcription complex (Verheije et al., 2010). This interaction is

important for viral infectivity (Hurst et al, 2013). There are several

studies demonstrating the role of the linker region in oligomerization of

N protein (Peng et al., 2008; Chang et al., 2014; Luo et al., 2005). It was

shown, for example, that removal of 184-196 residues in SARS-CoV

virus abolishes self-polymerization of N protein (He et al., 2004a).

CTD is hydrophobic in nature, and is rich in a-helices. It plays
crucial role in N protein self-assembly into homo-dimers or homo-

oligomers (Lo et al., 2013; Chang et al., 2006; Huang et al., 2004).

The domain responsible for dimerization is evolutionary preserved

among different groups of coronaviruses. The structure of CTD of

SARS-CoV-2 is similar to SARS-CoV, MERS-CoV, and HCoV-

NL63 CTDs. This similarity is especially well seen in a conservative

basic groove, which is believed to contribute to RNA binding.

At the N and C termini of coronaviral N proteins there are two

additional IDRs. These are N-arm and C-tail regions (McBride

et al., 2014). The analysis of the structure of C-tail suggests that it

can form instantaneous helical structure (Zhao et al., 2022), which

facilitates N protein oligomerization (Cubuk et al., 2021). C-tail

facilitates viral packaging, and it is involved in interaction with M

protein (Masters, 2019).

N protein is a polymer that can self-assemble into high-order

structure. The first step in self-assembly is a dimerization of CTD. In

SARS-CoV-2 residues 247-364 are important for CTD dimerization

(Ye et al., 2020). Following dimerization, the protein assembles into

homotetrameric structure. In SARS-CoV-2 disordered C-terminal

residues 365-419 play important role in this assembly. The last step in

viral self-assembly is formation of high-order structure where

multiple homotetramers are wrapped by viral RNA.

Nucleocapsid protein of SARS-CoV-2 is 46kDa, and 419 aa

long, with approximately 40% being in a disordered position

(Perdikari et al., 2020). The structure of NTD was solved (PDB:

6YI3). NTD of SARS-CoV-2 N protein spans 133 aa residues (from

44 to 176 aa residues) (Wu et al., 2023). It has a structure of right-

handed fist (Peng et al., 2020) (Bai et al., 2021; Kang et al., 2020;

Dinesh et al., 2020), where core structure made up of four

antiparallel b strands (b1, b2, b5, and b6) is positioned between

short 310 helix and b-hairpin loop made up of b3 and b4 strands.

The RNA binding groove is between b-hairpin and b-strand core.

The basic residues R92, R107, and R149 were shown to be

important for RNA binding (Bai et al., 2021). There is a high

degree conservation in RNA-binding site between N proteins of

different coronaviruses (Wu et al., 2023).
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The structure of CTD of SARS-CoV-2 N protein was solved

(PDB: 6YUN, 7CE0, 6ZCO, 7CZ0), and it was shown to have a

dimeric organization ( Zhou et al., 2020; Zinzula et al., 2021; Peng

et al., 2020; Bai et al., 2021). Each monomer contains five a-helices
(a1 to a5), two b-strands, and two 310 helices. Two b strands of

each subunit combine to form four antiparallel b-strand structure

within a core of a dimer. The dimeric organization is reinforced by

hydrogen bonds and hydrophobic interactions. CTD was shown to

be important for RNA-induced liquid phase separation (LLPS)

which affects function of NF-kB (Wu et al., 2021).

The linker region of SARS-CoV-2 N protein contains a leucine-

rich region (210 – 246 residues) important for LLPS (Zhao et al.,

2022). SR region of LKR was shown to possess RNA-binding

abilities (Wu et al., 2021). Mutagenic studies of R203

demonstrated its role in protein-protein interaction (Syed et al.,

2021; Zhao et al., 2022).

Nucleocapsid protein of SARS-CoV is 422 aa long. NTD as well

as CTD together with disordered regions are capable of binding

RNA (Chang et al., 2009). The structure of N terminus was solved

(Saikatendu et al., 2007; Huang et al., 2004). NTD spans 137 aa

residues (45 - 181). NTD is rich in lysine and arginine, which are

believed to recognize and bind a short 32-nucleotide-long stem –

loop structure at the 3’-end of the viral genome (Huang et al., 2004).

Among the basic and aromatic residues important for RNA

binding, R94 and Y122 were suggested to be critical (McBride

et al., 2014). Linker region is structurally disordered, and contains

residues (168-208) interacting with viral M protein (He et al.,

2004b), as well as region (161-210) interacting with human

cellular hnRNP A1 protein (Luo et al., 2005). Crystal structure of

CTD of SARS-CoV (270-370 residues) revealed that protein

consists of five a-helices, a 310 helix, and two b-strands (Chen

et al., 2007; Yu et al., 2006). CTD has dimeric structure in a solution

(Takeda et al., 2008; Chang et al., 2006). Dimerization occurs when

a b-hairpin of one monomer is brought into the cavity of another

monomer, with a formation of an antiparallel b-sheet made up of

four b-hairpins (Yu et al., 2006). Within CTD, the loop between

W302 and P310 was shown to be important for binding to

cyclophilin A (Luo et al., 2004). SARS-CoV C-tail residues (aa

365 – 419) interact with viral M protein by electrostatic interaction

(Luo et al., 2006).

Nucleocapsid protein of MERS-CoV is 413 aa long (~40 kDa).

The structure of NTD was solved (PDB: 4UD1, 6KL2). Overall, the

domain has a globular shape with a central b-sheet core formed

from three antiparallel b-strands, and a b-hairpin projecting from

the core. The b-hairpin is charged positively and contributes to the

RNA binding (Fan et al., 2005).

For nucleocapsid protein of HCoV-OC43 it was shown that

Arg106 plays important role for interaction with RNA (Chen et al.,

2013). Besides it, S64, G68, Y126, and R164 were shown to be

critical for interaction between NTD of HCoV-OC43 N protein and

AMP via hydrogen bonds, while Y124 was shown to stabilize the

interaction via p-p stacking (Lin et al., 2014). Overall, within

HCoV-OC43 N protein there are three RNA-binding regions:

residues 1-173, 174-232, and 233-300 (Huang et al., 2009).

Nucleocapsid protein of HCoV-NL63 interacts with nucleic

acid with a region that spans 2 -144 amino acids.
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Nucleocapsid protein of HCoV-229E was shown to possess

binding affinities toward different types of nucleic acids, such as

single-stranded DNA, double-stranded DNA, and ssRNA (Tang

et al., 2005). The role of the C-terminal tail in N protein

oligomerization was shown (Lo et al., 2013).
5.2 Function

5.2.1 Viral functions
Nucleocapsid protein is the most abundant protein of the

coronaviruses. The main function of this protein is to encompass

the viral RNA into ribonucleocapsid (Wu et al., 2023). Besides this

structural role, N protein also is important for RNA replication and

transcription (Schelle et al., 2005; Egloff et al., 2004). NTD of N

protein is capable of melting dsRNA which is important during

transcription (McBride et al., 2014; Zúñiga et al., 2010; Grossoehme

et al., 2009) and viral replication. Due to its destabilization effect on

duplex RNA, N protein was suggested to have RNA chaperon

activity (McBride et al., 2014). In addition, N protein could bind to

Nsp3 (non-structural protein) to form replication-transcriptional

complexes (Khan et al., 2021). Moreover, the dimerization of N

protein is important aspect for virus assembly through protein-

protein interactions with other structural proteins, and with host

membrane envelope. Association of CoV N protein with ER-Golgi

apparatus is connected to budding of virus from the cell. Moreover,

it has been suggested that N protein is capable of liquid-liquid phase

separation, which is a mechanism of concentrating proteins and

oligonucleotides promoting viral replication (Savastano et al.,

2020). N protein is immunogenic, and evokes strong immune

response (Leung et al., 2004). It was shown that N protein plays

role in host cell signaling processes.

5.2.2 Cellular effects
Host cells have numerous ways of dealing with RNA-virus

infections. Viruses on the other hand develop multiple mechanisms

to escape host cell immune response. N protein was shown to

contribute to such escape mechanisms. One of the way of escaping

host cellular immune reaction of SARS-CoV-2 is to block pyroptosis

(Kayagaki et al., 2015). LPS-induced pyroptosis operates via

activation of caspase-11 with a subsequent cleavage of Gusdermin

D (GSDMD), which leads to NLRP3-dependent activation of

caspase-1 and subsequent proteolytic maturation of IL-1b. This
cascade results in increased cellular permeability and cellular death

(Kayagaki et al., 2015). It was suggested that the N protein of SARS-

CoV-2 binds GSDMD and blocks it further in pyroptosis pathway

(Ma et al., 2021), inhibiting cell death. At the same time, and contrary

to the above, it was shown that N protein can assist M protein in

activation of apoptosis via PKB/Akt signaling (Ren et al., 2021).

Another cellular mechanism to inactivate viral infection is RNA

interference. SARS-CoV-2 and SARS-CoV N protein can

antagonize cellular host antiviral activities by suppressing the

RNAi mechanism (Cui et al., 2015; Xu et al., 2024; Bai et al.,

2021) at the level of siRNA synthesis as well at the level of silencing

complex formation. N-protein sequester double stranded RNA to

prevent cuts from Dicer (Figure 9).
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One of the main immune mechanisms against viral infection is

interferon-mediated pathway. Coronavirus escape this immune

defense by inhibiting an interferon system. N-protein of SARS-

CoV-2 is identified as an antagonist of interferon. The expression of

IFN-b in infected cells was shown to be inhibited (Li et al., 2020).

This is due to interaction of N protein with RIG-1 through DExD/H

domain (Bai et al., 2021; Chen et al., 2021).

Activation of Janus kinase STAT pathway leads to activation of

interferon-mediated pathway. It was shown that N protein of SARS-

CoV-2 interferes with this process by inhibiting interaction between

STAT1 with JAK1, STAT2 with TYK by binding to STAT1/STAT2

and preventing their phosphorylation in 293T cells (Mu et al.,

2020a). This leads to inhibition of type I IFN signaling

(Figure 9; Table 6).

Besides inhibiting host cell antiviral responses, coronavirus N

protein was shown to contribute to inflammatory response. Thus,

SARS-CoV-2 N protein promotes release of inflammatory cytokines

by activating NLRP3 inflammasome in infected macrophages and

dendritic cells (Pan et al., 2021). There are generally four types of

inflammasomes: NLRP1, NLRP3, NLRC4, and AIM2 (Broz and

Dixit, 2016). NLRP3 is important for functions against viral RNA

infections (Wang et al., 2014). The viral nucleocapsid was detected

with an ACE receptor, and in cortical tissues with NLRP3

inflammasome (Cama et al., 2021).

Virus-induced inflammation results from a massive cytokine

release from infected cells, and N protein seems to play role in it.

For example, it was shown that N protein of SARS-CoV-2

upregulates IL-6 expression in monocytes and macrophages at

protein and at mRNA level (Karwaciak et al., 2021). Similar to

SARS-CoV-2, SARS-CoV virus induces IL-6 upregulation in lung
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A549 cells following transfection with N-protein coding plasmid

(Zhang et al., 2007). This upregulation was mediated by NF-kB
transcription factor, where N protein binds NF-kB and transports it

to the nucleus to upregulate cytokine transcription. The summary

of the described cellular effects of SARS-CoV-2 virus is represented

on a Figure 9 and Table 6.

In addition to the above, nucleocapsid of SARS-CoV-2

condensates in host cells (U2OS) with stress granule protein G3BP1,

thus suppressing G3BP1 stress granule driven immune response (Lu

et al., 2021). It was shown that N protein could be methylated in host

cells in R95 and R177 within RGG/RG motifs by methyltransferases

which help to suppress stress granules (Cai et al., 2021).

Coronaviruses can interfere with cell cycle through disruption

of cell division to prolong interphase stage. This leads to optimal

conditions for viral replication. As it was demonstrated for N

protein of SARS-CoV, it regulates cyclin-CDK activity. N-protein

can be phosphorylated by CDK, and thus, it is a substrate for cyclin-

CDK complex (Surjit et al., 2006; Surjit et al., 2005). Besides, N

protein exhibits inhibitory effects on S phase kinases, such as CDK4

and CDK6. N protein is illustrated as a competitive inhibitor of

CDK4 and CDK6 (McBride et al., 2014). The net result of the SARS-

CoV N protein effect on cell cycle is an inhibition of S

phase progression.

In addition, N protein of SARS-CoV has been linked to

processes which downregulate the host’s translation by binding to

elongation factor 1a (eEF1A) (McBride et al., 2014). Elongation

factor eEF1A plays multiple roles in various cellular processes, such

as translation (Merrick, 1992), protein degradation (Chuang et al.,

2005), actin filaments assembly (Gross and Kinzy, 2005), and

formation of contractile ring during cytokinesis. Through its
FIGURE 9

Cellular effects of SARS-CoV-2 N protein. (A) Binding and inactivating of GSDMD blocks apoptosis of cells infected with SARS-CoV-2 (Ma et al.,
2021). (B) Sequestration of dsRNA by N protein precludes recognition and subsequent cleavage by Dicer (Mu et al., 2020a). (C) Interaction with RIG-
1 pathway leads to a decreased secretion of IFN-b (Oh and Shin, 2021; Chen et al., 2021). (D) Binding to STAT1 decreases production of IFN-b in
infected cells (Mu et al., 2020b). (E) Binding to NLRP3 induces inflammasome activation and initiates inflammation in infected tissue (Pan et al.,
2021). The figure is created using BioRender.
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interaction with eEF1A, N protein leads to inhibition of protein

translation and cytokinesis by blocking F-actin bundling (Zhou

Bing et al., 2008). As a result, cell proliferation is slowed. It has been

observed that N protein substantially inhibits proliferation of

peripheral blood lymphocytes (Zhou Bing et al., 2008).

Also, it has been indicated that N protein can activate AP-1

(activation protein-1) pathway by increasing transcription factors

c-Fos, ATF2, CREB-1, and FosB (McBride et al., 2014; He et al.,

2003). In addition, SARS-CoV N protein may induce apoptosis in

COS-1 monkey kidney cells (Surjit et al., 2004) by downregulating

ERK pathway and upregulating JNK and p38 MAPK pathway.

N protein of MERS-CoV inhibits production of IFN type 1 and 3

by inhibiting RIG-1 signaling (Chang et al., 2020). The nucleocapsid

protein competes with RIG-1 to interact with TRIM25 ubiquitin.

Moreover, the MERS-CoVN protein was shown to interact with host

antiviral defenses, up-regulating CXCL 10 gene pathway (Aboagye

et al., 2018). The CXCL10 pathway is connected to inflammation,

immune dysfunction and tumor development.

HCoV-OC43 virus N protein can affect the host immune

system through NF-kB pathway (Lai et al., 2014). N protein was

shown to upregulate NF-kB transcription factor by binding and
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inhibiting miR-9, a negative regulator of NF-kB. Increased level of

translation of NFKB1 protein could lead to inflammation.

Surprisingly, HCoV-NL63 N protein was not present in the

nucleus of the infected cell, assuming that no alterations to cellular

cycle and cellular protein expression was observed (Zuwała et al.,

2015). This is in striking contrast with other coronaviruses.

N protein of HCoV-229E was shown to induce release of IFN-b
and IP-10 cytokines in embryonal lung fibroblast HFL cells at 24

and 30 hours post infection, and this upregulation is higher

compare to the one triggered by MERS-CoV (Lau et al., 2013).
6 Conclusions

S protein is a crucial for cell entry. High mutation rate within S

protein leads to emergence of new viral strains with improved

infectivity and transmissibility, as seen in Alpha, Beta, Gamma,

Delta, and Omicron variants of SARS-CoV-2 virus. Composed of

two parts, S1 and S2, spike protein binds to a specific receptor on a

host cell to initiate viral entry. S1 part contains RBD which has high

affinity toward target receptor. S1 part harbors low similarity
TABLE 6 Summary of cellular effects of N protein of seven human coronaviruses.

Coronavirus Cellular effect Cell line

SARS-CoV-2 Induce cytokine release ( Zhang et al., 2007; Karwaciak et al., 2021) A549, primary macrophages, and monocytes

Inhibition of IFN- b (Chen et al., 2021) A549, HeLa, and HEK293T

Inhibition of type I IFN signaling through suppression of phosphorylation and nuclear localization
of STAT1 and STAT2 (Mu et al., 2020a)

HEK293T and HepG2

Suppresses antiviral stress granule formation trough inhibition of PKR kinase and G3BP1 (Zheng
et al., 2021)

HEK293T, Vero E6, and HeLa

Inhibition of host RNAi mechanism (Mu et al., 2020b) HEK293T

Interaction with cholesterol transporter NCP1 (Garcıá-Dorival et al., 2021) HEK293T and Vero E6

Suppresses pyroptosis (Ma et al., 2021) THP‐1

Induces inflammasome formation (Pan et al., 2021) macrophages, dendritic cells, THP-1, HEK293T

SARS-CoV Actin reorganization and apoptosis in the absence of growth factor (Surjit et al., 2004) COS-1

Through interaction with EF1A translation factor inhibits protein synthesis, cytokinesis, and cell
proliferation leading to multinucleated cell formation (Zhou Bing et al., 2008)

HEK293T, HeLa, MCF-7, K562

Inhibits host RNAi mechanism (Cui et al., 2015) HEK293T, Neuro-2a, L2

Inhibits synthesis of IFN-b (Kopecky-Bromberg et al., 2007) A549, HEK293T

RNA chaperone activity (Zúñiga et al., 2007) in vitro assay with ASBVd hammerhead
ribozyme self-cleavage

Activation of NF-kB (Liao et al., 2005) Vero E6

MERS-CoV Interacts with EF1A translation factor resulting in inhibiting cytokinesis (Zhu et al., 2021) HEK293T and HeLa

Suppress type I and III interferons (Chang et al., 2020) A549

Up-regulate CXCL10 expression (Aboagye et al., 2018) HEK293 Ft

Induction of apoptosis (Hocke et al., 2013) Human lung tissue primary T cells

HCoV-HKU1 RNA chaperon and capsid assembly (Luna Marques et al., 2021) In vitro assay

HCoV-OC43 Upregulates NF-kB expression (Lai et al., 2014) after 24 h of TNF-a treatment HEK293T

HCoV-NL63 Following viral infection, localizes within cytoplasm, does not affect cell cycle (Zuwała et al., 2015) HEK293T and LLC-MK2
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between different viruses, enabling viruses to recognize different

receptor. Thus, SARS-CoV-2, SARS-CoV and NL63 viruses bind

ACE2 upon entry. MERS-CoV recognizes dipeptidyl-peptidase 4 as

its target. HKU1 and OC43 viruses enter the cells following binding

to 9-O-acetylsialic acid, 229E virus gains cellular access through

binding to aminopeptidase N. RBD of all viruses but OC43 is found

within CTD of S1 subunit. With 1362 amino acids OC43 S protein

is the longest in all seven human coronaviruses, while HCoV-229E

is characterized by the shortest S protein of 1173 amino acids.

Unlike S1 subunit, S2 subunit is highly conserved in different

coronaviruses. It contains fusion peptide, necessary for initiation

of fusion between viral envelope and host cell membrane. Following

cellular entry, S protein contributes to viral pathogenicity.

Particularly, spike protein induces ER stress, and leads to the

activation of unfolded protein response. It also activate

inflammasomes in microglial cells, and upregulates cytokines

(Wang et al., 2007; Xue and Feng, 2021; Albornoz et al., 2023).

E protein is a short single-pass transmembrane protein, capable of

assembly into homopentameric structure with a pore formation

(Mandala et al., 2020), which inside the infected cell could lead to

cell death. Through its PDZ-binding motif, E protein is capable of

interacting with host cell proteins, such as PALS1 (Chai et al., 2021),

syntenin, ZO1, TJP1, PARD3, MLLT4, LNX2 (Zhu et al., 2022; Ávila-

Flores et al., 2023). Following such interaction PDZ domains gets

sequestered to the Golgi compartment, disturbing cellular physiology.

Through interaction with PALS1, E protein disrupts epithelial cells

polarity and tight junctions. E protein of SARS-CoV-2 compared to

other human coronaviruses was shown to have higher affinity toward

PALS1 PDZ domain, which could explain increased virulence of the

virus (Toto et al., 2020). E protein was shown to induce immune

response from the host cell (Xia et al., 2021). Most of the E protein gets

incorporated into the ERGIC membrane within infected cells, where

together with M protein, E protein coordinates budding of the virus.

M protein with its three transmembrane domains is highly

abundant within viral envelope. It assembles into oligomeric

structures, and plays crucial role in virus assembly and budding

from the host cell. Via its interaction with S protein, M protein

facilitates retention of the S protein within Golgi apparatus

(McBride and Machamer, 2010). Following viral entry M protein

was shown to inhibit antiviral immune response. The mechanisms

involved in such host immune response suppression are virus-

specific. SARS-CoV-2 M protein does it through interaction and

subsequent inhibition of mitochondrial antiviral-signaling protein

(Fu et al., 2021) as well as through inhibition of IFN-1 production

(Sui et al., 2021). SARS-CoV M protein reduces immune response

by suppression of NF-kB (Fang et al., 2007) activation, and IFN

production (Siu et al., 2014). MERS-CoV M protein inhibits IRF3

but not NF-kB (Lui et al., 2016). HCoV-OC43 M protein reduces

expression of antiviral genes (Beidas and Chehadeh, 2018).

There is a lack of research on the E and M proteins of less virulent

hCoVs, when compared to the two proteins of more virulent HCoVs.

However, from literature we have reviewed on E protein it is clear that

there are two factors conferring SARS-CoV-1, SARS-CoV-2, MERS-

CoV enhanced virulence, which are flexible PBM (which enables to

establish stronger protein-protein interaction with host cells) and

enhanced ion channel activity. When it comes to the M protein, the
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number of studies are very few. But we can hypothesize that one factor

could be the ability of more virulent HCoVs to suppress type I IFN

response and propagate in the host effectively, whereas less virulent

HCoVs are deprived of this ability, and as a result they are better

controlled by the host.

N protein being the most abundant protein of the

coronaviruses, plays crucial role in assembly of the viral genome,

as well as in viral replication. Following cellular entry it helps virus

to escape antiviral response.

The current review summarizes and highlights the main

structural characteristics and functional differences of structural

proteins from seven pathogenic to humans coronaviruses. The main

findings on structure and function are summarized in form of tables

and figures, which could provide insights when novel mechanisms

of viral actions are studied or new treatments are thought.
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