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In recent years, the emergence and widespread dissemination of the coronavirus

SARS-CoV-2 has posed a significant threat to global public health and social

development. In order to safely and effectively prevent and control the spread of

coronavirus diseases, a profound understanding of virus-host interactions is

paramount. Cellular autophagy, a process that safeguards cells by maintaining

cellular homeostasis under diverse stress conditions. Xenophagy, specifically, can

selectively degrade intracellular pathogens, such as bacteria, fungi, viruses, and

parasites, thus establishing a robust defense mechanism against such intruders.

Coronaviruses have the ability to induce autophagy, and they manipulate this

pathway to ensure their efficient replication. While progress has been made in

elucidating the intricate relationship between coronaviruses and autophagy, a

comprehensive summary of how autophagy either benefits or hinders viral

replication remains elusive. In this review, we delve into the mechanisms that

govern how different coronaviruses regulate autophagy. We also provide an in-

depth analysis of virus-host interactions, particularly focusing on the latest data

pertaining to SARS-CoV-2. Our aim is to lay a theoretical foundation for the

development of novel coronavirus vaccines and the screening of potential

drug targets.
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1 Introduction

In 2019, Wuhan, Hubei, China, witnessed the emergence of a novel coronavirus,

dubbed COVID-19, whose exceptionally contagious nature triggered a rapid dissemination

of the disease across the globe, persisting as a pandemic in the epicenter of the outbreak

(Huang et al., 2020; Zhu et al., 2020). Subsequently, the Coronavirus Study Group of the

International Committee on Taxonomy of Viruses (ICTV) categorized this virus under the

b-coronavirus genus, designating it as Severe Acute Respiratory Syndrome Coronavirus 2
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(SARS-CoV-2). As of December 2021, global statistics indicate a

staggering 271 million confirmed cases and 5.32 million fatalities,

while a viable vaccine against SARS-CoV-2 remains elusive.

Furthermore, coronaviruses pose a significant threat to economic

animals, inflicting immense economic losses on the global

livestock industry.
1.1 Introduction to coronaviruses

The coronavirus is classified under the Nidovirales order and

falls within the Orthocoronavirus subfamily of the Coronavirus

family (CoV). This expansive family is further segmented into four

distinct viral genera: Alphacoronavirus (Alpha-CoV, a-CoV),
Betacoronavirus (Beta-CoV, b-CoV), Gammacoronavirus

(Gamma-CoV, g-CoV), and Deltacoronavirus (Delta-CoV, d-
CoV) (Schoeman and Fielding, 2019). Coronaviruses possess a

diverse range of hosts, encompassing mammals, birds, rodents,
Frontiers in Cellular and Infection Microbiology 02
ruminants, and more. These infections in hosts can trigger a

spectrum of illnesses, including respiratory disease, intestinal

disease, hepatitis, and neurological disorders. Notably, a-CoV and

b-CoV predominantly target mammals, while g-CoV and d-CoV
predominantly affect avian species (Gorbalenya et al., 2004; Woo

et al., 2010; Woo et al., 2012). Here, we offer a concise overview of

the specific characteristics associated with the various

coronaviruses (Table 1).

Coronavirus is a single-stranded, positive-sense RNA virus that is

enveloped and possesses a genome size ranging approximately from

24,500 to 31,800 bp (Mihindukulasuriya et al., 2008). Its genome is

characterized by a cap structure at the 5’ end and a polyadenylated tail

at the 3’ end, sandwiched between which lies an intermediate

structure composed of seven overlapping open reading frames

(ORFs). These ORFs encode three primary non-structural proteins:

replicase proteins (ORF1a and ORF1b), the auxiliary protein ORF3,

and four structural proteins: spike protein (S), envelope protein (E),

membrane protein (M), and nucleocapsid protein (N). The genes
TABLE 1 Classification, host and clinical symptoms of coronaviruses.

Subgenus Modern name Host Clinical symptom Reference

a-CoV

Human coronavirus 229E
(HCoV-229E)

Human The predominant symptoms of respiratory illness include
general malaise, headache, a runny nose, frequent
sneezing, a sore throat, and fever.

(Hamre and Procknow, 1966;
Hendley et al., 1972; Wenzel
et al., 1974)

Human coronavirus NL63
(HCoV-NL63)

Human Minor symptoms of respiratory illness, such as coughing,
asthma-like symptoms, fever, and hypoxia, tend to resolve
spontaneously over time.

(Arden et al., 2005; Chiu et al.,
2005; van der Hoek et al., 2005;
Abdul-Rasool and
Fielding, 2010)

Porcine epidemic diarrhea
virus (PEDV)

Pig This virus has the ability to infect pigs of various ages,
causing severe diarrhea, vomiting, and dehydration.
Notably, lactating piglets younger than two weeks of age
experience particularly severe clinical symptoms, resulting
in a mortality rate of 100% among these piglets.

(Wood, 1977; Coussement
et al., 1982)

Transmissible gastroenteritis
virus (TGEV)

Pig The infection is often accompanied by a loss of appetite
and diarrhea, leading to a staggering 100% mortality rate
among piglets under two weeks of age.

(Doyle and Hutchings, 1946;
Xia et al., 2018)

Swine acute diarrhea
syndrome-coronavirus
(SASD-CoV)

Pig The clinical symptoms exhibited are analogous to those of
PEDV, albeit with vomiting, diarrhea, and dehydration
manifesting at a later stage.

(Gong et al., 2017; Pan
et al., 2017)

Porcine respiratory
coronavirus (PRCV)

Pig Only mild or subclinical symptoms are observed, with no
occurrence of severe respiratory symptoms or fatalities.

(Van Nieuwstadt et al., 1989)

Feline coronavirus (FCoV) Cat The most prominent symptoms of the exudative type are
due to fibrinous or granulomatous plasmacytitis, leading
to abdominal enlargement with a watery fluctuating
sensation, fever, depression, diarrhea, respiratory distress,
and anemia. In contrast, the most characteristic signs of
the non-exudative type are corneal edema and confusion,
hemorrhage and pus accumulation in the eye chamber,
vision loss, and in some instances, neurological
manifestations such as ataxia and mild paralysis.

(Andrew, 2000; Doki
et al., 2018)

Canine coronavirus (CCoV) Dog Affected dogs exhibit symptoms such as lethargy, loss of
appetite, vomiting, diarrhea, severe dehydration, and so
forth. Puppies are particularly vulnerable, with a high
mortality rate, and may experience recurrences post-
treatment. However, adult dogs exhibit a stronger
resistance, often manifesting only mild diarrhea that
typically resolves by itself.

(Tennant et al., 1991; Decaro
and Buonavoglia, 2008)

(Continued)
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TABLE 1 Continued

Subgenus Modern name Host Clinical symptom Reference

b-CoV

Severe acute respiratory
syndrome coronavirus
(SARS-CoV)

Human Infected patients initially exhibit symptoms such as fever,
headache, and muscle pain, which then progress to
include cough, dyspnea, and respiratory distress.
Furthermore, some patients develop diarrhea, and
imaging studies reveal diffuse alveolar damage to the lungs
of those infected with SARS-CoV.

(Lee et al., 2003; Peiris et al.,
2003; Wong et al., 2003; Tee
et al., 2004)

Middle East respiratory
syndrome-related coronavirus
(MERS-CoV)

Human Initially, the patient exhibits symptoms of fever, cough,
sore throat, muscle pain, and joint pain. Subsequently,
these symptoms are followed by respiratory distress,
pneumonia, multi-organ failure affecting the kidneys and
heart, ultimately leading to death. Additionally, some
patients develop gastrointestinal disorders such as
vomiting and diarrhea, alongside symptoms of renal
insufficiency and viraemia.

(Van Boheemen et al., 2012;
Arabi et al., 2014; Lin et al.,
2014; Zumla et al., 2015)

Severe acute respiratory
syndrome coronavirus 2
(SARS-CoV-2)

Human Infected patients exhibit a wide spectrum of symptoms,
ranging from mild manifestations to severe respiratory
failure. Initially, patients develop cough, fever, myalgia,
diarrhea, and lymphopenia. In severe cases, however, viral
sepsis and lung damage emerge, leading to complications
such as pneumonia, respiratory failure, coagulation
disorders, shock, renal and hepatic damage, central
nervous system impairment, multiple organ damage, and
ultimately, death.

(Chan et al., 2020; Chen et al.,
2020; Huang et al., 2020; Li
et al., 2020; Wu and
McGoogan, 2020; Zheng, 2020)

Human coronavirus OC43
(HCoV-OC43)

Human Patients initially present with symptoms such as cough,
fever, sore throat, headache, lung rales, pneumonia, and
fine bronchitis.

(Vabret et al., 2003;
Dominguez et al., 2009; Liu
et al., 2021)

Human coronavirus HKU1
(HCoV-HKU1)

Human Infected individuals exhibit symptoms including nasal
discharge, cough, fever, sore throat, chills, and enlarged
tonsils. In addition, some patients may progress to
develop pneumonia and fine bronchitis.

(Woo et al., 2005a; Woo et al.,
2005b; Woo et al., 2009)

Bovine coronavirus (BCoV) Cattle Young cows displayed symptoms such as cupping,
diarrhea, dehydration, acidemia, and ultimately death.
Among infected adult cows, there were signs of profuse
diarrhea, weight loss, depression, and decreased milk
production. Additionally, some cows exhibited coughing,
a runny nose, and an increased respiratory rate.

(Woode et al., 1978;
Kruiningen et al., 1985;
Durham et al., 1989)

Equine coronavirus (ECoV) Horse Infected horses exhibit anorexia, depression, fever,
diarrhea, and neurological manifestations, including ataxia
and recumbency.

(Pusterla et al., 2013; Fielding
et al., 2015; Giannitti
et al., 2015)

Porcine hemagglutinating
encephalomyelitis
virus (PHEV)

Pig The virus can infect pigs of all ages, with adult pigs
exhibiting subclinical symptoms, while some sows may
temporarily lose their appetite. On the other hand, piglets
infected display muscle tremors, encephalomyelitis,
coughing, vomiting or dry heaves, diarrhea, dehydration,
respiratory distress, coma, and ultimately, death.

(Lorbach et al., 2017; Greig and
Girard, 1969; Rho et al., 2011;
Mora-Dıáz et al., 2019)

Murine hepatitis virus (MHV) Mouse Infected rats exhibit signs of pneumonia characterized by
interstitial lung infiltrates, congestion, and haemorrhage.
Additionally, abdominal or intravenous infections in
certain rats can induce liver disease, while oral ingestion
results in gastrointestinal symptoms and hepatitis.

(Lavi et al., 1986; Haring and
Perlman, 2001; De
Albuquerque et al., 2006)

g-CoV Infectious bronchitis
virus (IBV)

Chicken Sick chickens may exhibit symptoms such as depression,
respiratory distress, wheezing, coughing, lethargy, watery
eyes, and mild sinus swelling. Roosters infected may
manifest signs of infertility, while hens display a decrease
in both the quality and quantity of eggs produced.
Furthermore, infected laying hens tend to have reduced
egg production.

(Cook and Mockett, 1995;
Fadly, 2008; Ganapathy, 2009)

Turkey coronavirus (TCoV) Turkey Infected turkeys commonly suffer from depression,
diarrhea, dehydration, and stunted growth. Similarly,

(Guy, 2000; Ismail et al., 2003)

(Continued)
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encoding ORF1a and ORF1b constitute approximately two-thirds of

the entire genome and can be further dissected into 15-16 non-

structural proteins (nsp), primarily involved in viral replication

processes (Wang et al., 2020). The initial strategy employed by the

coronavirus to circumvent the host’s immune defense system

involves suppressing the production of IFNa/b, marking a crucial

juncture for the virus to achieve successful replication. Nsp1

facilitates mRNA degradation and impedes host cell protein

translation, thereby suppressing the innate immune response

(Nakagawa and Makino, 2021). Among these nsps, Nsp3, the

largest multi-domain protein, harbors a PLPro/Deubiquitinase

structural domain that cleaves viral polyproteins and mitigates the

innate immune response (Imbert et al., 2008; Neuman et al., 2014).

The coronavirus establishes a “replication factory” known as a

double-membrane vesicle (DMV), where Nsp3 and Nsp4 play

pivotal roles in its formation. This DMV serves as a secure

environment for viral replication, shielding viral RNA and

encapsulating replication complexes to evade detection by host

sensors (Knoops et al., 2008; Oudshoorn et al., 2017). Furthermore,

Nsp15 facilitates viral genome replication and transcription by

reducing the accumulation of negative-strand RNA and dsRNA,

thereby aiding in the evasion of detection by host RNA sensors

(Gao et al., 2021). Nsp16 possesses 2′-O-methyltransferase activity,

enabling viral mRNA to mimic host mRNA and thus escape the

interferon (IFN) response (Züst et al., 2011). Additionally, the

coronavirus targets the double-stranded RNA sensor (RIG-I) and

melanoma differentiation-associated protein 5 (MDA5). Notably, the

N protein of SARS-CoV, SARS-CoV-2, and MERS-CoV interacts

with TRIM25 E3 ubiquitin ligase, disrupting the K63-linked

ubiquitination of RIG-I and preventing its activation (Chang et al.,

2020; Chen et al., 2020; Xue et al., 2022). PACT, a dsRNA binding

protein, activates RIG-I or MDA5, but the N proteins of PDCoV,

MHV, and SARS-CoV directly bind to PACT, impeding the

interaction between RIG-I/MDA5 and dsRNA or PACT, and thus

inhibiting type I IFN activation (Chen et al., 2019). Moreover,

the proteases PLpro and 3CLpro from MERS-CoV, SARS-CoV,

and HCoV-NL63 inhibit multiple steps of type I IFN signal

transduction by directly acting on signal transduction proteins or

promoting their degradation through ubiquitin modification

manipulations (such as interfering with IFN regulatory factor 3 and

MAVS) (Barretto et al., 2005; Yang et al., 2014).

As the initial structural proteins in coronavirus replication, S

proteins play a pivotal role in viral attachment and invasion. S

proteins bind to specific receptors, including angiotensin-
Frontiers in Cellular and Infection Microbiology 04
converting enzyme 2 (ACE2) (Li et al., 2003; Li et al., 2005; Zhou

P. et al., 2020), aminopeptidase N (APN) (Tusell et al., 2007; Park

et al., 2015), 9-O-acetylated sialic acid (Liu et al., 2015; Li et al.,

2016), dipeptidyl peptidase 4(DPP4) (Li et al., 2017), and the

carcinoembryonic antigen cell adhesion molecule (CEACAM1)

(Dveksler et al., 1993), which facilitate the fusion between

coronavirus membranes and host cell membranes, enabling viral

entry into host cells. Furthermore, the S protein of coronaviruses is

prone to amino acid mutations, leading to the emergence of novel

strains with enhanced transmissibility and pathogenicity. There are

36 amino acid sites in the porcine epidemic diarrhea virus (PEDV) S

protein that have a mutation frequency of more than 90%, and the

high frequency of mutations makes it easier for the virus to escape

from immune pressure, which may be the cause of recurrent

outbreaks of piglet diarrhoea in pig farms (Yu et al., 2023). After

the synthesis of viral subgenomic RNA, the membrane-associated

structural proteins S, E, and M undergo translation and are inserted

into the endoplasmic reticulum. From there, these proteins relocate

to the endoplasmic reticulum-Golgi intermediate compartment.

During this process, the N protein binds to the newly synthesized

positive-sense RNA, forming a ribonucleoprotein complex.

Following this, the M protein organizes the S, E, and N proteins

into mature viral particles through protein-protein interactions,

ultimately releasing them outside the cell via exocytosis (Fehr and

Perlman, 2015; Hartenian et al., 2020). The E proteins, being the

smallest structural proteins, primarily participate in virus assembly

and budding (Masters, 2006; Nieto-Torres et al., 2011) (Figure 1).
2 Autophagy

Autophagy holds a pivotal role in cellular growth and

development. As an evolutionarily conserved lysosome-reliant

metabolic pathway within eukaryotic cells, autophagy functions to

transport senescent or impaired organelles and proteins to the

lysosome for degradation. The resulting degraded small-molecule

products are then utilized in sustaining cellular material recycling and

maintaining intracellular homeostasis (Rubinsztein et al., 2011; Wei

et al., 2018; Levine and Kroemer, 2019). Furthermore, autophagy

serves as a crucial component of the body’s defense mechanism,

playing a vital role in resisting the invasion of pathogenic

microorganisms. Upon viral invasion, cells rely on autophagy to

transport viral proteins, nucleic acids, and other components to the

lysosomes for degradation (Levine, 2005; Choi et al., 2018; Yang and
TABLE 1 Continued

Subgenus Modern name Host Clinical symptom Reference

adult chickens exhibit a notable decrease in meat or egg
production when infected.

d-CoV Porcine
deltacoronavirus (PDCoV)

Pig Sick pigs manifest severe symptoms including diarrhea,
vomiting, dehydration, and ultimately, death.

(Li et al., 2014; Song et al.,
2015; Janetanakit et al., 2016)

Human Porcine
deltacoronavirus (Hu-PDCoV)

Human Patients typically present with symptoms such as fever,
cough, abdominal pain, and diarrhea.

(Lednicky et al., 2021)
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Klionsky, 2020). Generally, autophagy encompasses three primary

types: macroautophagy, microautophagy, and molecular chaperone-

mediated autophagy.

Typical autophagy comprises several sequential stages:

initiation, nucleation, structural extension of the phagocytic

vesicle membrane to encapsulate the cargo, closure of the

phagocytic vesicle membrane to form autophagosomes, fusion of

autophagosomes with lysosomes to yield autophagolysosomes, and

ultimately, the in vivo degradation of autophagic contents within

the autophagolysosomes (Levy et al., 2017; Yin et al., 2019). The

upstream signaling pathways of autophagy, Akt-mTOR and

AMPK-mTOR, govern the afferent activation of autophagy

signals. These signals are relayed to the autophagy initiation

complex, the ULK (ATG1) complex, which comprises ULK1,

ATG13, FIP200, and ATG101. Upon activation, the ULK

complex proceeds to activate the VPS34 complex (composed of

VPS34, VPS15, and Beclin-1). The VPS34 complex facilitates

phagocytic vesicle membrane elongation via binding to ATG14,

and subsequently, closure of the membrane to form autophagic

lysosomes through the interaction with UVRAG. This binding

mediates the maturation of autophagic vesicles and further

closure of the phagocytic vesicle membrane to form autophagic

lysosomes (Glick et al., 2010; Mizushima et al., 2011). ATG5-

ATG12-ATG16L1 and LC3-II, as crucial membrane components

of phagocytic vesicles, are recruited to the vesicle membrane during

the membrane extension phase. Following phagocytic vesicle

closure, the ATG5-ATG12-ATG16L1 complex detaches from the

membrane (Klionsky et al., 2021). LC3-I serves as the precursor of

LC3. Upon cleavage by ATG4, the C-terminal glycine residue is

exposed and subsequently binds with phosphatidylethanolamine

(PE) to form LC3-II. LC3-II is also recognized as a marker molecule

for autophagosomes (Kirisako et al., 1999; Kirisako et al., 2000).

Ultimately, the contents within the autophagic vesicles, after fusing

with lysosomes, undergo degradation, and the resulting
Frontiers in Cellular and Infection Microbiology 05
macromolecular precursors are recycled for reuse. Alongside LC3-

II, the specific substrate of autophagy, P62, also plays a role in

mediating selective autophagic processes, including mitochondrial

autophagy. Therefore, the expression levels of LC3-II and P62 can

serve as indicators, reflecting the extent of autophagic vesicle

formation and the efficacy of autophagic lysosomes in degrading

autophagic substrates (Klionsky et al., 2021).

Increasing evidence suggests that a diverse array of pathogenic

microorganisms, encompassing viruses, have evolved numerous

tactics to modulate host cell autophagy (Jackson, 2015;

Lennemann and Coyne, 2015). The Influenza A virus (IAV)

orchestrates autophagy by intricately modulating the AKT-mTOR

signaling cascade and influencing the expression of HSP90AA1 via

its NP and M2 proteins. This regulatory mechanism subsequently

fosters the replication of IAV (Wang et al., 2019). Similarly, the

capsid protein VP2 of the Foot-and-Mouth Disease Virus (FMDV)

engages in a functional interaction with the heat shock protein

HSPB1, thereby activating the EIF2S1-ATF4-AKT-MTOR

pathway. This activation triggers a sequential cascade reaction

that induces autophagy and ultimately enhances the replication of

FMDV (Sun et al., 2018). Similarly, the Japanese encephalitis virus

(JEV) facilitates the infection of host cells by suppressing

autophagy. The decrease in autophagy-related proteins, namely

ATG5 and ATG7, results in the accumulation of JEV RNA, an

elevation in viral titers, and an augmentation in cell mortality.

Notably, viral replication complexes co-localize with markers of

ERAD regulation, specifically EDEM1 and the LC3-I. Furthermore,

the downregulation of non-lipidated LC3 diminishes viral titers

(Sharma et al., 2014). Although previous studies have

predominantly focused on the interplay between human

coronaviruses and autophagy, there is a scarcity of reports

exploring the interactions between various classes of

coronaviruses and autophagy. In this paper, we comprehensively

review the interactions between different coronavirus species and
FIGURE 1

Coronavirus genome arrangement (Zhang and Yoo, 2016).
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autophagy, conducting a meticulous systematic study of

coronavirus infections’ impact on autophagic processes and their

underlying mechanisms.
3 a-CoVs

Among the research on alpha-coronaviruses (a-CoVs), there
has been a more profound examination of PEDV, TGEV, SADS-

CoV, and HCoV-NL63. Therefore, we have consolidated the

mechanisms in which the pertinent proteins of these viruses

regulate autophagy through diverse pathways (Figure 2).
3.1 PEDV

Porcine Epidemic Diarrhea Virus (PEDV), a coronavirus

notorious for inducing vomiting, diarrhea, dehydration, and even

mortality in pigs, exhibits a staggering prevalence of up to 100%

among newborn piglets (Wood, 1977). Research has shown that
Frontiers in Cellular and Infection Microbiology 06
PEDV infection in Vero cells can activate the autophagy pathway,

leading to a downregulation in the phosphorylation levels of mTOR

and its downstream effectors 4EBP1 and p70S6K (Guo X. et al.,

2016). Further investigations revealed a substantial increase in the

number of autophagic vesicles in PEDV-infected Vero cells,

indicating a positive correlation between autophagy and NF-kB
activation (Guo et al., 2017). A similar trend was observed in

PEDV-infected IPEC-J2 cells, where autophagy activation

promoted PEDV replication. However, Kong et al. presented a

contrasting view, demonstrating that upon PEDV infection in Vero

and LLC-PK1 cells, upregulated BST2 recruited the autophagy-

associated cargo protein MARCH8 to catalyze the ubiquitination of

the PEDV N protein. This process subsequently inhibited PEDV

replication through the selective autophagic degradation of the N

protein (Kong et al., 2020). Among the viral proteins of PEDV,

Nsp3, Nsp6, and ORF3 are the primary inducers of autophagy

activation. Nsp3 primarily inhibits the formation of autophagic

streams by hindering the fusion of autophagic vesicles with

lysosomes, while Nsp6 functions as an inhibitor of the PI3K/

Akt/mTOR pathway to activate autophagy (Chen et al., 2014;
FIGURE 2

Mechanisms by which a-CoVs regulate autophagy through different signalling pathways.(1) Viruses promote autophagy through the PI3K-AKT-
mTOR and AMPK-mTOR-ULK1 signalling pathways. (2) ROS regulate autophagy occurrence through downstream pathways. (3) Viruses promote
autophagy through stress pathways: RE1a-XBP1 and PERK-eIF2a.
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Lin et al., 2020). On the other hand, the ORF3 protein upregulates

GPR78 protein expression, activating the PERK-eIF2a pathway,

triggering endoplasmic reticulum stress, and thereby activating

autophagy (Zou et al., 2019).
3.2 TGEV

Transmissible Gastroenteritis Virus (TGEV) is an acute and

highly contagious porcine enteric virus that infects pigs of various

breeds and ages, resulting in symptoms such as vomiting, diarrhea,

dehydration, intestinal villous atrophy, and high mortality rates

among piglets (Turlewicz-Podbielska and Pomorska-Mól, 2021).

Research has indicated that TGEV infection triggers an autophagic

response in PK15 and ST cells, leading to an increase in monolayer

and bilayer vesicle structures, which contribute to the formation of

autophagic vesicles (Guo L. et al., 2016). Further investigations

revealed that TGEV-induced autophagy may stem from the

induction of mitochondrial autophagy by the N protein, which

mitigates oxidative stress and apoptosis triggered by TGEV

infection (Zhu et al., 2016).
3.3 SADS-CoV

Swine Acute Diarrhea Syndrome Coronavirus (SADS-CoV) is a

novel porcine coronavirus that poses a significant threat to piglets,

often resulting in severe mortality (Gong et al., 2017). In a study

conducted by Zeng et al., the global gene expression profile of Vero

cells infected with SADS-CoV was analyzed using RNA-seq,

revealing a notable downregulation in the expression levels of

PI3K and Akt genes (Zeng et al., 2021). Furthermore, it was

discovered that SADS-CoV promotes autophagy in Vero cells by

inhibiting the activation of the Akt/mTOR pathway (Zeng et al.,

2022). Additionally, the Coronavirus-associated papain-like

protease PLP2 (PLP2-TM) within SADS-CoV triggers

endoplasmic reticulum stress through its interaction with GRP78

and subsequently induces autophagy via the activation of the IRE1-

JNK-Beclin1 pathway (Shi et al., 2023).
3.4 HCoV-NL63

The Human Coronavirus (HCoV-NL63) also triggers

autophagy. Specifically, PLP2-TM, through its interaction with

Beclin1, enhances the accumulation of autophagosomes and

impedes the fusion between autophagosomes and lysosomes,

thereby inducing incomplete autophagy (Chen et al., 2014).

Additionally, the non-structural protein Nsp3 of HCoV-NL63

relies on papain activity to induce autophagy but exerts an

inhibitory effect on the autophagic flow (Chen et al., 2014).

In summary, both PEDV and TGEV infections are capable of

stimulating the production of autophagic vesicles within susceptible

cells, and the resulting autophagy represents a comprehensive

autophagic process, commonly referred to as complete autophagy.
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A notable distinction arises in the specific interaction between BST2

and the N protein of these viruses; BST2 selectively engages with the

N protein of PEDV to facilitate its autophagic degradation, whereas

no such interaction occurs with the N protein of TGEV. Similarly,

both the PLP2-TM domain of SADS-CoV and HCoV-NL63 have the

ability to induce autophagy, but they differ in their outcomes. SADS-

CoV triggers a complete autophagy process, where autophagosome

accumulation is intimately linked to the hydrolysis of autophagic

cargo. Conversely, HCoV-NL63 induces an incomplete autophagy, a

process that ultimately impedes the successful maturation of

autophagosomes into autophagolysosomes.

Recent investigations have unveiled intriguing differences in the

replication mechanisms among various coronaviruses, further

revealing that the influence of autophagy on these mechanisms

varies significantly across cell types. Specifically, TGEV is capable of

eliciting mitochondrial autophagy in IPEC cells, a process mediated

by DJ-1, a versatile redox-sensitive protein. This autophagic

response alleviates oxidative stress and apoptosis, thereby

fostering viral replication (Zhu et al., 2016). In contrast, when

TGEV infects PK-15 cells, the induced autophagy serves to impede

viral replication. Analogously, PEDV induces autophagy in IPEC

cells via the PI3K/AKT/mTOR signaling cascade, which in turn

amplifies viral replication. However, when IPEC cells are treated

with rapamycin, a potent autophagy inducer, it increases

autophagic flux to a level that ultimately leads to the suppression

of viral infection, illustrating the complexity and cell-specific nature

of these interactions (Ko et al., 2017).
4 b-CoVs

In contrast to a-CoVs, the study of autophagy induced by b-
CoVs is comparatively intricate, encompassing primarily SARS-

CoV-2, SARS-CoV, MERS-CoV, MHV, and PHEV. We hereby

provide a concise overview of the intricate interactions between b-
CoVs and autophagy (Figure 3).
4.1 SARS-CoV-2

Since the global outbreak of Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-CoV-2) in 2019, the epidemic

has persisted, posing a significant threat to human and animal

health. Due to its high priority, research on SARS-CoV-2,

particularly in relation to autophagy, has been extensively

conducted. Metabolomic analyses have revealed a significant

upregulation of proteins associated with autophagy in SARS-

CoV-2-infected cells, encompassing proteins involved in

autophagy initiation (AMPK, TSC2, ULK1) and those critical for

membrane nucleation and autophagy precursor formation (Beclin1,

VPS34, ATG14) (Gassen et al., 2021). Furthermore, Krogan et al.

demonstrated, through phosphoproteomic analysis using

quantitative mass spectrometry, that SARS-CoV-2 infection

promotes the activation of CK2 and p38/MAPK signaling

pathways in Vero cells, leading to the production of various
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cytokines and the inhibition of the PI3K/Akt pathway, thus

indicating that SARS-CoV-2 infection enhances autophagy

(Bouhaddou et al., 2020).

Multiple proteins encoded by SARS-CoV-2 have been identified

to modulate autophagy through diverse mechanisms. At the cellular

level, the non-structural protein Nsp3 is capable of cleaving the

autophagy initiator protein ULK1, thereby hindering the formation

of the ULK1 complex and subsequently suppressing autophagy

(Mohamud et al., 2021). Moreover, apart from inhibiting ULK1-

mediated autophagy, the deubiquitination of Nsp3 may disrupt the

cellular process of selective autophagy, ultimately fostering viral

replication. Nsp6 functions to inhibit autophagy by interacting with

VAMP7, ESYT2, ATP2A2, and TBK1, thereby suppressing the

production of pre-autophagosomal structures (Kumar et al.,

2021). Additionally, Nsp13 directly targets TBK1 and recruits it

to P62 for autophagic degradation, thereby inhibiting type I IFN

production (Sui et al., 2022). The ORF3a protein interacts with

VPS39 and the HOPS complexes, inhibiting the fusion between

autophagosomes and lysosomes, which subsequently impedes

autophagic degradation. Notably, the accumulation of autophagy

volume facilitates virus trafficking and excretion via lysosomal

exocytosis (Chen et al., 2021). Conversely, during the autophagic

degradation phase, ORF3a, ORF7a, and Nsp6 hinder autophagic

flow by compromising lysosomal function, further suppressing

autophagy (Miao et al., 2021).

The viral proteins of SARS-CoV-2 can also facilitate autophagy

production. Specifically, the structural protein S binds to the

receptor ACE2, stimulates ROS production, and inhibits the

activation of the PI3K/Akt/mTOR pathway, thereby promoting

autophagy (Li F. et al., 2021). Additionally, the structural protein
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E activates the ER pathway, leading to the phosphorylation of the

translation initiation factor eIF-2a, which in turn promotes LC3

lipidation and induces autophagy (Waisner et al., 2023). The

structural protein N interacts with LARP1 and inhibits the

activation of the mTORC1 pathway, ultimately inducing

autophagy (Gordon et al., 2020). ORF3a plays a dual role in

autophagy, not only inhibiting autophagy production but also

inducing it. This protein can interact with HMGB1 and induce

RETREG1/FAM134B-mediated reticulophagy through the

HMGB1-Beclin1 pathway (Zhang et al., 2022). Furthermore, the

ORF8 protein induces the production of autophagic vesicles and

degrades MHC-I via the Beclin1-mediated autophagy pathway

(Zhang et al., 2021). Additionally, ORF8 interacts with the FKBP7

protein to inhibit the mTORC1 pathway, leading to the induction of

autophagy (Gordon et al., 2020). Lastly, the overexpression of

ORF10 promotes LC3 accumulation in mitochondria and induces

mitochondrial autophagy by binding to the mitochondrial

autophagy receptor NIX (Li et al., 2022).

Clinically, Ramachandran et al. observed that the viral proteins

of SARS-CoV-2, including M, Nsp6, ORF3a, ORF9c, and ORF10,

selectively target the endoplasmic reticulum and mitochondria,

leading to autophagy in cardiomyocytes, suppression of

mitochondrial function, disruption of intracellular Ca2+

homeostasis, decreased cell viability, and ultimately cellular death

(Ramachandran et al., 2022). Li et al. uncovered through RNA

sequencing analysis of peripheral blood mononuclear cells

(PBMCs) from SARS-CoV-2-infected patients that the virus

disrupts the expression of genes related to cellular stress

responses (ER and HSF1) while also inducing autophagy-related

genes. Notably, the virus-induced heat-shock response was
FIGURE 3

Mechanisms by which b-CoVs regulate autophagy through different signalling pathways. (1) Red colour indicates regulation of the autophagy
pathway by individual SARS-CoV-2 viral proteins. (2) Blue colour indicates the promotion of autophagy by individual SARS-CoV viral proteins.
(3) Purple colour indicates the different regulation of the autophagy pathway by the MERS-CoV Nsp1 protein.
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intricately linked to autophagy (Li S. et al., 2021). Barbati et al.

reported autophagy defects in PBMCs from SARS-CoV-2-infected

patients, wherein the expression of LC3-II and p62 was significantly

upregulated compared to normal cells. Moreover, the expression of

these markers positively correlated with lymphocyte apoptosis and

negatively correlated with lymphocyte counts, indicating that

SARS-CoV-2-induced autophagy hijacking contributes to

apoptosis (Barbati et al., 2022). Recently, LC3, SQSTM1, and

BECN1 have emerged as potential new tools for differentiating

patients with moderate to severe SARS-CoV-2 infection from

asymptomatic individuals. Xia et al. found that patients with LC3

concentrations below 5.5 ng/mL should be hospitalized promptly

for treatment (Fang et al., 2021). Conversely, BECN1 levels

positively correlated with disease severity in SARS-CoV-2

patients, exhibiting significantly higher levels compared to the

normal group, thus indicating its potential as a marker for

assessing SARS-CoV-2 disease severity (Okuyan et al., 2021).
4.2 SARS-CoV

In 2003, China reported a devastating respiratory disease,

known as Severe Acute Respiratory Syndrome Coronavirus

(SARS-CoV), which posed a significant threat to human health.

By April 4th, 2003, a total of 2,353 cases had been documented,

resulting in a mortality rate of approximately 4 per cent (Lee et al.,

2003). SARS-CoV has been found to induce autophagy, and the

viral proteins it encodes can modulate this process through diverse

mechanisms. Wileman et al. discovered that the non-structural

protein Nsp6 is capable of inducing LC3 to produce

autophagosomes. Moreover, Nsp6 recruits the effector protein

DFCP1 by upregulating the expression of PI3P, which

subsequently facilitates the nucleation of detached membranes

(Cottam et al., 2011). Remarkably, the diameter of Nsp6-induced

autophagosomes is notably smaller compared to those induced by

starvation (Cottam et al., 2014). Furthermore, research has

demonstrated that SARS-CoV infection is associated with

selective autophagy in mitochondria, and the ORF9b protein

specifically induces autophagy through the classical autophagic

pathway (Shi et al., 2014).

SARS-CoV infection disrupts the functionality of the

endoplasmic reticulum, subsequently triggering an unfolded

protein response (UPR). Notably, the S proteins encoded by

SARS-CoV stimulate the activation of diverse UPR transcription

factors, such as GRP78, GRP94, and C/EBP homologues (Chan

et al., 2006). Additionally, the ORF3a protein plays a pivotal role in

lysosomal membrane permeabilization, promoting the release of

lysosomal tissue proteases, which leads to lysosomal impairment

and dysfunction (Yue et al., 2018). Moreover, the lysine residue at

position 77, which is dependent on the ORF8b protein, forms

insoluble intracellular aggregates. These aggregated ORF8b

proteins induce endoplasmic reticulum stress and lysosomal

damage, ultimately enhancing autophagic flow through the

nuclear translocation of TFEB (Shi et al., 2019).
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4.3 MERS-CoV

In 2012, Saudi Arabia reported a highly pathogenic coronavirus

known as the Middle East Respiratory Syndrome coronavirus

(MERS-CoV), which is transmitted from dromedary camels to

humans (De Wit et al., 2016). Kindrachuk et al. conducted a

peptide kinome array and functional network analysis on human

hepatocytes infected with MERS-CoV, revealing that MAPK/ERK1/2

and PI3K/Akt/mTOR signaling pathways were specifically regulated.

This suggests that MERS-CoV infection may have implications on

autophagy processes (Kindrachuk et al., 2015). Furthermore, Gassen

et al. observed an accumulation of autophagosomes in Vero cells

infected with MERS-CoV. Notably, the SKP2 protein promotes

BECN1 ubiquitination, leading to proteasomal degradation of

BECN1, thereby inhibiting the fusion of autophagosomes with

lysosomes and ultimately impeding autophagy flow (Gassen et al.,

2019). Additionally, the non-structural protein Nsp1 enhances ROS

expression in cells, activating the MAPK pathway and inhibiting the

mTOR pathway, thereby inducing autophagy (Feng et al., 2022).

However, Nsp1 also inhibits lysosomal acidification, which further

impedes autophagic flow (Feng et al., 2022).
4.4 MHV

Mouse hepatitis virus (MHV) pioneered as the first viral model

to delve into the intricate correlation between coronaviruses and

autophagy, specifically for investigating viral replication

mechanisms and immune responses (de Haan et al., 2005). While

Prentice et al. observed that MHV triggers autophagy and

necessitates ATG5 to bolster viral replication (Prentice et al.,

2004). Zhao et al.’s findings offer a contrasting perspective,

revealing that MHV can replicate in BMM cells devoid of ATG5,

thereby indicating that the autophagy process induced by MHV is

not reliant on ATG5 (Zhao et al., 2007).
4.5 PHEV

Porcine hemagglutinating encephalomyelitis virus (PHEV), a

virus that has the potential to impact the nervous and digestive

systems of pigs, triggers symptoms such as vomiting, anorexia,

profound lethargy, ataxia, and ultimately leads to the demise of

infected pigs within 2-3 days of disease onset (Roe and Alexander,

1958). Li et al., utilizing neuroblastoma cells with ULK1 knockout,

discovered that the formation of PHEV-induced autophagosomes

does not necessitate the participation of ULK1, indicating that

PHEV-induced autophagy represents a non-canonical process,

independent of the AMPK-mTORC1-ULK1 signaling pathway (Li

Z. et al., 2021). Ding et al. further revealed that PHEV infection in

Neuro-2a cells induces autophagy, with the production being

temporally dependent. However, PHEV infection impedes the

fusion between autophagosomes and lysosomes, thereby

inhibiting the progression of autophagic flux (Ding et al., 2017).
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Since the outbreak of SARS in 2003, emerging coronaviruses have

garnered extensive attention, with various coronavirus proteins

exhibiting distinct mechanisms in activating or inhibiting autophagy

processes, as illustrated in Table 2. Nevertheless, numerous

coronaviruses remain understudied, resulting in a profound lack of

comprehension regarding the intricacies of autophagy in the context of

coronavirus infections and related pathologies. Consequently, the

intricate relationship between autophagy and coronaviruses

necessitates further exhaustive exploration.
5 g-CoV

5.1 IBV

Infectious bronchitis virus (IBV), a coronavirus that targets avian

species, poses a significant threat to the poultry industry, causing a

reduction in the productivity of laying hens and broilers, resulting in

considerable economic losses (Broadfoot et al., 1956). There is

compelling evidence that IBV exhibits intricate interactions with

autophagy. Cottam et al. uncovered that the non-structural protein

Nsp6 triggers autophagosome formation and facilitates the fusion of

autophagosomes with lysosomes via the activation of class III PI3K

(Cottam et al., 2011). Concurrently, Majer et al. discovered that IBV

stimulates the formation of autophagosomes, which, in turn,

amplifies autophagic signaling in Vero cells (Maier et al., 2013).
6 d-CoV

6.1 PDCoV

In 2012, a novel porcine deltacoronavirus, designated PDCoV,

was initially documented in Hong Kong (He et al., 2020). Upon

infection with PDCoV, the virus induced the formation of double

membrane vesicles and rearrangements of vesicle membranes, with

a notable increase in the number of autophagosome-like vesicles

detected within the cytoplasm. These observations hint that PDCoV

might induce autophagy (Qin et al., 2019). In a proteomics-based
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study, Zhou et al. examined PDCoV-infected porcine small

intestinal epithelial cells (IPEC-J2) and discovered that

autophagy-related signaling pathways, including PI3K-Akt and

mTOR, were activated during the infection process. This suggests

that PDCoV triggers autophagy in IPEC-J2 cells (Zhou X. et al.,

2020). Additionally, PDCoV infection in LLC-PK1 cells activates

the p38 signaling pathway, ultimately leading to complete

autophagy, which facilitates viral replication (Duan et al., 2021).
7 Concluding remarks

To date, a total of eight human coronaviruses and 13 animal

coronaviruses have been reported. Coronaviruses are capable of

inducing cell death in infected cells via diverse pathways, including

apoptosis, necrosis, and autophagy (Yue et al., 2018). Despite the

existing literature on the interplay between viruses and autophagy, the

intricate mechanism of how viruses harness autophagy to facilitate

their replication remains to be comprehensively understood.

Additionally, autophagy can significantly influence cellular biological

processes, and autophagic cell death, as a mode of programmed cell

death, not only directly contributes to cell demise but also interacts with

necrosis, apoptosis, ferroptosis, and other modes of cell death to

expedite cell mortality (Gao et al., 2016). Whether these biological

processes induced by autophagy have an impact on the replication

cycle of coronaviruses merits further investigation.

In this review, our primary focus is on the viral regulation of

autophagy and the intricate mechanisms underlying autophagy-virus

interactions. However, several challenges persist that hinder our ability

to gain a deeper understanding of the nexus between autophagy and

coronavirus infection, necessitating further exploration. Firstly, the

current research landscape on coronaviruses and autophagy

mechanisms lacks the requisite experimental conditions. Specifically, a

significant portion of the experimental data, particularly those

pertaining to highly pathogenic coronaviruses, have been derived

primarily from cellular models, leaving room for debate on whether

these findings align with the outcomes of in vivo infection studies.

Secondly, the impact of autophagy on viral replication remains

contentious, a complexity that may be attributed to variations in cell
TABLE 2 Betacoronavirus proteins regulate autophagy.

Betacoronavirus Proteins Function References

SARS-CoV ORF3a Induces lysosomal damage and dysfunction (Yue et al., 2018)

ORF8b Induces lysosomal damage and dysfunction (Shi et al., 2019)

Nsp6 Induce autophagosome production (Cottam et al., 2011)

SRAS-CoV-2 ORF3a Block autolysosome formation; Impair
lysosomal function

(Miao et al., 2021)

ORF8b Initiate autophagy (Gordon et al., 2020)

Nsp6 Impairment of lysosomal function and inhibition
of autophagy

(Kumar et al., 2021)

MERS-CoV Nsp1 Induce autophagy or block autophagic flux (Feng et al., 2022)

Nsp6 Inhibits autophagy (Gassen et al., 2019)
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type, strain type, and the timing of infection. Lastly, whether

coronaviruses can trigger other forms of autophagy, such as

chaperone-mediated autophagy (CMA) and microautophagy, remains

an open question that demands further scrutiny.

In the context of the interplay between SARS-CoV-2 and autophagy,

a range of drugs that modulate autophagy have been developed to target

SARS-CoV-2 infection (Min et al., 2020; Hui et al., 2021; Yuen et al.,

2021). Notably, Chloroquine, which functions as an inhibitor of the

autophagy pathway, has been proposed as a biological treatment option

for SARS-CoV-2 infection. For animals, autophagy plays a regulatory

role in growth, reproduction, and production performance, to a certain

extent, contingent upon the timing and degree of autophagy induction

(Tesseraud et al., 2021). Recent studies have revealed that specific

autophagy-related components and vesicles play a crucial role in

coronavirus infection and replication. Furthermore, considering the

diverse expression levels of autophagy-related genes and the

abundance of autophagic vesicles across different cell types, alternative

and complementary pathways may potentially enable the resumption of

infection and replication processes after autophagy inhibition (Sun et al.,

2023). Notably, high levels of autophagy inhibition or activation can lead

to various cellular dysfunctions, including excessive endoplasmic

reticulum stress and acute inflammatory responses. These findings

suggest that conventional autophagy inhibitors may not effectively

hinder SARS-CoV-2 infection or alleviate acute inflammatory

responses. Instead, combination therapy involving autophagy-related

drugs and other medications may yield superior therapeutic outcomes.

Specifically, targeting specific autophagy mechanisms or organelle

components in combination with other drugs may represent a

promising new direction for the development of autophagy-based

treatments for COVID-19 in the future.

In summary, autophagy emerges as a potential target in the

treatment of coronavirus infections, and a comprehensive

understanding of its interactions with coronaviruses is crucial for

future therapeutic advancements.
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