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Hefei, China, 3Department of Occupational Disease, Hefei Third Clinical College of Anhui Medical
University, Hefei, China, 4Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical
University, Hefei, China, 5Department of Respiratory and Critical Care Medicine, Key Laboratory of
Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo,
Zhejiang, China
Background: In recent years, COVID-19 and tuberculosis have emerged asmajor

infectious diseases, significantly contributing to global mortality as respiratory

illnesses. There is increasing evidence of a reciprocal influence between these

diseases, exacerbating their incidence, severity, and mortality rates.

Methods: This study involved retrieving COVID-19 and tuberculosis data from

the GEO database and identifying common differentially expressed genes.

Machine learning techniques, specifically random forest analysis, were applied

to pinpoint key genes for diagnosing COVID-19. The Cibersort algorithm was

employed to estimate immune cell infiltration in individuals with COVID-19.

Additionally, single-cell sequencing was used to study the distribution of VNN1

within immune cells, and molecular docking provided insights into potential

drugs targeting these critical prognosis genes.

Results: GMNN, SCD, and FUT7 were identified as robust diagnostic markers for

COVID-19 across training and validation datasets. Importantly, VNN1 was

associated with the progression of severe COVID-19, showing a strong

correlation with clinical indicators and immune cell infiltration. Single-cell

sequencing demonstrated a predominant distribution of VNN1 in neutrophils,

and molecular docking highlighted potential pharmacological targets for VNN1.

Conclusions: This study enhances our understanding of the shared pathogenic

mechanisms underlying tuberculosis and COVID-19, providing essential insights

that could improve the diagnosis and treatment of severe COVID-19 cases.
KEYWORDS

COVID-19, tuberculosis, machine learning, single-cell sequencing, VNN1, molecular
docking, immune infiltration, mechanical ventilation
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1 Introduction

The 2019 coronavirus disease (COVID-19), caused by the

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

is an acute respiratory infectious disease. As of July 2023, this virus

has spread globally at an alarming rate, leading to over 500 million

infections and 6 million deaths (D’Souza et al., 2023). According to

the World Health Organization (WHO), common symptoms

include fever, dry cough, sore throat, diarrhea, fatigue, and joint

and muscle pain (Sohrabi et al., 2020; Hu et al., 2021). Severe cases

often develop acute respiratory distress syndrome (ARDS) and

respiratory failure, necessitating ICU admission and mechanical

ventilation, though outcomes are frequently poor (Wang et al.,

2020). The virus’s propensity for mutation and rapid transmission,

coupled with challenges in vaccine development, suggests that

COVID-19 may persist among human populations for an

extended period, posing significant challenges to controlling

other diseases.

Tuberculosis (TB), a longstanding respiratory disease, continues

to affect millions, with over ten million new cases reported annually

(Furin et al., 2019). Since the onset of the COVID-19 pandemic, TB

diagnosis and treatment have been affected, as evidenced by data

from 16 countries (Migliori et al., 2020). Projections suggest a

potential 13% increase in TB-related deaths in the coming year

(Chakaya et al., 2021). Increasingly, evidence highlights a

correlation between COVID-19 and TB. Reports from the WHO

and studies from regions with high TB burdens like Italy and China

indicate that TB patients are at increased risk of contracting

COVID-19 (Harding, 2020; Stochino et al., 2020; Shah et al.,

2022). This co-infection increases mortality, with TB raising the

death rate among COVID-19 patients by significant margins (Gao

et al., 2021; Risk factors for coronavirus disease 2019 (COVID-19)

death in a population cohort study from the western cape province,

South Africa, 2021).

This research aims to elucidate the shared pathogenic mechanisms

between COVID-19 and TB by analyzing 55 commonly differentially

expressed genes. We conducted protein-protein interaction (PPI)

network analysis and Gene Ontology (GO)/Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis on these genes. We

also explored transcriptional regulation by investigating transcription

factors and miRNAs likely involved. Diagnostic genes for COVID-19

were identified using machine learning techniques, with validation

achieved in a separate dataset. Additionally, we analyzed genes related

to severe COVID-19 outcomes, such as ICU admission and
Abbreviations: COVID-19, The 2019 coronavirus disease; SARS-CoV-2, severe

acute respiratory syndrome coronavirus 2; WHO, World Health Organization;

TB, Tuberculosis; DEGs, differentially expressed genes; PPI, protein-protein

interaction; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and

Genomes; H45, days not in the hospital 45 days after admission; DOMV, Days

off mechanical ventilation; GEO, Gene Expression Omnibus; TFs, transcription

factors; RF, random forest; ICU, Intensive Care Unit; RBPs, RNA-binding

proteins; PRRs, Pathogen-recognition receptors; CLRs, C-type lectin receptors;

NLRs, NOD-like receptors; RLRs, RIG-I-like receptors; TLRs, Toll-like receptors.
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mechanical ventilation requirements. Our findings reveal a

significant association between the gene VNN1 and key clinical and

prognostic indicators. Single-cell sequencing showed VNN1

predominantly expressed in neutrophils, potentially influencing

other immune cells and affecting COVID-19 prognosis. Through

molecular docking, we identified potential drugs targeting VNN1,

aiming for their future clinical use. The sequence of our research

activities is detailed in Figure 1.
2 Materials and methods

2.1 Data acquisition

The Gene Expression Omnibus (GEO) database, a

comprehensive resource for gene expression data, was used to

acquire the datasets for this study. The tuberculosis data was

obtained from GSE19491, while the COVID-19 data were derived

from five datasets: GSE157103, GSE171110, GSE217948,

GSE164805, and GSE152418. Detailed information can be found

in the Supplementary Data Sheet 1. Differentially expressed genes

(DEGs) for tuberculosis were selected with an adjusted P-value

(adj.P) less than 0.05 and a log2 fold change (log2FC) of at least 0.5.

For COVID-19, DEGs were identified using the same adj.P criterion

and a log2FC of at least 1.
2.2 Functional enrichment analysis of
common DEGs

The ‘clusterProfiler’ package in RStudio (version 4.2.2)

facilitated the exploration of biological processes associated with

COVID-19 and TB common DEGs through Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses.
2.3 Protein-protein interaction analysis

The String database was employed to analyze interactions

among proteins encoded by common DEGs shared between

COVID-19 and tuberculosis. Visualizations were conducted using

Cytoscape (version 3.8.4).
2.4 Transcription factors and miRNAs

Networks involving DEGs and transcription factors (TFs), and

miRNAs were constructed using the NetworkAnalyst platform,

with TFs identified through the JASPAR database (Mahmud

et al., 2021) and miRNA-DEG relationships sourced from the

miRTarBase database (Hsu et al., 2011). Visualizations were

performed using Cytoscape.
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2.5 Identification of key diagnostic genes
using machine learning

The random forest (RF) machine learning method, a robust

approach involving the construction of multiple decision trees, was

utilized to identify key genes for COVID-19 diagnosis. The

‘classif.ranger’ learner from the mlr3 R package was used to score

each DEG. Diagnostic performance was evaluated using ROC

curves constructed with the ‘pROC’ R package.
2.6 Identification of key prognostic genes
associated with clinical information

Clinical data were collected from dataset GSE157103, which

included various metrics such as C-reactive protein, D-dimer, and

ICU admission status. Prognostic groups were defined based on

ICU admission and mechanical ventilation use. Key prognostic

genes were identified at the intersection of DEGs between these

groups, with an adj.P less than 0.05 and a log2FC of at least 1.
2.7 Analysis of VNN1 and immune cells

The CIBERSORT tool was used to estimate the composition of

immune cells and analyze gene expression profiles. The correlation

between VNN1 expression and immune cells was assessed using the

Spearman correlation method.
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2.8 Acquisition and processing of single-
cell data

Single-cell RNA sequencing data were obtained from the GEO

database under accession number GSE157344. This dataset includes

20 samples from critically ill COVID-19 patients and 6 peripheral

blood samples from healthy controls. Initial data processing

involved filtering based on cell count, feature count, and the

proportion of mitochondrial genes. Data were then normalized

using the NormalizeData function. Dimensionality reduction was

performed using the RunPCA function, which focused on 2000

highly variable genes and the top 10 principal components.

Visualization was achieved through UMAP using the RunUMAP

function, and cell types were annotated using the SingleR package.
2.9 Evaluation of applicant drugs and
molecular docking

Potential functional molecules associated with VNN1were explored

using the Enrichr portal and the DSigDB. Molecular docking, a key

computational method in drug discovery, was employed to predict

interactions between ligands and the VNN1 target. The VNN1 crystal

structure was downloaded from the Protein Data Bank (PDB code 7sly)

to guide the docking analysis. Drug structures targeting VNN1 were

sourced from the PubChem database. AutoDock software was used for

docking, assessing binding energy reliability and ligand positioning

accuracy. Docking results were visualized using PyMOL software.
FIGURE 1

Schematic illustration of the overall general workflow of this study.
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2.10 qRT-qPCR

Sample collection: Peripheral blood samples were obtained

from the First Affiliated Hospital of Anhui Medical University,

including 6 healthy controls, 10 mild COVID-19 patients, and 6

severe COVID-19 patients. Severe COVID-19 was defined by

meeting any of the following criteria: 1) SpO2 < 94% on room air

at sea level; 2) PaO2/FiO2 < 300 mm Hg; 3) respiratory frequency >

30 breaths/min; 4) lung infiltrates > 50% (Attaway et al., 2021) and

requiring mechanical ventilation. Patients not meeting these criteria

were classified as mild COVID-19.

RNA extraction and cDNA synthesis: Total RNA was extracted

from peripheral blood cells using TRIzol reagent (Biosharp, Hefei,

China). cDNA was synthesized using Hifair® II 1st Strand cDNA

Synthesis SuperMix for qPCR (YEASEN) according to the

manufacturer’s instructions. qRT-PCR: Quantitative PCR was

performed on a Roche LightCycler 96 system (Roche, Basel,

Switzerland) using Hieff® qPCR SYBR Green Master Mix (No

Rox) (YEASEN). The cycling conditions were: initial denaturation

at 95°C for 5 min, followed by 40 cycles of 95°C for 10 sec and 60°C

for 30 sec. Primer sequences for VNN1 were: Forward 5’-

TCCTGAGGTGTTGCTGAGTG-3 ’ ; Reverse Primer: 5 ’-

AGCGTCCGTCAGTTGACAC-3’.GAPDH was used as an

internal control , with primer sequences: Forward 5 ’-

AGGTCGGTGTGAACGGATTTG - 3 ’ ; R e v e r s e 5 ’ -

TGTAGACCATGTAGTTGAGGTCA-3’.

Data analysis: Relative gene transcription levels was calculated

using the 2^-DDCt method, where DCt = Ct(VNN1) - Ct(GAPDH),

and DDCt = DCt(COVID group) - DCt(control group). All

experiments were performed in triplicate. Detailed primer

information is provided in Supplementary Data Sheet 2.
2.11 Statistical analysis

Data processing and statistical analyses were conducted using R

software version 4.2.2. The Wilcoxon rank-sum test was employed to

compare two groups, while relationships between continuous variables

were assessed using Spearman correlation. Random forest analysis was

carried out using the mlr3 R package, and single-cell RNA sequencing

data were analyzed with the Seurat package. All statistical tests were

two-tailed, with a significance threshold set at P < 0.05.
3 Result

3.1 Identification and functional
enrichment analysis of COVID-19 and TB
common DEGs

To explore the relationship between tuberculosis (TB) and

COVID-19, we analyzed blood sample data from both diseases

sourced from the GEO database. We identified 680 DEGs in the

TB dataset and 290 in the COVID-19 dataset. The overall

transcriptional gene expression profiles for both diseases are
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visually represented in Figures 2A, B. A Venn diagram in

Figure 2C shows 55 DEGs common to both diseases

(Supplementary Data Sheet 3). Functional enrichment analyses

were conducted using KEGG pathways and GO terms

(Supplementary Data Sheet 4). The top five significant pathways

are detailed in Figure 2D. GO analysis focused on biological

processes, revealing that these DEGs are primarily involved in the

organism’s response to viruses, encompassing cellular and molecular

reactions to viral infections. The molecular functions of these genes

are linked to RNA transcription and binding, impacting gene

regulation, RNA synthesis, and interactions. Notably, the NOD-like

receptor signaling pathway, critical for immune and inflammatory

responses, was identified as a key pathway activated by these DEGs.
3.2 Protein-protein interaction
network analysis

We constructed a Protein-Protein Interaction (PPI) network

using the common DEGs between COVID-19 and TB, depicted in

Figure 2E. The network visualization utilizes circle size and color

depth to indicate the degree of protein interaction; larger and darker

circles signify more significant interactions. Key proteins include

DDX58, STAT1, MX1, IFIH1, IFIT1, RSAD2, DDX60, OASL,

IFIT3, and RTP4, recognized for their central roles and strong

associations within the network.
3.3 Construction of regulatory networks

Using NetworkAnalyst, we predicted interactions between the

common DEGs and transcription factors (TFs), identifying the top

10 TFs based on their degree of connection with DEGs, as shown in

Figure 3A (Supplementary Data Sheet 5). These TFs, including

NFIC, RELA, POU2F2, FOXL1, MEF2A, USF2, FOXC1, GATA2,

TP53, NFKB1, and PPARG, are crucial for their significant roles in

gene regulation. Additionally, Figure 3B illustrates the interactions

between miRNAs and the common DEGs, where red “V” shapes

represent DEGs, and green squares represent miRNAs. This

analysis sheds light on potential post-transcriptional regulatory

mechanisms and therapeutic targets (Supplementary Data Sheet 6).
3.4 Identifying hub genes for diagnosis
based on COVID-19 and TB common DEGs

Following our analysis of DEGs common to COVID-19 and

tuberculosis, we explored the potential impacts of these genes on

COVID-19 disease processes through various pathways and

mechanisms. Using the random forest method for feature selection,

implemented via the mlr3 R package, we ranked genes based on their

importance, focusing on those with a Gini index exceeding a

predefined threshold of 1.0 (Figure 3C). We identified three top-

ranked genes—GMNN, SCD, and FUT7—as crucial diagnostic

markers. These genes demonstrated excellent diagnostic

performance in the training set, with AUC values of 0.946, 0.922,
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and 0.848 respectively (Figures 3D–F). In the validation set, they

continued to show promising results, with AUC values of 0.964,

0.857, and 0.870 respectively (Figures 3G–I). The robust performance

of these genes underscores their potential key role in the pathogenesis

of COVID-19 and provides valuable insights for further investigation

into their specific mechanisms within the disease.
3.5 Identification and validation of genes
associated with severe COVID-19

We stratified COVID-19 patients based on ICU admission and

the use of mechanical ventilation to identify molecular signatures

associated with severe disease outcomes. Differential gene

expression analysis revealed 376 genes differentially expressed

between the ICU and non-ICU groups (Figure 4A), and 267

genes between the mechanically ventilated and non-ventilated

groups (Figure 4B). A Venn diagram analysis helped us identify

10 crucial genes (VNN1, GBP4, XAF1, OAS1, OAS2, OAS3, RTP4,
Frontiers in Cellular and Infection Microbiology 05
IFI44L, IFIT1 and RSAD2) intersecting with the commonly

expressed DEGs in both COVID-19 and tuberculosis (Figure 4C).

Subsequently, we investigated the relationship between the

identified genes and various clinical indicators, including CRP, D-

dimer, ferritin, fibrinogen, APACHE II score, and SOFA score.

Remarkably, only the transcript levels level of VNN1 demonstrated

a significant correlation with these clinical indicators. (Figures 4D–J).

We also explored the relationship between the transcript levels of

VNN1 and specific clinical outcomes, including the number of

hospital-free days within 45 days post-admission (H45) (Figure 4K)

and the number of days off mechanical ventilation (DOMV)

(Figure 4L). A negative correlation was observed between high

VNN1 transcript levels and both H45 and DOMV, suggesting its

significance in predicting poorer outcomes in severe COVID-

19 cases.

To further validate our results, we examined the transcription

level of VNN1 across various datasets, including the cohort from

the First Affiliated Hospital of Anhui Medical University. Our

analysis revealed a significant increase in VNN1 transcription

levels in COVID-19 patients compared to the control group.
FIGURE 2

Identification of common differentially expressed genes (DEGs) and protein-protein interaction (PPI) network in COVID-19 and tuberculosis
(A) Volcano plot illustrating the distribution of DEGs in tuberculosis. Red dots represent significantly upregulated genes, blue dots represent
significantly downregulated genes, and gray dots indicate genes without significant change. (B) Volcano plot depicting DEGs in COVID-19 (C) Venn
diagram showing the overlap of DEGs between COVID-19 and tuberculosis. (D) Bubble graphs presenting the top enriched Gene Ontology (GO)
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The size of each bubble represents the number of genes involved, while
the color indicates the significance level. (E) Protein-Protein Interaction (PPI) network of the common DEGs between COVID-19 and tuberculosis.
Node size and color depth indicate the degree of protein interaction, with larger and darker nodes representing more significant interactions.
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Notably, this elevation was particularly pronounced in patients with

severe COVID-19, as illustrated in Figures 5A–F.

In the qRT-PCR analysis (Figure 5A), the relative transcription

levels of VNN1 were significantly higher in the severe COVID-19

group (p < 0.001) compared to both the control and mild COVID-

19 groups, indicating a potential correlation between VNN1

expression and disease severity.

Similarly, in the GSE157103 dataset (Figure 5B), VNN1 levels

were significantly elevated in severe cases (p < 0.001), with a marked

difference compared to mild cases (p = 0.006). In the GSE164805

dataset (Figure 5C), while there was an observable increase in VNN1

levels among mild COVID-19 patients, this did not reach statistical

significance (p = 0.453). This lack of significance may be attributed to

the small sample size, with only 5 samples in each group, which limits

the statistical power to detect true differences. However, severe cases

did show significantly higher transcript levels of VNN1 compared to

the control group (p = 0.024). This highlights potential variability

between different cohorts and reinforces the correlation between

VNN1 expression and disease severity in severe patients. The

GSE217948 dataset (Figure 5D) also demonstrated a significant
Frontiers in Cellular and Infection Microbiology 06
upregulation of VNN1 in COVID-19 patients (p < 0.001), while

the GSE152418 dataset (Figure 5E) showed a modest increase (p =

0.041). Finally, in the GSE171110 dataset (Figure 5F), VNN1

transcript levels was significantly higher in COVID-19 patients (p <

0.001), reinforcing our findings across multiple datasets.

These results collectively support the hypothesis that VNN1

transcription levels are associated with the severity of COVID-19,

highlighting its potential role as a biomarker for disease progression.
3.6 The relationship between clinical
information, immune infiltration, and
VNN1 expression

We used the CIBERSORT algorithm to assess immune cell

infiltration in COVID-19 patients (Figure 6A). Our correlation

analysis showed a positive association between H45 and dendritic

cells, NK cells, CD8 T cells, and Tregs cells, whereas M0 and M2

macrophages, as well as neutrophils, were negatively correlated with

H45 (Supplementary Data Sheet 7). A similar trend was observed
FIGURE 3

Regulatory gene networks of common differentially expressed genes and diagnostic efficacy of selected biomarkers in COVID19. (A) Interconnected
regulatory interaction network for the common DEGs and their associated transcription factors (TFs). Transcription factors a are represented by red
V-shaped nodes, while the DEGs are depicted as green diamonds, with larger diamonds indicating stronger associations. (B) Regulatory interaction
network illustrating the relationships between the common DEGs and their corresponding miRNAs, using the same color scheme as panel (A).
(C) Feature selection using Random Forest, shown as a bar chart ranking the diagnostic efficacy of selected genes for COVID-19. (D-F) AUC scores
for the selected genes in the training set GSE157103, demonstrating their diagnostic performance. (G-I) AUC scores for the selected genes in the
independent testing set GSE171110, validating their diagnostic utility.
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for DOMV, with positive correlations noted for resting NK cells and

CD8 T cells and negative correlations for M0 macrophages and

neutrophils (Supplementary Data Sheet 8). A strong positive

correlation was identified between VNN1 expression and the

presence of dendritic cells and neutrophils (Figures 6B, C), while

a significant negative correlation was observed with monocytes, M2

macrophages, CD8 T cells, NK cells, and Treg cells (Figures 6D–H).

These findings suggest that VNN1 could influence the prognosis of

COVID-19 patients by modulating immune cell infiltration.
Frontiers in Cellular and Infection Microbiology 07
3.7 Expression and distribution of VNN1 in
single cell sequencing

Using single-cell sequencing, we annotated 44,405 cells from 20

severely ill COVID-19 patients and 6 healthy controls, categorizing

them into distinct cell types like neutrophils, monocytes, B cells,

myelocytes, platelets, T cells, and NK cells (Figure 7A). Marker

genes for each cell subtype are presented in Figure 7B. Notably,

VNN1 showed predominant expression in neutrophils (Figure 7C),
FIGURE 4

Identification of genes related to severe COVID-19 and their correlation with clinical indicators. (A) Volcano plot of differentially expressed genes in
ICU patients, highlighting significant upregulated and downregulated genes. (B) Volcano plot of differentially expressed genes in mechanically
ventilated patients. (C) Venn diagram showing the intersection of common differentially expressed genes, differentially expressed genes associated
with ICU admission, and differentially expressed genes related to mechanical ventilation. (D–J) Comparison of clinical indicators (CRP, D-dimer,
procalcitonin, fibrinogen, APACHE-II, ferritin, and SOFA scores) between high and low expression groups of VNN1. (K, L) Correlation analysis
between VNN1 expression and the number of days without hospitalization or mechanical ventilation within 45 days post-admission.
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significantly upregulated in severe COVID-19 cases compared to

controls (Figures 7D, E).
3.8 Identification of candidate drugs and
target–chemical interaction in COVID-19

Exploring target–chemical interactions is crucial for clinical

translation and the development of therapeutic drugs. We identified

candidate drugs using Enrichr, focusing on compounds with the

potential to impact severe COVID-19. The top ten drugs, including

chloroform, Clofop, fluticasone, etynodiol, phenol, cefoxitin,

(-)-isoprenaline, ciglitazone, tolazoline, and clidinium bromide

were selected based on their p-values (Supplementary Data Sheet

9). Molecular docking predicted the binding modes between these

compounds and the VNN1 protein, setting a binding energy

criterion of ≤−5.0 kcal/mol to indicate potential efficacy. Clofop,

fluticasone, etynodiol, phenol, cefoxitin, (-)-isoprenaline,

ciglitazone, and clidinium bromide demonstrated promising

interactions (Table 1), particularly etynodiol, which exhibited the

lowest binding energy, indicating significant potential for further

investigation (Figures 8A–H).
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4 Discussion

The interaction between TB and COVID-19, especially their co-

infection dynamics, has attracted increasing research interest due to

the elevated incidence and mortality rates observed among patients

suffering from both conditions (Hogan et al., 2020; Sy et al., 2020;

Chakaya et al., 2021). Studies indicate that severe COVID-19

patients with concurrent TB are at a higher risk of mortality and

experience a faster progression to death compared to those without

TB (Sy et al., 2020; Gao et al., 2021). Our research aimed to explore

the connections between COVID-19 and TB, uncovering shared

pathogenic mechanisms and establishing a theoretical framework

for diagnosis and treatment.

Our enrichment analysis of common differentially expressed

genes revealed key pathways involved in both diseases, including

viral response, RNA binding, and the NOD-like receptor signaling

pathway. The innate immune system, which first responds to viral

invasions, utilizes pathogen-recognition receptors (PRRs) such as

C-type lectin receptors (CLRs), NOD-like receptors (NLRs), RIG-I-

like receptors (RLRs), and Toll-like receptors (TLRs) to detect

pathogen-associated molecular patterns (PAMPs) (Ishii et al.,

2008; Tartey and Takeuchi, 2017). Subsequently, the adaptive
FIGURE 5

Validation of VNN1 transcription through qRT-PCR and additional datasets. (A) Validation of VNN1 transcription levels using qRT-PCR in a cohort
from The First Affiliated Hospital of Anhui Medical University. (B) VNN1 transcription levels analysis in dataset GSE157103. (C) VNN1 transcription
levels analysis in dataset GSE164805. (D) VNN1 transcription levels analysis in dataset GSE217948. (E) VNN1 transcription levels analysis in dataset
GSE152418. (F) VNN1 transcription levels analysis in dataset GSE171110.
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immune response is activated, involving interactions between viral

particles and antigen-presenting cells or B-cell receptors, which play

crucial roles in the body’s defense against viral invasion (Primorac

et al., 2022). Similarly, Mycobacterium tuberculosis exploits PRRs,

including TLRs, NLRs, and CLRs, to invade and replicate within

type II lung epithelial cells and alveolar macrophages (Liu

et al., 2017).

The Protein-Protein Interaction analysis identified DDX58,

MX1, and STAT1 as central genes in the context of COVID-19

and TB. DDX58 (RIG-I) plays a crucial role in the innate immune

response against viral infections (Radzikowska et al., 2023), while

MX1 is involved in cellular antiviral responses (Andolfo et al.,

2021). STAT1 is essential for signaling from type I, II, and III

interferons, impacting immune responses to both diseases

(Tolomeo et al., 2022).

In our analysis of diagnostic markers, GMNN, SCD, and FUT7

emerged as promising candidates, demonstrating excellent

performance in distinguishing COVID-19 cases. Given the
Frontiers in Cellular and Infection Microbiology 09
importance of early identification in critical conditions, these

markers may facilitate timely intervention and improve patient

outcomes. Early identification and intervention in patients’

conditions become increasingly important in reducing the

number of patients requiring ICU admission and mechanical

ventilation. According to existing guidelines, some clinical

indicators such as CRP, D-dimer, ferritin, neutrophils, and

chemokines are associated with the severity of COVID-19 and

patient mortality rates (Chen et al., 2020; Merad and Martin, 2020).

In our study, we intersect the common differentially expressed

genes of COVID-19 and tuberculosis with the differentially

expressed genes associated with ICU admission and the use of

mechanical ventilation. Subsequently, we will validate the

relationship between the intersected genes and clinical indicators.

Surprisingly, VNN1 is associated with most clinical indicators,

including C-reactive protein (CRP), D-dimer, procalcitonin, and

APACHE-II. Furthermore, we observed a significant negative

correlation between VNN1 and the H45, as well as the DOMV.
FIGURE 6

The association between VNN1 and immune cell infiltration. (A) Differences in immune cell infiltration within the VNN1 high and low expression
groups. (B–H) The correlation between VNN1 expression and the infiltration of activated dendritic cells, neutrophils, M2 macrophages, monocytes,
activated NK cells, CD8 T cells, and Treg cells. (“**” signifies a p-value < 0.01, “****” signifies a p-value < 0.0001).
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This suggests that VNN1 plays a crucial role in the progression of

COVID-19 patients to a critical condition, indicating its potential as

a biological marker for disease detection and as an important

therapeutic target.

COVID-19, like tuberculosis, is marked by significant

alterations in immune cell profiles, particularly a notable

reduction in lymphocytes which are key indicators of the disease’s

severity (Zhao et al., 2020). Our study observed that in patients with
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high VNN1 expression, there was a substantial decrease in B cells,

CD4 T cells, CD8 T cells, NK cells, and M2 macrophages.

Conversely, the proportion of neutrophils significantly increased,

suggesting a shift towards a neutrophil-dominated immune

response. At the cellular level, the body’s initial defense against

viral entry is mediated by type I interferon (INF), primarily

produced by dendritic cells (Cervantes-Barragan et al., 2007;

Hosseini et al., 2020). This response activates the Janus kinase

(JAK) and signal transducer and activator of transcription (STAT)

pathways via the IFNa/b receptor (IFNAR), stimulating the

production of IFN-induced transmembrane (IFITM) proteins that

hinder viral replication (Huang et al., 2011; de Wit et al., 2016;

Kindler et al., 2016). Moreover, macrophages infected by SARS-

CoV-2 release a variety of cytokines and chemokines, including

TNF-a, IL-6, IL-12, IFN-g, CCL2, CCL5, and CXCL10 (Zhou et al.,

2014). These cytokines not only help in fighting the virus but also

promote the migration of immune cells like neutrophils and

macrophages to the lungs, contributing to alveolar damage and

vascular disruption, which can be fatal (Li et al., 2020).T cells, both

CD4+ and CD8+, are crucial in the antiviral immune response, the

former inducing T-dependent B cell responses and the latter

eliminating virally infected cells. However, the presence of certain

cytokines such as TNF-a, IL-6, and IL-10 and specific immune cells

like Th17 can induce T cell necrosis or apoptosis, leading to a

reduction in their numbers (Diao et al., 2020; Xu et al., 2020). This

depletion not only facilitates viral persistence but also heightens the
FIGURE 7

Differential expression of VNN1 in blood specimens (A) Cell type annotation of the single-cell data. (B) Expression of marker genes for different cell
types, represented as a bubble chart where the color indicates expression levels and the size of the bubbles represents the percentage of cells
expressing the marker. (C) Cell Type Distribution of VNN1-Expressing Cells (D) Proportion of neutrophils expressing VNN1 among different samples
(E) The difference in the proportion of neutrophils expressing VNN1 between the Contral and Severe COVID19 groups.
TABLE 1 The binding affinity of VNN1 with the docking compound.

compound binding free energy

Choloroform -3.38

Clofop -5.5

fluticasone -8.2

etynodiol -11.32

phenol -5.11

cefoxitin -5.29

(-)-isoprenaline -5.95

ciglitazone -7.45

tolazoline -4.63

clidinium bromide -7.06
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risk of opportunistic infections, such as tuberculosis, further

complicating the patient’s condition.

Vanin-1 (VNN1), known for its role in stress and inflammatory

responses through its pantetheinase activity, hydrolyzes pantetheine

to produce cysteamine. While its functions have been explored in

cancer (Kang et al., 2016) and pancreatic inflammation (Millet et al.,

2023), its implications in pulmonary diseases remain under-

explored. Our findings highlight VNN1’s association with key

clinical markers and its correlation with increased neutrophils

and decreased lymphocytes, indicating its critical role in

exacerbating COVID-19.

To explore VNN1’s potential as a therapeutic target, we

conducted compound screening and molecular docking analyses.

Compounds such as clofop, fluticasone, etynodiol, phenol,

cefoxitin, (-)-isoprenaline, ciglitazone, and clidinium bromide
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emerged as promising candidates that may influence VNN1

activity, opening avenues for novel therapeutic strategies against

COVID-19.

Despite the significant findings of our study, we acknowledge

several limitations. Due to time and resource constraints, we were

unable to perform Western blot experiments. We recognize that

Western blot can provide protein-level validation, which would

have further strengthened our findings, particularly regarding

VNN1 expression. Additionally, our study was primarily based on

bioinformatics analysis and publicly available datasets. While this

approach allows for comprehensive data mining, it may not fully

capture the complex biological interactions in vivo. Future studies

involving in vitro and in vivo experiments would be valuable to

validate our findings and explore the mechanistic details of VNN1’s

role in COVID-19 progression. Furthermore, our molecular
FIGURE 8

Molecular docking patterns.Molecular docking patterns for (A) Clofop, (B) fluticasone, (C) etynodiol, (D) phenol, (E) cefoxitin, (F) -isoprenaline,
(G) ciglitazone, and (H) clidinium with the VNN1, respectively.
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docking analyses, while promising, require experimental validation

to confirm the efficacy of the identified compounds in modulating

VNN1 activity. Lastly, the retrospective nature of our study and the

potential for confounding factors in the datasets used may limit the

generalizability of our results. Prospective clinical studies would be

necessary to fully establish the clinical utility of VNN1 as a

biomarker or therapeutic target in COVID-19.

In conclusion, our research elucidates the complex interplay

between TB and COVID-19, highlighting shared mechanisms and

identifying VNN1 as a key factor in disease progression. The

identification of potential drugs targeting VNN1 sets the stage for

future therapeutic interventions aimed at mitigating the severity of

COVID-19. Despite the limitations, our findings provide valuable

insights and a strong foundation for future research in this critical

area of public health.
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