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Background: Prior studies have established correlations between gut microbiota

(GM) dysbiosis, circulating metabolite alterations, and gastric cancer (GC) risk.

However, the causal nature of these associations remains uncertain.

Methods: We utilized summary data from genome-wide association studies

(GWAS) on GM (European, n=8,956), blood metabolites (European, n=120,241;

East Asian, n=4,435), and GC (European, n=476,116; East Asian, n=167,122) to

perform a bidirectional Mendelian randomization (MR) analysis, investigating the

causal effects of GM and metabolites on GC risk. Additionally, we conducted

mediation analysis (two-step MR) to identify potential metabolite mediators in

the GM-GC relationship.

Results: We identified twelve negative and seven positive associations between

specific GM taxa and GC risk. For blood metabolites, seven traits were found to

be significantly associated with reduced GC risk in the European population, with

these findings subsequently validated in the East Asian cohort. Three GM taxa

showed potential causal associations with five metabolic traits: the Bacteroidia

class and Bacteroidales order were positively correlated with five metabolites (all

P < 0.013), while Bacteroides OTU97_27 exhibited a negative correlation with

one metabolite (P = 0.007). Two-step MR analysis indicated that total lipids in

intermediate-density lipoprotein (IDL), IDL particle concentration, phospholipids

in medium low-density lipoprotein (LDL), phospholipids in small LDL, and free

cholesterol in small LDL indirectly influenced the association between

Bacteroidia class/Bacteroidales order and GC, with mediation proportions of

1.71% (P = 0.048), 1.69% (P = 0.048), 2.05% (P = 0.045), 1.85% (P = 0.048), and

1.99% (P = 0.045), respectively.
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Conclusion: The present study provides suggestive evidence of a causal

relationship between specific GM, blood metabolites, and GC risk, potentially

offering new insights into GC etiology.
KEYWORDS

gut microbiota, metabolites, gastric cancer, Mendelian randomization,
causal association
1 Introduction

Gastric cancer (GC) ranked as the fifth most common cancer

and cause of cancer-related deaths globally, with 968,000 new cases

and 660,000 deaths reported worldwide in 2022 (Bray et al., 2024).

East Asia and Eastern Europe are the regions with the highest

incidence rates globally. Extensive research suggests that gastric

carcinogenesis is associated with genetic factors, Helicobacter pylori

infection, dietary habits, and regional environmental factors, all

interacting within a complex network (López et al., 2023; Noto et al.,

2022; Smyth et al., 2020). The dynamic balance of human gut

microbiota (GM) is closely linked to both physiological and

pathological conditions and can directly or indirectly influence

the carcinogenesis, treatment, and prognosis of GC (Wang et al.,

2023b; Wang et al., 2023d). Increasing evidence indicates that GC

patients experience changes in GM diversity and abundance, with

alterations in specific microbial communities associated with GC

risk (Yu et al., 2024). Additionally, some GM metabolites, such as

short-chain fatty acids (SCFAs) and bile acid metabolites, have been

associated with the formation and progression of GC (Noto et al.,

2022; Yu et al., 2024). These metabolic products can enter systemic

circulation via the gut-liver and gut-blood axes, exerting significant

effects on systemic metabolism (Ahlawat et al., 2021; Hsu and

Schnabl, 2023).

Blood metabolites, as critical indicators of the body’s metabolic

status, serve as biomarkers for the diagnosis and prognosis of various

diseases (Kurilshikov et al., 2019; Xu Z. et al., 2023). Previous studies

have shown that changes in blood metabolites are closely linked to

GM dysbiosis and its metabolic byproducts (Vojinovic et al., 2019).

Consequently, the GM and its metabolites, along with blood

metabolites, may play important roles in the carcinogenesis and

development of GC (Cao et al., 2023; Lario et al., 2017).
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Further investigation into these relationships could not only clarify

the pathogenesis of GC but also provide novel insights and

methodologies for its early diagnosis and prevention. However, as

current research is predominantly observational, it is prone to

confounding factors such as dietary patterns, environmental

influences, and reverse causality, often with small sample sizes.

Additionally, ethical and practical limitations pose challenges to

conducting randomized controlled studies that involve all

bacterial strains.

Mendelian randomization (MR) is a powerful data analysis

method for inferring causal relationships and has been widely

applied in epidemiological research (Sekula et al., 2016). With

advancements in sequencing technologies and the public

availability of large-scale genome-wide association study (GWAS)

data, numerous reliable genetic variations, such as single nucleotide

polymorphisms (SNPs), are now accessible for MR studies. In this

study, we used the latest GWAS datasets to conduct bidirectional

MR and mediation analyses, aiming to explore the causal

associations among GM, circulating metabolites, and GC risk.

Additionally, we integrated metabolomics and microbiomics data

to better elucidate the potential mediating role of circulating

metabolites in the relationship between GM and GC.
2 Methods

2.1 Study design

Figure 1 presents the framework and the three core assumptions

underlying this MR analysis. Firstly, we conducted bidirectional MR

to examine the impact of GM on GC risk. Secondly, we evaluated

the association between blood metabolites and GC risk, with

comparative analyses conducted in European and East Asian

populations. Thirdly, we assessed the reciprocal relationship

between GM and blood metabolites through bidirectional MR.

Finally, a two-step MR approach (Burgess et al., 2015a) was used

to investigate whether GM influences GC through the mediation of

blood metabolites. A detailed analysis flow is provided in

Supplementary Figure 1. This study was conducted in accordance

with the STROBE-MR checklist for the reporting of observational

studies using Mendelian randomization (Supplementary Table 1)

(Skrivankova et al., 2021).
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1453286
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Li et al. 10.3389/fcimb.2024.1453286
2.2 Data sources and selection of
genetic instruments

Detailed characteristics of all GWAS data sources are provided in

Supplementary Table 2. Summary statistics for GM were obtained

from a large-scale, single-country GWAS (Rühlemann et al., 2021).

This project included 8,956 participants of European ancestry from

five independent cohorts (FoCus, PopGen, KORA, SHIP, and SHIP-

TREND) in Germany, with fecal samples collected from all

participants. Microbial data were generated through bacterial 16S

rRNA gene amplicon sequencing conducted in a wet lab in Kiel,

Germany, following a standardized protocol. GWAS data from all

cohorts were analyzed using a generalized linear model with logistic

regression, adjusting for the top 10 genetic principal components,

body mass index, sex, and age as covariates. The analysis identified

430 taxonomic units, encompassing 4 kingdoms, 10 phyla, 16 classes,

27 orders, 56 families, and 317 genera.

GWAS summary statistics for blood metabolites were collected

from a large-scale genome-wide meta-analysis (Karjalainen et al.,

2024), including 136,016 participants across 33 cohorts (120,241

European, 4,435 East Asian, and 11,340 South Asian individuals).

This study used a consistent nuclear magnetic resonance (NMR)

metabolomics platform to quantify up to 233 plasma or serum

metabolic traits, including lipoprotein and lipid parameters, fatty

acids and their compositions, as well as non-lipid traits (such as

ketone bodies, amino acids, glycolysis/gluconeogenesis, and

inflammation-related metabolites). For our analysis, 81 blood

metabolite ratio traits were excluded, resulting in 152 blood

metabolite concentration traits included in the final MR analysis.

Summary statistics for GC were obtained from the IEU Open

GWAS Project (Elsworth et al., 2020). The GWAS data were

derived from a cross-population meta-analysis incorporating

phenotype data from BioBank Japan, UK Biobank, and FinnGen,

with a total of 476,116 participants of European ancestry (1,029
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cases and 475,087 controls) and 167,122 participants of East Asian

ancestry (7,921 cases and 159,201 controls) (Sakaue et al., 2021). GC

was defined based on the International Classification of Diseases

(ICD) codes, specifically limited to confirmed cases of gastric

carcinoma, using ICD-10: C16, ICD-9: 151, and ICD-8: 151.

When selecting instrumental variables (IVs) significantly

associated with GM, we applied a relaxed significance threshold of

P < 1×10-5, following previous MR studies (Li et al., 2022; Wang et al.,

2023a), to ensure suitable IVs for analysis. For screening IVs

significantly associated with blood metabolites and GC, we applied

the conventional GWAS threshold (P < 5×10-8) to select SNPs.

Subsequently, we ensured independent IV through linkage

disequilibrium (LD) clumping with a stringent threshold (r2 < 0.001,

window size =10,000kb) (Ma et al., 2023). We manually filtered out

SNPs associated with outcome risk factors from PhenoScanner V2 to

further ensure the independence of IVs (Kamat et al., 2019). We

computed the F-statistic (a measure of IVs’ strength) and removed

SNPs with F < 10 to mitigate bias from weak IVs (Bowden et al., 2019;

Burgess et al., 2011). After harmonizing the data, SNPs with

palindromic sequences were also removed.
2.3 MR analysis and sensitivity analysis

Inverse variance-weighted (IVW) was used as the primary

method for estimating causal effects in the two-sample MR

analysis (Burgess et al., 2013; Burgess et al., 2015b), supplemented

by MR-Egger (Bowden et al., 2015), weighted median (Bowden

et al., 2016), and weighted mode (Hartwig et al., 2017) as additional

analyses. When only one SNP was available, the Wald ratio was

used as the definitive measure of causal effects, while the IVW

method consolidated the Wald ratios across all genetic variants

(Karjalainen et al., 2024). IVW provides the most accurate estimate

of causal effects under the assumption of no horizontal pleiotropy.
FIGURE 1

Framework and key assumptions of the Mendelian randomization (MR) analysis. SNPs, single nucleotide polymorphisms.
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A series of sensitivity analyses were conducted to detect

pleiotropy and heterogeneity, ensuring the robustness of MR

results. Potential horizontal pleiotropy was assessed using the

Egger regression test (Bowden et al., 2015), where a P-value >

0.05 and an intercept close to zero indicate no evidence of

pleiotropy. Heterogeneity was examined using Cochrane’s Q test

(Burgess et al., 2013), with a P-value > 0.05 indicating no significant

heterogeneity. When heterogeneity was detected, the random-

effects IVW method was used for effect estimation, whereas the

fixed-effects model was applied in its absence (Bowden et al., 2017).

In cases of horizontal pleiotropy, MR Pleiotropy Residual Sum and

Outlier (MR-PRESSO) tests were conducted to identify outliers

contributing to pleiotropy (Verbanck et al., 2018). Outliers were

removed if identified, and the MR analysis was then re-conducted.

Additionally, a leave-one-out analysis was performed to detect

individual SNP outliers that might disproportionately influence

causal inference.

The potential mediating effect of blood metabolites was assessed

using a two-step MR approach. The direct effect of each exposure

on the outcome was estimated, including the effect of GM on GC

risk (a), the effect of GM on blood metabolites (b1), and the effect of
blood metabolites on GC risk (b2). The indirect effect was estimated

using the product of coefficients method (b1 × b2), with the

mediation proportion calculated as (b1 × b2)/a to quantify the

mediating effect’s magnitude.

All P-values of IVW results were corrected using the False

Discovery Rate (FDR) method. After FDR correction, P-values <

0.05 were considered strong causal associations, while exposures

losing significance post-correction were regarded as having potential
Frontiers in Cellular and Infection Microbiology 04
causal associations with the outcome (Shi et al., 2022). Data analyses

were performed utilizing the “Mendelian Randomization” (version

0.9.0), “TwoSampleMR” (version 0.6.0), “forestplot” (version 1.1.1),

and “MRPRESSO” (version 1.0) package in R Software 4.3.3.
3 Results

3.1 Genetic correlation between GM
and GC

After excluding confounding-related SNPs (Supplementary

Table 3), the number of SNPs utilized as instruments in the MR

analysis ranged from 3 to 22 for the 430 GM taxa and from 3 to 6 for

GC. The F-statistics ranged from 19.51 to 38.85 and from 990.65 to

11,306.03, respectively, indicating no evidence of weak instrument

bias. Detailed information on genetic instruments is provided in

Supplementary Tables 4, 5.

In assessing the causal impact of GM on GC, MR analysis

showed that two phyla, two classes, one order, and seven genera

were negatively correlated with GC, while two phyla, four families,

and one genus were positively correlated with GC (Figure 2,

Supplementary Table 6). Among these taxa, Butyrivibrio

OTU99_155 (odds ratio [OR], 95% confidence interval [CI]: 0.94,

0.91-0.98; P = 0.002) and Phascolarctobacterium OTU99_123 (OR,

95% CI: 0.87, 0.80-0.95; P = 0.002) had the strongest protective

effects against GC, while Ruminococcaceae OTU99_121 (OR, 95%

CI: 1.11, 1.02-1.22; P = 0.018) exhibited the most significant

association with increased GC risk.
FIGURE 2

Forest plot showing associations between gut microbiota taxa and gastric cancer risk. CI, confidence interval; IVW, inverse-variance weighted; OR,
odds ratios; SNPs, single nucleotide polymorphisms. “P_/C_/O_/F_/G_” represents phylum/class/order/family/genus, respectively.
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In the reverse MR analysis, evaluating the causal impact of GC

on GM revealed no significant associations between GC and any

GM taxa (Supplementary Table 7).
3.2 Genetically predicted blood
metabolites and GC risk

For blood metabolites, the number of SNPs utilized as

instruments in the MR analysis ranged from 6 to 81 in the

European population and from 6 to 90 in the East Asian

population. The F-statistics ranged from 30.34 to 6,183.51 in both

populations, indicating no evidence of weak instrument bias.

Detailed information on genetic instruments is provided in

Supplementary Table 8.

In assessing the causal impacts of blood metabolites on GC risk

in the European population, MR analysis identified 37 blood

metabolic traits negatively correlated with GC risk, with 31 traits

remaining significant after FDR correction (Supplementary

Table 9). A repeat analysis conducted in the East Asian

population revealed that 11 blood metabolic traits were

significantly associated with GC risk (Supplementary Table 10).

When combining results from both populations, seven metabolic

traits (Table 1) were consistently associated with reduced GC risk in

both European and East Asian populations. These included the

concentration of intermediate-density lipoprotein (IDL) particles

(OR, 95% CI: 0.85, 0.77-0.92; P < 0.001), total lipids in IDL (OR,

95% CI: 0.83, 0.76-0.92; P < 0.001), phospholipids in

medium low-density lipoprotein (LDL) (OR, 95% CI: 0.82,
Frontiers in Cellular and Infection Microbiology 05
0.74-0.91; P < 0.001), phospholipids in small LDL (OR, 95% CI:

0.83, 0.75-0.91; P < 0.001), free cholesterol in small LDL (OR, 95%

CI: 0.83, 0.75-0.91; P < 0.001), free cholesterol in medium LDL (OR,

95% CI: 0.84, 0.76-0.93; P = 0.001), and cholesterol esters in IDL

(OR, 95% CI: 0.87, 0.79-0.96; P = 0.005).
3.3 Genetic correlation between GM and
blood metabolites

Bidirectional MR analysis was conducted to assess correlations

between 19 GM taxa with causal associations to GC and 7 blood

metabolic traits. After FDR correction, IVW results identified

significant associations between 3 GM taxa and 5 metabolic traits.

Specifically, the Bacteroidia class/Bacteroidales order was positively

correlated with 5metabolic traits, while BacteroidesOTU97_27 showed

a negative correlation with free cholesterol in small LDL (Table 2,

Supplementary Table 11). In the reverse MR analysis, no significant

effect of metabolites on GM was observed (Supplementary Table 12).
3.4 Mediation analysis linking GM with GC
via blood metabolites

Mediation MR was performed to examine the mediating effect

of blood metabolites on the association between GM and GC.

Results indicated that total lipids in IDL, concentration of IDL

particles, phospholipids in medium LDL, phospholipids in small

LDL, and free cholesterol in small LDL exhibited indirect effects on
TABLE 1 Assessing the causal relationship between blood metabolites and gastric cancer risk.

Exposure Method nSNP OR (95%CI) P
Heterogeneity test Egger pleiotropy

Cochran’s Q P Intercept P

Phospholipids in small LDL IVW 71 0.83(0.75-0.91) 1.05E-4 67.751 0.554

MR Egger 71 0.85(0.73-0.98) 0.028 67.580 0.526 -0.002 0.681

Phospholipids in medium LDL IVW 68 0.82(0.74-0.91) 1.57E-4 72.457 0.303

MR Egger 68 0.81(0.70-0.95) 0.012 72.427 0.274 7.29E-4 0.870

Total lipids in IDL IVW 71 0.83(0.76-0.92) 1.67E-4 75.783 0.297

MR Egger 71 0.83(0.72-0.95) 0.011 75.765 0.269 0.001 0.899

Concentration of IDL particles IVW 68 0.85(0.77-0.92) 2.43E-4 68.276 0.434

MR Egger 68 0.83(0.73-0.96) 0.011 68.189 0.403 0.001 0.773

Free cholesterol in small LDL IVW 67 0.83(0.75-0.91) 1.61E-4 65.519 0.494

MR Egger 67 0.84(0.73-0.97) 0.022 65.428 0.462 -0.001 0.765

Free cholesterol in
medium LDL

IVW 70 0.84(0.76-0.93) 0.001 74.854 0.294

MR Egger 70 0.84(0.76-0.93) 0.041 74.566 0.273 -0.002 0.610

Cholesterol esters in IDL IVW 70 0.87(0.79-0.96) 0.005 74.683 0.299

MR Egger 70 0.83(0.72-0.96) 0.016 74.005 0.289 0.004 0.433
fro
CI, confidence interval; IVW, inverse variance-weighted; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; MR, Mendelian randomization; OR, odds ratio; SNPs, single
nucleotide polymorphisms.
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the relationship between Bacteroidia class/Bacteroidales order and

GC, with mediation proportions of 1.71%, 1.69%, 2.05%, 1.85%, and

1.99%, respectively. Free cholesterol in small LDL did not show a

mediating effect between Bacteroides OTU97_27 and GC (P =

0.100) (Table 3).
3.5 Sensitivity analyses

Sensitivity analyses, including Cochrane Q test and MR-Egger

test, revealed no evidence of horizontal pleiotropy or significant

heterogeneity in the MR analyses (Supplementary Table 13).

Additionally, the MR-PRESSO test identified no outliers or

pleiotropy (Supplementary Table 13). Scatter plots illustrating the

linear regression for each SNP provide a visual overview of the

association effects between SNPs and phenotypes (Supplementary

Figures 2-4). Funnel plots show that most MR analyses are free from

significant bias (Supplementary Figures 5-7). However, when GM
Frontiers in Cellular and Infection Microbiology 06
was used as the exposure variable, certain microbiota taxa displayed

uneven SNP distribution in the funnel plot, likely due to the limited

number of SNPs available for these taxa, suggesting the possibility

of small-sample bias. The forest plot illustrates the causal effect of

individual SNPs on the outcome (Supplementary Figures 8-10).

Leave-one-out analysis did not identify any anomalous SNPs

(Supplementary Figures 11-13). Collectively, these sensitivity

analyses support the statistical reliability of the analytical results

and enhance the credibility of the conclusions.
4 Discussion

In this large-scale MR study, we identified potential causal

relationships between 19 GM taxa and 7 blood metabolic traits

with GC and simultaneously explored their potential interactions.

Using a two-step MR method for mediation analysis, we found that

five blood metabolic traits may mediate the causal relationship
TABLE 2 Assessing the causal relationships between gut microbiota and blood metabolites.

Exposure Mediator Method nSNP OR (95%CI) P Cochran’s Q Q_P

C_Bacteroidia/O_Bacteroidales Total lipids in IDL IVW 5 1.04(1.01-1.07) 0.007 3.484 0.480

MR Egger 5 1.06(1.01-1.11) 0.096 2.624 0.453

Concentration of
IDL particles

IVW 5 1.04(1.01-1.07) 0.006 3.995 0.407

MR Egger 5 1.06(1.01-1.11) 0.092 3.041 0.385

Phospholipids in
medium LDL

IVW 5 1.04(1.01-1.08) 0.006 4.650 0.325

MR Egger 5 1.05(0.99-1.11) 0.182 4.524 0.210

Phospholipids in small LDL IVW 5 1.04(1.01-1.07) 0.004 3.907 0.419

MR Egger 5 1.04(0.99-1.10) 0.236 3.898 0.273

Free cholesterol in
small LDL

IVW 5 1.03(1.01-1.07) 0.012 2.398 0.663

MR Egger 5 1.04(0.99-1.08) 0.230 2.394 0.495

G_OTU97_27 (Bacteroides) Free cholesterol in
small LDL

IVW 13 0.98(0.97-1.00) 0.007 15.720 0.204

MR Egger 13 0.98(0.92-1.04) 0.500 15.702 0.153
fro
CI, confidence interval; IVW, inverse variance-weighted; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; MR, Mendelian randomization; OR, odds ratio; SNPs, single
nucleotide polymorphisms.
TABLE 3 Mediation analysis of the effect of gut microbiota on gastric cancer via blood metabolites.

Exposure Mediator
Total effect
Beta (95% CI)

Direct effect
Beta (95% CI)

Intermediary effect

Beta (95% CI) P

C_Bacteroidia/
O_Bacteroidales

Total lipids in IDL -0.286(-0.533, -0.038) -0.281(-0.528, -0.033) -0.005(-0.010, 0.000) 0.048

Concentration of IDL particles -0.286(-0.533, -0.038) -0.281(-0.529, -0.033) -0.005(0.010, 0.000) 0.048

Phospholipids in medium LDL -0.286(-0.533, -0.038) -0.280(-0.528, -0.032) -0.006(-0.012, 0.000) 0.045

Phospholipids in small LDL -0.286(-0.533, -0.038) -0.280(-0.528, -0.033) -0.005(-0.011, 0.000) 0.048

Free cholesterol in small LDL -0.286(-0.533, -0.038) -0.280(-0.528, -0.032) -0.006(-0.011, 0.000) 0.045

G_OTU97_27
(Bacteroides)

Free cholesterol in small LDL -0.059(-0.115, -0.002) -0.061(-0.118, -0.004) 0.002(-0.001, 0.005) 0.100
CI, confidence interval; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein.
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between GM and GC. These findings suggest that the protective

effects of the Bacteroidia class and Bacteroidales order in reducing

GC risk may be partially attributed to their influence on the

concentrations of five blood metabolites.

In our study, Bacteroides exhibited a negative correlation with

GC across taxonomic levels from phylum to genus, suggesting a

potential protective role for Bacteroides in GC patients. Its reduced

abundance may be associated with gastric carcinogenesis. An

observational study examining fecal samples from 22 healthy

participants and 20 GC patients reported findings consistent with

ours, revealing a significant decrease in Bacteroides abundance from

phylum to genus in GC patients compared to healthy controls

(Liang et al., 2019). Additionally, an MR study conducted in a

different population further supports our findings (Xie et al., 2023).

Bacteroides is a key commensal bacterium in the human gut and a

major producer of SCFAs, which play a crucial role in maintaining

immune homeostasis within the gastrointestinal tract (Raoul et al.,

2024; Wexler, 2007). In gastrointestinal neoplasms, both SCFA

levels and the abundance of SCFA-producing bacteria are

significantly reduced (Dong et al., 2023; Yu et al., 2024). Previous

studies have shown that direct supplementation of dietary fiber and

probiotics or the transplantation of fecal microbiota to alter GM

composition can enhance SCFA levels and suppress neoplasm

development (Dong et al., 2023; Yu et al., 2024).

Growing evidence suggests that SCFAs, as natural histone

deacetylase (HDAC) inhibitors produced by GM, play a critical

role across various immune cells. SCFAs can promote macrophage

differentiation and enhance antimicrobial activity by inhibiting

HDAC3 (Schulthess et al., 2019). They also induce IL-10

expression in T cells and enhance B cell activation, thus promoting

immune tolerance and maintaining gut microbial balance (Kim,

2023). Recent experimental studies have found that butyrate

regulates CD8+ T cell cytotoxicity through the G protein-coupled

receptor 109A (GPR109A) and homologous domain protein

homologous box (HOPX) pathway, resulting in enhanced anti-

cancer activity against tumor cells in the GC microenvironment

(Yu et al., 2024). Notably, butyrate and other SCFAs have direct

effects on the immune system and also indirectly suppress the

development of gastrointestinal tumors, including GC, by

preserving gut barrier function and preventing microbial dysbiosis

(Gou et al., 2024; Kaźmierczak-Siedlecka et al., 2022). These findings

suggest that increasing SCFA levels through dietary or probiotic

interventions may have significant potential in reducing GC risk

(Gou et al., 2024; Yu et al., 2024).

In our study, Butyrivibrio and Phascolarctobacterium genera

exhibited the most significant negative correlations with GC risk.

Both genera belong to the Firmicutes phylum and are producers of

SCFAs. Butyrivibrio, a beneficial gut bacterium, generates butyrate, a

metabolite linked to numerous health-promoting effects, including

the maintenance of the intestinal barrier, energy homeostasis, and

anti-inflammatory and antioxidant activities (Hodgkinson et al.,

2023; Zhang et al., 2021). A cross-sectional study reported a

significant increase in Butyrivibrio abundance in patients’ intestines

following subtotal gastrectomy for early-stage GC (Lin et al., 2018).

However, research on the association between Butyrivibrio
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abundance and GC risk remains limited, warranting further clinical

studies to elucidate their relationship. Phascolarctobacterium,

primarily utilizing succinate produced by Bacteroides as a

nutritional substrate, may interact with Bacteroides in the gut

(Ikeyama et al., 2020; Watanabe et al., 2012). We therefore

hypothesize that Phascolarctobacterium abundance may decrease

along with the reduction of Bacteroides in the gut of GC patients.

A recent study indeed found a significant reduction in

Phascolarctobacterium abundance among GC patients (Yu et al.,

2024), which indirectly supports its protective effect against GC.

The Ruminococcus genus includes both beneficial and harmful

species, and its impact on GC risk may vary across populations and

classification levels. Our findings indicate a positive correlation

between the Ruminococcaceae family and GC risk. A fecal

microbiota analysis of a European cohort similarly revealed a

marked increase in Ruminococcus abundance among GC patients

(Youssef et al., 2018). Conversely, studies analyzing fecal samples

from East Asian populations reported conflicting results (Lee et al.,

2024; Yu et al., 2024). Consequently, additional research with larger,

ethnically diverse samples is necessary to clarify the relationship

between Ruminococcus and GC risk.

Our MR study identified several blood metabolic traits with

causal effects on GC risk, providing insights from a genetic

perspective. For instance, elevated levels of phospholipids and free

cholesterol in small and medium LDL were associated with a

decreased GC risk. Similarly, higher levels of total lipids, cholesterol

esters in IDL, and increased IDL particle concentrations correlated

with reduced GC risk. Prior research has predominantly examined

traditional blood markers linked to lipoproteins and lipids in relation

to GC (Qiu et al., 2023). A meta-analysis summary has demonstrated

that serum high-density lipoprotein cholesterol (HDL-C) and total

cholesterol (TC) levels are negatively associated with GC risk, while

low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG)

levels show no association with GC risk (Xu S. et al., 2023). Our study

is the first to examine the causal relationship between circulating

lipoprotein subclasses and GC risk, providing new insights into the

intricate biochemical mechanisms underlying lipid metabolism

dysregulation in GC patients.

To date, no studies have directly linked the Bacteroidia class or the

Bacteroidales order to circulating lipoprotein subfractions. Previous

observational studies have confirmed associations between specific

GM taxa and subfractions of very-low-density lipoprotein (VLDL)

and HDL, offering some understanding of the GM’s influence on host

systemic metabolism (Vojinovic et al., 2019). The mechanisms by

which GMmay influence circulating metabolites remain incompletely

understood, but they likely involve GM’s role in bile acid and SCFA

metabolism (Ghazalpour et al., 2016). Prior studies suggest that

bacteria-derived bile acids entering the bloodstream can participate

in systemic lipid metabolism (Allayee and Hazen, 2015), while SCFAs

such as butyrate, acetate, and propionate may also influence lipid

biosynthesis (Allayee and Hazen, 2015). Through mediation analysis,

we further explored the potential mediating effects of circulating

metabolites on the association between GM and GC. Overall, the

mediation proportions of these blood metabolite categories in the

GM-GC relationship were relatively low. These modest mediation
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percentages likely reflect the complex and multifactorial nature of GC

etiology, suggesting that blood metabolites play a limited mediating

role in the relationship between GM and GC. Furthermore, the

similarity in mediation proportions observed among certain

metabolite categories may be attributed to shared lipid metabolism

pathways and the overlapping biological functions of these lipid

components, leading to parallel mediating effects on GC risk. From

the funnel plots in our study, we observed that when GM was used as

the exposure, the SNP distribution for certain taxa was uneven,

indicating potential heterogeneity in the results. As with most MR

studies on GM (Chen et al., 2023; Li et al., 2023; Zhou et al., 2023), this

heterogeneity may be due to the limited number of available IVs.

Consequently, the observed associations between these taxa and GC

cannot entirely rule out the influence of chance or unmeasured

confounding factors. Further research is therefore needed to

confirm the definitive causal relationships between these taxa and GC.

This study has several strengths. We utilized the most recent and

largest GWAS summary data available for blood metabolites and GC,

with over 136,000 participants for metabolite data, 476,116 European

participants, and 167,122 East Asian participants for GC data.

Furthermore, we validated associations between blood metabolites

and GC in both European and East Asian populations, ensuring

robust statistical power. This study is also the first to investigate

causal relationships among human GM, blood metabolites, and GC

from a genetic standpoint, minimizing the confounding effects

commonly encountered in observational studies.

Conversely, several potential limitations of this study should be

acknowledged. First, our analysis relied exclusively on GM data

from European populations. Given the substantial variability in GM

composition across populations and ethnic groups, the

generalizability of our findings may be restricted. Second, the GM

data were generated using 16S rRNA sequencing, which inherently

limits taxonomic resolution and hampers differentiation between

closely related bacterial species (Rühlemann et al., 2021).

Additionally, our study was restricted to bacterial taxa, while

other non-bacterial microbiome constituents, such as fungi,

viruses, archaea, and protozoa, are increasingly recognized for

their roles in gastrointestinal health and disease (Jaswal et al.,

2023). Expanding future analyses to encompass these groups

could provide a more comprehensive understanding of the

microbiome’s role in GC. Third, although we used a bidirectional

MR approach to evaluate causal relationships, the power of the

reverse MR analysis may be limited by the relatively low number of

GC cases, potentially impacting the robustness of these reverse

causal findings. Thus, we recommend cautious interpretation of

these results. Additionally, although our MR analysis detected no

pleiotropy, it cannot be entirely ruled out, especially as GM

influences luminal metabolites that may not persist in the

bloodstream or be detectable at all sampling points. Lastly, we

identified GM taxa with nominally significant associations with GC,

though these associations lost significance after applying multiple

correction tests. Given the complex interdependencies among GM

taxa (Faust and Raes, 2012), multiple testing corrections may be

overly conservative in high-dimensional datasets (Wang et al.,

2023c). Therefore, while not meeting the threshold for strict
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significance, the nominal associations identified should not be

dismissed entirely, particularly as prior studies have corroborated

that some of these taxa are associated with GC risk. Future studies

with larger sample sizes and refined correction techniques may help

to confirm these associations more robustly.
5 Conclusions

In summary, our MR analysis using genetic instruments

identified several blood metabolites with potential causal

associations to GC risk. Additionally, it provided suggestive

evidence for a causal relationship between GM and GC, as well as

the potential mediating role of blood metabolites in the GM-GC

association. While this exploratory study offers valuable insights

into the complex interactions between GM, blood metabolites, and

GC, further research is essential to validate these causal

relationships and elucidate the underlying mechanisms. Such

efforts could ultimately inform novel GC treatment strategies

centered on GM modulation and targeted metabolite interventions.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Author contributions

XL: Conceptualization, Data curation, Formal analysis, Funding

acquisition, Investigation, Methodology, Resources, Software,

Validation, Visualization, Writing – original draft, Writing –

review & editing. HL: Software, Validation, Writing – review &

editing. JP: Funding acquisition, Resources, Writing – review &

editing. JG: Conceptualization, Project administration, Supervision,

Writing – review & editing.
Funding

The author(s) declare financial support was received for the research,

authorship, and/or publication of this article. This research was funded

by Clinical Medical Technology Demonstration Base for Minimally

Invasive Treatment of Hepatobiliary and Pancreatic Diseases in

Huaihua, grant number 2018N2503.
Acknowledgments

The authors express their gratitude to Rühlemann MC et al. and

Karjalainen MK et al. and all investigators and participants from

BioBank Japan, FinnGen, and UK Biobank for sharing summary

statistics data.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1453286
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Li et al. 10.3389/fcimb.2024.1453286
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Cellular and Infection Microbiology 09
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fcimb.2024.1453286/

full#supplementary-material
References
Ahlawat, S., Asha,, and Sharma, K. K. (2021). Gut-organ axis: a microbial outreach
and networking. Lett. Appl. Microbiol. 72, 636–668. doi: 10.1111/lam.13333

Allayee, H., and Hazen, S. L. (2015). Contribution of gut bacteria to lipid levels:
another metabolic role for microbes? Circ. Res. 117, 750–754. doi: 10.1161/
circresaha.115.307409

Bowden, J., Davey Smith, G., and Burgess, S. (2015). Mendelian randomization with
invalid instruments: effect estimation and bias detection through Egger regression. Int.
J. Epidemiol. 44, 512–525. doi: 10.1093/ije/dyv080

Bowden, J., Davey Smith, G., Haycock, P. C., and Burgess, S. (2016). Consistent
estimation in Mendelian randomization with some invalid instruments using a
weighted median estimator. Genet. Epidemiol. 40, 304–314. doi: 10.1002/gepi.21965

Bowden, J., Del Greco, M. F., Minelli, C., Davey Smith, G., Sheehan, N., and
Thompson, J. (2017). A framework for the investigation of pleiotropy in two-sample
summary data Mendelian randomization. Stat. Med. 36, 1783–1802. doi: 10.1002/
sim.7221

Bowden, J., Del Greco, M. F., Minelli, C., Zhao, Q., Lawlor, D. A., Sheehan, N. A.,
et al. (2019). Improving the accuracy of two-sample summary-data Mendelian
randomization: moving beyond the NOME assumption. Int. J. Epidemiol. 48, 728–
742. doi: 10.1093/ije/dyy258

Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., et al.
(2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74, 229–263. doi: 10.3322/
caac.21834

Burgess, S., Butterworth, A., and Thompson, S. G. (2013). Mendelian randomization
analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37,
658–665. doi: 10.1002/gepi.21758

Burgess, S., Daniel, R. M., Butterworth, A. S., and Thompson, S. G. (2015a). Network
Mendelian randomization: using genetic variants as instrumental variables to
investigate mediation in causal pathways. Int. J. Epidemiol. 44, 484–495.
doi: 10.1093/ije/dyu176

Burgess, S., Scott, R. A., Timpson, N. J., Davey Smith, G., Thompson, S. G., and
Consortium, E.-I. (2015b). Using published data in Mendelian randomization: a
blueprint for efficient identification of causal risk factors. Eur. J. Epidemiol. 30, 543–
552. doi: 10.1007/s10654-015-0011-z

Burgess, S., Thompson, S. G., and Collaboration, C. C. G (2011). Avoiding bias from
weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 40, 755–764.
doi: 10.1093/ije/dyr036

Cao, K., Lyu, Y., Chen, J., He, C., Lyu, X., Zhang, Y., et al. (2023). Prognostic
implication of plasma metabolites in gastric cancer. Int. J. Mol. Sci. 24, 12774.
doi: 10.3390/ijms241612774

Chen, Z., Shi, W., Chen, K., Lu, C., Li, X., and Li, Q. (2023). Elucidating the causal
association between gut microbiota and intrahepatic cholangiocarcinoma through
Mendelian randomization analysis. Front. Microbiol. 14. doi: 10.3389/
fmicb.2023.1288525

Dong, Y., Zhang, K., Wei, J., Ding, Y., Wang, X., Hou, H., et al. (2023). Gut
microbiota-derived short-chain fatty acids regulate gastrointestinal tumor immunity: a
novel therapeutic strategy? Front. Immunol. 14. doi: 10.3389/fimmu.2023.1158200

Elsworth, B., Lyon, M., Alexander, T., Liu, Y., Matthews, P., Hallett, J., et al. (2020).
The MRC IEU OpenGWAS data infrastructure. bioRxiv 2020, 8.10.244293.
doi: 10.1101/2020.08.10.244293

Faust, K., and Raes, J. (2012). Microbial interactions: from networks to models. Nat.
Rev. Microbiol. 10, 538–550. doi: 10.1038/nrmicro2832

Ghazalpour, A., Cespedes, I., Bennett, B. J., and Allayee, H. (2016). Expanding role of
gut microbiota in lipid metabolism. Curr. Opin. Lipidol. 27, 141–147. doi: 10.1097/
mol.0000000000000278
Gou, H., Zeng, R., Lau, H. C. H., and Yu, J. (2024). Gut microbial metabolites:
Shaping future diagnosis and treatment against gastrointestinal cancer. Pharmacol. Res.
208, 107373. doi: 10.1016/j.phrs.2024.107373

Hartwig, F. P., Davey Smith, G., and Bowden, J. (2017). Robust inference in summary
data Mendelian randomization via the zero modal pleiotropy assumption. Int. J.
Epidemiol. 46, 1985–1998. doi: 10.1093/ije/dyx102

Hodgkinson, K., El Abbar, F., Dobranowski, P., Manoogian, J., Butcher, J., Figeys, D.,
et al. (2023). Butyrate’s role in human health and the current progress towards its
clinical application to treat gastrointestinal disease. Clin. Nutr. 42, 61–75. doi: 10.1016/
j.clnu.2022.10.024

Hsu, C. L., and Schnabl, B. (2023). The gut-liver axis and gut microbiota in health
and liver disease. Nat. Rev. Microbiol. 21, 719–733. doi: 10.1038/s41579-023-00904-3

Ikeyama, N., Murakami, T., Toyoda, A., Mori, H., Iino, T., Ohkuma, M., et al. (2020).
Microbial interaction between the succinate-utilizing bacterium Phascolarctobacterium
faecium and the gut commensal Bacteroides thetaiotaomicron. Microbiologyopen 9,
e1111. doi: 10.1002/mbo3.1111

Jaswal, K., Todd, O. A., and Behnsen, J. (2023). Neglected gut microbiome:
interactions of the non-bacterial gut microbiota with enteric pathogens. Gut
Microbes 15, 2226916. doi: 10.1080/19490976.2023.2226916

Kamat, M. A., Blackshaw, J. A., Young, R., Surendran, P., Burgess, S., Danesh, J., et al.
(2019). PhenoScanner V2: an expanded tool for searching human genotype-phenotype
associations. Bioinformatics 35, 4851–4853. doi: 10.1093/bioinformatics/btz469

Karjalainen, M. K., Karthikeyan, S., Oliver-Williams, C., Sliz, E., Allara, E., Fung, W.
T., et al. (2024). Genome-wide characterization of circulating metabolic biomarkers.
Nature 628, 130–138. doi: 10.1038/s41586-024-07148-y
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