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Background: Colorectal cancer (CRC) poses a global health threat, with the oral

microbiome increasingly implicated in its pathogenesis. This study leverages

Mendelian Randomization (MR) to explore causal links between oral microbiota

and CRC using data from the China National GeneBank and Biobank Japan. By

integrating multi-omics approaches, we aim to uncover mechanisms by which

the microbiome influences cellular metabolism and cancer development.

Methods: We analyzed microbiome profiles from 2017 tongue and 1915 saliva

samples, and GWAS data for 6692 CRC cases and 27178 controls. Significant

bacterial taxa were identified via MR analysis. Single-cell RNA sequencing and

enrichment analyses elucidated underlying pathways, and drug predictions

identified potential therapeutics.

Results: MR identified 19 bacterial taxa significantly associated with CRC. Protective

effects were observed in taxa like RUG343 and Streptococcus_umgs_2425, while

HOT-345_umgs_976 and W5053_sp000467935_mgs_712 increased CRC risk.

Single-cell RNA sequencing revealed key pathways, including JAK-STAT signaling

and tyrosine metabolism. Drug prediction highlighted potential therapeutics like

Menadione Sodium Bisulfite and Raloxifene.
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Conclusion: This study establishes the critical role of the oral microbiome in

colorectal cancer development, identifying specific microbial taxa linked to CRC

risk. Single-cell RNA sequencing and drug prediction analyses further elucidate

key pathways and potential therapeutics, providing novel insights and

personalized treatment strategies for CRC.
KEYWORDS

oral microbiome, colorectal cancer, Mendelian randomization, single-cell RNA
sequencing, therapeutic targets
1 Introduction

Colorectal cancer (CRC) remains one of the most prevalent

cancer types globally. According to the 2020 GLOBOCAN statistics,

CRC is ranked as the third most commonly diagnosed cancer

worldwide, accounting for 10% of cases, and the second leading

cause of cancer death, responsible for 9.4% of mortality (Sung et al.,

2021). Furthermore, projections suggest a significant increase of

approximately 3.2 million new CRC cases by 2040, posing

substantial challenges to global healthcare systems (Xi and Xu,

2021). The incidence of CRC is higher in highly developed nations

and is on the rise in middle- to low-income countries due to

Westernization (Kwong et al., 2018).

Over the past decade, dysbiosis in the oral microbiome has

enhanced our understanding of the pathogenesis of oral cancers and

other diseases in distant organs. Porphyromonas gingivalis, a

primary pathogen in periodontal disease (Mysak et al., 2014), is

also implicated in other cancers such as pancreatic cancer

(Öğrendik, 2017). Additionally, Candida albicans infections can

activate oncogenes, overexpress inflammatory signaling pathways,

and induce DNA damage, contributing to the progression of oral

cancer and the onset of gastric cancer (Zaura et al., 2014; Engku

Nasrullah Satiman et al., 2020). Studies have also indicated a link

between the oral microbiome and colorectal cancer (Collins et al.,

2011; Warren et al., 2013; Davey Smith and Hemani, 2014).

Based on these literary evidences, the oral microbiome may exert

a distal influence on the onset and progression of colorectal cancer.

We will employ Mendelian Randomization (MR), a powerful tool for

causal inference in epidemiology (Bowden and Holmes, 2019; Weith

and Beyer, 2023). Unlike conventional observational studies, MR as a

genetic variation-based method for causal inference, effectively

addresses the limitations of observational studies. Traditional

observational studies often struggle with confounding factors and

reverse causation, making accurate causal inference challenging. MR

uses genetic variants, such as single nucleotide polymorphisms

(SNPs), as instrumental variables. These variants are randomly

allocated according to Mendel’s laws, ensuring that they are

independent of confounding factors. This approach minimizes bias

inherent in traditional observational studies, enabling more accurate
02
identification of causal relationships between exposures and diseases,

thereby enhancing the reliability and validity of research finding

(Davey Smith and Hemani, 2014; Li et al., 2024). MR leverages

genetic variants as instrumental variables to assess the causal

relationship between the oral microbiome and colorectal cancer.

This approach will aid in determining the true role of the

oral microbiome in the development and progression of colorectal

cancer. Moreover, this study will integrate single-cell transcriptomics

and bulk RNA sequencing technologies to elucidate the underlying

mechanisms of the oral microbiome in CRC development

comprehensively (Yazar et al., 2022). Single-cell transcriptomics

offers high-resolution insights into cell types and functional

characteristics, facilitating a better understanding of the interactions

between the oral microbiome and colorectal cancer (Jiang et al.,

2024). In contrast, bulk RNA sequencing provides an overview of

gene expression, further validating and complementing the

findings from single-cell transcriptomics. Additionally, our

research will analyze and align potential therapeutic drugs to

explore new treatment strategies for colorectal cancer. By

combining the regulatory mechanisms of the oral microbiome

with existing drug databases, we can identify potential therapeutic

agents and further validate their efficacy and safety. Our aim is to

more accurately assess the relationship between the oral

microbiome and colorectal cancer, uncover the mechanisms

involved, and provide new insights and strategies for personalized

treatment of colorectal cancer.
2 Materials and methods

2.1 MR design

The interplay between the oral microbiome and colorectal

cancer is an area of growing scientific inquiry. There is increasing

evidence that suggests oral bacteria may influence the development

of colorectal cancer through mechanisms such as microbial

dysbiosis and systemic inflammation.

This study adheres to the STROBE-MR guidelines, which are

part of the broader Strengthening the Reporting of Observational
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Studies in Epidemiology (STROBE) initiative, to ensure high-

quality reporting of observational data.

To ensure the integrity of the Mendelian Randomization analysis,

the genetic variants serving as instrumental variables must satisfy

three critical assumptions: (1) the variants must show strong

associations with specific taxa of the oral microbiome, thereby

clearly defining the exposure variable in our study; (2) the variants

must be independent of unmeasured confounders that could

potentially bias the results, ensuring that observed associations are

not affected by factors such as lifestyle or genetic background; (3) the

impact of these variants on the risk of colorectal cancer must occur

exclusively through alterations in the oral microbiome, thus

excluding any alternative mediating pathways and emphasizing the

unique role of the microbiome (Emdin et al., 2017).
2.2 Data source

The exposure data for this study were sourced from CNGBdb

and encompassed comprehensive microbiome profiles from an East

Asian cohort. This dataset included 309 tongue dorsum

microbiomes with a total of 2,017 samples and 285 salivary

microbiomes comprising 1,915 samples (Liu et al., 2021).

Notably, these samples represent the first large-scale collection of

its kind, featuring high-depth whole genome sequencing. Rigorous

criteria were employed to ensure data quality, including a variant

calling rate of no less than 98%, a mean sequencing depth exceeding

20x, and the absence of population stratification as confirmed by

principle component analysis (PCA). Additionally, related

individuals were excluded based on pairwise identity by descent

estimates. The study further implemented strict selection protocols,

requiring a minimum mean depth of 8x, Hardy-Weinberg

equilibrium (HWE) values greater than 10^-5, and a genotype

calling rate above 98%. Following these stringent quality control

measures, a robust cohort of 2,984 participants was established,

comprised of 2,017 individuals with tongue dorsum samples and

1,915 with salivary samples. The dataset maintained for analysis

included approximately 10 million genetic variants, both common

and low-frequency, with a minor allele frequency (MAF) of at

least 0.5%.

In contrast, the genome-wide association study (GWAS) data

for colorectal cancer were obtained from the Biobank Japan (BBJ),

which included a sample size of 33,870, encompassing 6,692
Frontiers in Cellular and Infection Microbiology 03
patients and 27,178 controls from the general population. This

comprehensive data collection facilitated the exploration of genetic

correlations and potential causative links between the oral

microbiome and colorectal cancer within this population.

Detailed information could be viewed in Table 1.
2.3 Genetic instruments selection

Prior to data analysis, several criteria were established to

optimize the selection of instrumental variables. Firstly, a

significance threshold was set with p-values greater than 1x10^-5,

allowing a liberal inclusion of SNPs to enhance statistical power.

Linkage disequilibrium (LD) was calculated using reference

populations such as the 1000 Genomes European panel, selecting

SNPs with a low LD threshold (r^2 < 0.001, 10,000 kb) and

prioritizing those with lower p-values. Only SNPs with an effect

allele frequency (EAF) greater than 0.01 were retained, ensuring the

variants’ prevalence. Specific SNPs, including palindromic SNPs

and those with an F-statistic below 10, were excluded to avoid weak

instrumental variables and reduce bias, where the F-statistic is

calculated using the formula: F = (beta/se)^2 (Lv et al., 2023).

Finally, Steiger filtering was conducted to retain SNPs where the

exposure’s R-squared was greater than that of the outcome,

ensuring the instrumental variables did not exhibit reverse

causality (Hemani et al., 2017).
2.4 MR analysis

In our study, the inverse variance-weighted (IVW) method

(Burgess and Thompson, 2015) served as the primary analytical

technique for assessing the causal impacts of oral microbiome taxa

on colorectal cancer. This approach aggregates the effects associated

with all SNPs to produce a comprehensive estimate. To further

explore the robustness and validity of the instrumental variables,

additional Mendelian Randomization methods such as MR Egger

(Bowden et al., 2015), weighted median (Bowden et al., 2016), and

weighted mode (Hartwig et al., 2017) were implemented. To

address the possibility of reverse causation, positive MR findings

were subjected to the Steiger directionality test.

We applied multiple testing correction using the false discovery

rate (FDR) method to adjust p-values. This was performed
TABLE 1 This table summarizes the dataset characteristics for the oral microbiome and colorectal cancer studies.

Exposures/
Outcomes

Consortium Ethnicity Sample sizes N. SNPs Year

Oral microbiome CNGBdb East Asian 2948 Tongue N = 8426 2021

Tongue N = 2017 Saliva N = 8009

Saliva N= 1914

Colorectal cancer BioBank Japan East Asian 33870 7492477 2019
For the oral microbiome, data were sourced from the China National GeneBank (CNGBdb) and included 2,948 samples from East Asian individuals, further divided into 2,017 tongue and 1,914
saliva samples, with respective SNP counts. The colorectal cancer data, obtained from Biobank Japan (BBJ), included 33,870 East Asian participants, comprising 6,692 patients and 27,178
controls, with a total of 7,492,477 SNPs collected in 2019.
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separately for saliva and tongue microbiome data, and grouped by

Phylum, Class, and Order to enhance the detection of significant

associations while maintaining rigorous statistical standards. This

stratified approach allows for more refined detection of significant

associations, balancing rigorous statistical control with the

exploratory nature of our study to identify biologically

relevant signals.

To address the possibility of reverse causation, positive MR

findings were subjected to the Steiger directionality test.

To evaluate the presence of horizontal pleiotropy, our analysis

incorporated the MR-PRESSO and MR-Egger regression tests. Each

SNP underwent the MR-PRESSO (Verbanck et al., 2018) outlier test

to ascertain its significance concerning pleiotropic effects, with each

test generating a distinct p-value. The overarching pleiotropy was

then assessed using the MR-PRESSO global test, which recalibrated

the global test p-value following the sequential removal of SNPs,

starting with those displaying the lowest outlier test p-values. This

iterative removal continued until the global test p-value surpassed

the threshold of 0.05, suggesting an absence of significant

pleiotropic influences. The resulting set of SNPs, cleared of

pleiotropic biases, was utilized in the further stages of the MR

analysis. The Cochran Q analysis (Shen et al., 2022) is used to assess

heterogeneity among the instrumental variables (IVs) in a

Mendelian Randomization (MR) study. If the p-value from the

Cochran Q test is above 0.05, indicating no evidence of significant

heterogeneity, a fixed-effects inverse variance-weighted (IVW)

method is employed as the primary analytical approach.

Conversely, if significant heterogeneity is detected (p < 0.05), a

random-effects IVW method is utilized to accommodate the

variability among the IVs. is used to assess heterogeneity among

the instrumental variables (IVs) in a Mendelian Randomization

(MR) study. If the p-value from the Cochran Q test is above 0.05,

indicating no evidence of significant heterogeneity, a fixed-effects

inverse variance-weighted (IVW) method is employed as the

primary analytical approach. Conversely, if significant

heterogeneity is detected (p < 0.05), a random-effects IVW

method is utilized to accommodate the variability among the IVs.

In addressing the potential issue of reverse causation within our

Mendelian Randomization study, we subjected all positive findings

to rigorous scrutiny using the Steiger directionality test. This

methodological step ensures that the observed associations are

not a result of the outcome influencing the exposure, thereby

reinforcing the credibility of our causal inferences.

All statistical computations were conducted using R software

version 4.1.3 (R Foundation for Statistical Computing, Vienna,

Austria). The analyses employed the “TwoSampleMR” package

version 0.5.8, designed specifically for MR investigations.
2.5 SNP annotation

For the annotation of SNPs, we utilized the VarNote database

(Huang et al., 2020), which is distinguished by its innovative

indexing system and a parallel random-sweep searching

algorithm. This system enables VarNote to deliver substantial

enhancements in performance, accelerating processing by two to
Frontiers in Cellular and Infection Microbiology 04
three orders of magnitude compared to existing solutions. VarNote

supports both region-based and allele-specific annotations and

offers advanced functionalities for the flexible retrieval of detailed

annotations, making it well-suited for complex genomic analyses.

In our study, the parameters set for SNP annotation through

VarNote were tailored to optimize the relevance and precision of

the data. The annotations were specifically geared towards tissue/

cell type-specific epigenomes, with a focus on E127 (NHEK-

Epidermal Keratinocyte Primary Cells: CellLine). For the

prioritization of variants, prediction scores such as FitCons2,

FUNLDA, GenoNet, and GenoSkylinePlus were utilized. The

population reference was set to European (EUR), ensuring the

relevance of the data to the demographic of interest. Additionally,

a linkage disequilibrium (LD) cutoff of 0.8 and an LD window of

100KB were applied, with gene annotations referencing the

Ensembl database.
2.6 Gene function enrichment

To analyze the biological pathways and processes significantly

associated with our identified genes, we conducted an enrichment

analysis using the clusterProfiler R package (version 4.4.4) (Wu

et al., 2021). First, gene identifiers were accurately mapped to

human genes (Homo sapiens) using the org.Hs.eg.db package.

This step ensured the precision of our molecular data before

proceeding with the enrichment analysis. The clusterProfiler

facilitated a detailed exploration into the biological pathways that

were significantly enriched, focusing on those related to fatty acid

metabolism and their influence on blood glucose levels.

For a clear and intuitive presentation of these results, we utilized

the sangerbox tool to create enrichment circle plots, as detailed by

Shen et al. (2022) (Shen et al., 2022). These plots provided a visual

summary of the key pathways enriched in our study, offering a user-

friendly way to interpret the complex interactions and implications

of the identified genes. This method of visualization helped

emphasize the most pertinent biological processes and pathways

involved in our analysis.
2.7 Clustering and annotation of single-cell
RNA sequencing data

Single-cell analysis employed nine cancer samples from dataset

GSE205506 and four normal control samples from GSE231993, all

of which were downloaded from the Gene Expression Omnibus

(GEO) database (www.ncbi.nlm.nih.gov/geo).

To process a dataset of single-cell RNA sequencing from

colorectal cancer, the Read10X function is utilized to import the

data into an R environment, where it is subsequently converted into a

Seurat object using the “Seurat” package(version 4.3.0.1). Quality

control metrics are calculated by assessing the proportion of

mitochondrial and ribosomal genes, as well as erythrocyte content

within each cell. Cells with gene counts below 4000 or above 200, and

those with a mitochondrial gene proportion exceeding the allowable

threshold of 20% (pctMT = 20), are excluded to remove low-quality
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cells from the dataset. Subsequently, the NormalizeData function is

applied to standardize the merged dataset. For the analysis of single-

cell RNA sequencing (scRNA-seq) data, Principal Component

Analysis (PCA) is employed for dimensionality reduction and

clustering. Initially, the FindVariableFeatures function identifies the

top 2000 highly variable genes. Principal component scores from 1 to

8 are assigned for the dimensionality reduction step. Finally, t-

distributed Stochastic Neighbor Embedding (t-SNE) is generated to

visualize the resulting unsupervised cell clusters. To annotate the cell

type of each cluster, marker genes from previous studies are used. We

employed the `ggplot2` package(version 3.4.3)in R for heatmap

generation, a robust tool for data visualization. The `ggplot2`

package, based on The Grammar of Graphics, allows for complex,

layered visualizations.
2.8 Drug accessibility analysis
using DSigDB

The Drug Signatures Database (DSigDB) is an extensive repository

(Freshour et al., 2021) that contains 22,527 gene sets and 17,389

different compounds, covering 19,531 genes. It plays a crucial role in

bridging drugs and other chemical entities with their target genes. By

inputting genes relevant to specific diseases or those that show

significant expression changes under certain biological conditions,

DSigDB facilitates the prediction of potential small molecule drugs.

This prediction is based on the connections between the inputted genes
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and known drug target genes as well as drug sensitivity genes,

providing a valuable tool for understanding drug-gene interactions

and enhancing drug discovery processes.
2.9 Molecular docking

Obtain the three-dimensional crystal structure of the target

protein in PDB format through the RCSB PDB database (https://

www.rcsb.org/) and the two-dimensional structure of the active

component in SDF format through the Pubchem database (https://

pubchem.ncbi.nlm.nih.gov/), saving the small molecule in mol2

format. Use PyMOL software to preprocess the target protein by

removing solvents and ligands, etc. Use AutoDockTools-1.5.7

software to preprocess the target protein by removing water,

adding hydrogens, and calculating charges, and preprocess the

active component by adding hydrogens and setting torsion angles,

etc., before performing molecular docking and calculating the

binding energy (affinity). Visualization software: Rymol 2.6.0.
3 Results

3.1 Research workflow

Firstly, Figure 1 (By Figdraw) illustrates the steps of our study,

which commenced with data acquisition from the China National
FIGURE 1

The flowchart of Mendelian randomization analysis. IVW, inverse variance weighted; MR, Mendelian randomization; MVMR, multivariable Mendelian
randomization; SNPs, single nucleotide polymorphisms; IVs, instrumental variables; CNGBdb, China National GeneBank DataBase; BBJ, BioBank
Japan Project.
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GeneBank (CNGBdb). The data comprises oral microbiomes from

tongue samples (2,017 instances) and saliva samples (1,915

instances). Utilizing this data, we conducted two-sample

Mendelian Randomization (MR) analyses, identifying

instrumental variables (IVs) for colorectal cancer through 58,904

SNPs. This analysis confirmed 19 bacterial species positively

associated with colorectal cancer and further annotated 19 genes

related to these bacterial species. Subsequently, single-cell RNA

analysis and enrichment analyses were employed to investigate the

roles and interactions of these genes in the disease context. In the

final phase, potential therapeutics associated with these genes were

predicted using the Drug Signatures Database (DsigDB), and their

interactions with target proteins were examined through molecular

docking techniques, aiming to discover new methods for treating

colorectal cancer. Additionally, our study incorporates data on

6,692 colorectal cancer cases and 27,178 controls from the

BioBank Japan, enhancing the universality and accuracy of

our findings.
3.2 Causal impact of the oral microbiome
on colorectal cancer development

Figure 1 provides a comprehensive overview of the entire MR

analysis process. Prior to further analysis, SNPs affected by linkage

disequilibrium and those indicative of weak instrumental variables

were removed. Ultimately, 25,488 SNPs associated with the salivary

microbiome and 26,146 SNPs linked to the tongue microbiome were

retained for analysis—with a significance threshold of p < 1x10^-5.

The F-statistic ranged from 19.601 to 56.906, with all SNPs exceeding

the threshold of 10, thus indicating no evidence of weak instrument

bias (see Supplementary Table 1). Based on the inverse variance-

weighted (IVW) MR analysis with a significance threshold of p <

0.05, a total of 161 taxa were initially identified as having a causal

association with colorectal cancer. A comprehensive overview of

these results is visually represented in the volcano plot (see

Figure 2; Supplementary Table 2). Following FDR correction for
Frontiers in Cellular and Infection Microbiology 06
multiple testing, 19 taxa were ultimately determined to exhibit a

causal impact on colorectal cancer, including 11 taxa from tongue

samples and 9 from saliva samples. In saliva samples, the taxa

RUG343 and Streptococcus_umgs_2425 demonstrated protective

effects against colorectal cancer, with odds ratios (ORs) of 0.817

(95% confidence interval [CI]: 0.704–0.949; p = 0.008) and 0.797

(95% CI: 0.700–0.909; p = 0.001), respectively. Conversely, taxa such

as HOT-345_umgs_976 and W5053_sp000467935_mgs_712 were

associated with an increased likelihood of negative health outcomes,

with ORs of 1.210 (95% CI: 1.066–1.373; p = 0.003) and 1.183 (95%

CI: 1.007–1.391; p = 0.041), respectively. Scatter plots illustrating the

associations between individual SNPs and the outcomes for these taxa

can be found in Figure 3, while a forest plot detailing the MR analysis

results for colorectal cancer risk across different taxa is presented in

Figure 4. In tongue samples, taxa such as Campylobacter_

A_umgs_3358 and HOT-345_umgs_3064 showed significant

negative associations with beneficial health outcomes, with ORs of

1.614 (95% CI: 1.217–2.141; p = 0.001) and 1.242 (95% CI: 1.063–

1.451; p = 0.006), respectively. In contrast, increased abundance of the

Anaerovoracaceae family was negatively correlated with health,

exhibiting an OR of 0.759 (95% CI: 0.625–0.922; p = 0.005).

Corresponding scatter plots showing the relationships between each

SNP and the outcome for these taxa are displayed in Figure 5, with a

forest plot summarizing the MR results and ORs for colorectal cancer

across different taxa in Figure 6. For each positive result, the

corresponding funnel plots and forest plots can be found in

Supplementary Files 1, 2, respectively. Except for s:unclassified_

mgs_2717, s:Capnocytophaga_sputigena_mgs_3567, and s:

unclassified_mgs_389, the MR-Egger regression intercepts

demonstrated no significant deviations from zero, indicating a lack

of horizontal pleiotropy across most taxa (all intercepts > p 0.05), as

detailed in Supplementary Table 3. The MR-PRESSO analysis further

supported these findings, with all examined taxa showing no evidence

of outliers, affirming the robustness of the data (refer to

Supplementary Table 4). Moreover, Cochran’s Q test highlighted

some heterogeneity specifically for s:mgs_389, s:mgs_2717, and s:

Capnocytophaga_sputigena_mgs_3567, with Q-values falling below
FIGURE 2

(A) Volcano plot illustrating the effect of single nucleotide polymorphisms (SNPs) on various taxa in saliva samples. Points are color-coded to
indicate statistical significance: significant positive associations are shown in blue, significant negative associations in red, and non-significant
associations in gray. Labeled taxa represent those with the most significant associations. (B) Volcano plot illustrating the effect of single nucleotide
polymorphisms (SNPs) on various taxa in tongue a samples. Points are color-coded to indicate statistical significance: significant positive associations
are shown in blue, significant negative associations in red, and non-significant associations in gray. Labeled taxa represent those with the most
significant associations.
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0.05, suggesting variability in the effects across these taxa (see

Supplementary Table 5). The leave-one-out analysis revealed

consistent causal estimates across the different oral microbiome

taxa, with no single SNP disproportionately influencing the overall

results related to colorectal cancer (details in Supplementary Table 6;

Supplementary File 1). The Steiger directionality test also

found no evidence of a causal relationship between these

diseases and the specific oral microbial taxa, as documented in

Supplementary Table 7.
3.3 Genes and functionality

The correspondence between SNPs and genes, along with their

functions, is detailed in Supplementary Table 8. Figure 7B presents

a circular plot derived from the enrichment analysis of gene

interactions with biological pathways. This figure highlights the

associations of key genes (e.g., BCL2, AOX1, CBX4, PHACTR3)

with multiple biological pathways. Each color in the plot represents

a different biological pathway, and the connections between genes

and pathways illustrate the involvement of these genes in specific

pathways (details in Supplementary Table 9). The JAK-STAT

signaling pathway is linked to all four genes, suggesting its central

role in the biological processes regulated by these genes. Notably,
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the connections between BCL2 and AOX1 with the JAK-STAT

pathway are particularly significant, indicating that these genes

might play roles in cellular signaling via this pathway. The apoptosis

pathways are primarily associated with BCL2 and PHACTR3,

consistent with BCL2’s function as a major anti-apoptotic protein,

while the involvement of PHACTR3 might suggest novel regulatory

mechanisms. Tyrosine metabolism shows a strong association with

AOX1, reflecting its role in amino acid metabolism. Additionally,

both CBX4 and PHACTR3 also exhibit associations with the

tyrosine metabolism pathway, albeit to a lesser extent. Niacin and

nicotinamide metabolism, as well as tryptophan metabolism, are

enriched in AOX1 and PHACTR3, indicating that these metabolic

pathways might play significant roles in regulating the functions of

these genes. Furthermore, the plot reveals enrichment for pathways

such as protein phosphatase binding, phosphatase binding, SUMO

ligase activity, death domain binding, and SUMO binding. Notably,

CBX4 is significantly enriched in SUMO-related pathways,

potentially elucidating its role in protein modification and signal

transduction. Overall, this enrichment diagram effectively reveals

the participation of oral microbiome-associated genes in multiple

key biological pathways, providing clues for further research into

the roles of these genes in biological processes. These results

emphasize the complex interplay of intracellular signaling and

metabolic pathways in cellular functionality.
FIGURE 4

This forest plot displays the effects of SNPs on taxa within tongue samples, showing detailed ORs and 95% CIs. It identifies both positive and
negative associations that these genetic variations have with health outcomes.
FIGURE 3

This forest plot illustrates the odds ratios (ORs) and 95% confidence intervals (CIs) for the impact of single nucleotide polymorphisms (SNPs) on
various taxa within saliva samples, highlighting the statistically significant associations that affect health outcomes.
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3.4 Single-cell global analysis results

Initially, quality control was performed on the single-cell data,

with Figure 7A depicting the distribution of cells across several QC

parameters, including RNA feature numbers (Feature_RNA),

ribonucleic acid molecule counts (nCount_RNA), mitochondrial
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gene expression ratio (percent.mt), and hemoglobin gene

expression ratio (percent.HB). Violin plots illustrate significant

differences among various cell types in these parameters, revealing

heterogeneity and cell-specific characteristics within the samples.

Subsequently, a t-SNE technique provided a two-dimensional

spatial distribution of cell samples, differentiating between tumor
FIGURE 5

(A) Scatter plot depicting the relationship between single nucleotide polymorphisms (SNPs) effect on the family Helcococcaceae and their
corresponding effect on colorectal cancer. (B) Scatter plot depicting the relationship between single nucleotide polymorphisms (SNPs) effect on the
genus RUG343 and their corresponding effect on colorectal cancer. (C) Scatter plot depicting the relationship between single nucleotide
polymorphisms (SNPs) effect on the genus g__Lachnospiraceae and their corresponding effect on colorectal cancer. (D) Scatter plot depicting the
relationship between single nucleotide polymorphisms (SNPs) effect on the order Staphylococcales and their corresponding effect on colorectal
cancer. (E) Scatter plot depicting the relationship between single nucleotide polymorphisms (SNPs) effect on the species mgs_389 and their
corresponding effect on colorectal cancer. (F) Scatter plot depicting the relationship between single nucleotide polymorphisms (SNPs) effect on the
species mgs_912 and their corresponding effect on colorectal cancer. (G) Scatter plot depicting the relationship between single nucleotide
polymorphisms (SNPs) effect on the species mgs_976 and their corresponding effect on colorectal cancer. (H) Scatter plot depicting the relationship
between single nucleotide polymorphisms (SNPs) effect on the species mgs_2203 and their corresponding effect on colorectal cancer. (I) Scatter
plot depicting the relationship between single nucleotide polymorphisms (SNPs) effect on the species mgs_2425 and their corresponding effect on
colorectal cancer. (J) Scatter plot depicting the relationship between single nucleotide polymorphisms (SNPs) effect on the species mgs_2596 and
their corresponding effect on colorectal cancer. (K) Scatter plot depicting the relationship between single nucleotide polymorphisms (SNPs) effect
on the species W5053_sp000467935_mgs_712 and their corresponding effect on colorectal cancer.
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and non-tumor cells. Figure 7B offers an intuitive view of the cellular

composition within the tumor microenvironment, displaying

fundamental differences in cell components between tumors and

surrounding tissues. Clustering of colorectal cancer single-cell data

using the UMAP algorithm identified eight cell populations

(Figure 7C), including T cells, B cells, plasma cells, epithelial cells,

endothelial cells, fibroblasts, smooth muscle cells, and mast cells. This

detailed clustering underscores the diversity of complex cell types and
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states at the single-cell level. Figure 7D presents a three-dimensional

t-SNE scatter plot labeling various cell types, such as T cells, B cells,

plasma cells, epithelial cells, and endothelial cells. This plot

demonstrates the spatial relationships among cell types within the

samples, providing a foundation for further analysis of intercellular

interactions. A pie chart (Figure 7E) further subdivides the cell

distribution in UMAP, where each segment represents a specific

cell subtype, aiding in the identification of cellular compositions and
FIGURE 6

(A) Scatter plot depicting the relationship between single nucleotide polymorphisms (SNPs) effect on the family Anaerovoracaceae and their
corresponding effect on colorectal cancer. (B) Scatter plot depicting the relationship between single nucleotide polymorphisms (SNPs) effect on the
family Peptostreptococcaceae and their corresponding effect on colorectal cancer. (C) Scatter plot depicting the relationship between single
nucleotide polymorphisms (SNPs) effect on the species Capnocytophaga sputigena_mgs_3567 and their corresponding effect on colorectal cancer.
(D) Scatter plot depicting the relationship between single nucleotide polymorphisms (SNPs) effect on the species mgs_2717 and their corresponding
effect on colorectal cancer. (E) Scatter plot depicting the relationship between single nucleotide polymorphisms (SNPs) effect on the species
mgs_2866 and their corresponding effect on colorectal cancer. (F) Scatter plot depicting the relationship between single nucleotide polymorphisms
(SNPs) effect on the species mgs_3064 and their corresponding effect on colorectal cancer. (G) Scatter plot depicting the relationship between
single nucleotide polymorphisms (SNPs) effect on the species mgs_3358 and their corresponding effect on colorectal cancer. (H) Scatter plot
depicting the relationship between single nucleotide polymorphisms (SNPs) effect on the species Prevotella nanceiensis_mgs_2634 and their
corresponding effect on colorectal cancer.
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functional regions within the microenvironment. A stacked bar graph

(Figure 7F) shows the proportions of cell types across different patient

samples, revealing the relative abundance of cell types within each

sample and comparing cell composition under different samples or

treatment conditions. Figure 7G, through a scatter plot, displays the

expression of key genes across cell types. The size and color depth of

the dots reflect the abundance and statistical significance of gene

expression, providing molecular-level evidence for understanding the

functional states and interactions of various cell types. A critical

heatmap (Figure 8A) illustrates the expression of selected genes

across different cell types. This heatmap depicts the variance in

gene expression levels among cell groups, highlighting specific

genes like NFIB that are highly expressed in endothelial cells. In

summary, these results not only reveal cellular heterogeneity within

the tumor microenvironment but also provide valuable data
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resources for further studying the cellular dynamics and

interactions during tumor progression. These findings are

significant for deepening the understanding of tumor biological

mechanisms and developing targeted therapeutic strategies.
3.5 Single-cell analysis of endothelial
cell populations

We utilized Mendelian Randomization (MR) to infer specific

gene sets from SNP data, subsequently assessing their expression at

the single-cell level through various scoring metrics, including

AUCell, UCell, singscore, ssgsea, and Add Scoring. Figure 8C

illustrates the gene set scoring across various cell types—including

mast cells, smoothmuscle cells, fibroblasts, dendritic cells, endothelial
FIGURE 7

(A) Quality control metrics distribution for CT and PR samples showing nFeature_RNA, nCount_RNA, percent.mt, and percent.HB. (B) t-SNE
visualization displaying single-cell sample origin, with blue indicating non-malignant cells and purple indicating tumor cells. (C) UMAP plot displaying
20 distinct clusters from single-cell RNA sequencing, each identified by a unique color. (D) Three-dimensional t-SNE plot illustrating the distribution
of various cell types identified in the single-cell RNA sequencing data. (E) UMAP diagram showing diverse cell types and their distribution across
different patient samples, delineated by color coding for cell types and an outer ring for sample origins. (F) Stacked bar chart representing the cell
type composition across different patient samples (CT1-CT4, PR1-PR9). Each color in the chart corresponds to a specific cell type such as T cells, B
cells, plasma cells, among others, illustrating their relative abundance in each sample. (G) Dot plot showing the expression levels of key markers
across various cell types identified in the samples. Dot size indicates the percentage of cells expressing the gene (pct.exp), and color intensity
reflects the average expression level (avg.exp).
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FIGURE 8

(A) Heatmap displaying the expression levels of selected genes across various cell types. (B) Chord diagram illustrating the functional pathways
associated with selected genes. (C) Dot plot illustrating the scoring of a gene set across various cell types, based on different scoring metrics such as
AUCell, UCell, singscore, ssgsea, and Add Scoring. Dot size indicates the percent of cells expressing the gene, and color scale reflects the scoring
intensity. (D) t-SNE plots highlighting the expression of marker genes (HEY1, CD36, ACKR1) used for subtyping endothelial cells in single-cell data.
Cells expressing each gene are highlighted in red, showing their distribution within the endothelial cell subpopulations. (E) UMAP plot displaying
epithelial cell clusters across two sample groups, CT and PR. Each cluster is distinguished by a unique color, representing 11 distinct cell populations.
(F) UMAP visualization of endothelial cell subtypes, categorized into arteries ECs (blue), veins ECs (light blue), and capillaries ECs (orange),
demonstrating the distinct spatial distribution of these subtypes. (G) Feature plot of the NFIB gene expression across the endothelial cell subtypes in
a t-SNE plot. Each dot represents a cell, with color intensity indicating levels of NFIB expression in arteries ECs, veins ECs, and capillaries ECs.
(H) Stacked bar chart showing the distribution of endothelial cell subtypes (arteries ECs, veins ECs, capillaries ECs) across different patient samples,
displayed as CT1 to CT4 and PR1 to PR9. (I) Density plot representing the pseudotime trajectory analysis of endothelial cell subtypes, illustrating the
developmental progression of arteries ECs, veins ECs, and capillaries ECs. (J) Bar chart displaying drugs predicted to target specific genes identified
through Mendelian randomization analysis from endothelial cell subtypes, with the bar length indicating the strength of the predicted association
based on the analysis.
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cells, epithelial cells, plasma cells, B cells, and T cells—demonstrating

the percentage and average intensity of gene expression within

different cell types. Notably, endothelial cells exhibited significant

gene expression activity, underscoring their importance in our study.

Further subclassification of endothelial cells distinguished between

arterial endothelial cells (Arteries ECs), venous endothelial cells

(Veins ECs), and capillary endothelial cells (Capillaries ECs).

Figures 8E, F display the UMAP analysis utilized to differentiate

these endothelial subpopulations. These diagrams, through color

coding, provide an in-depth view of the spatial distribution of

various subgroups, offering insights into the diversity of cell types

and the complexity of the microenvironment. Classification was
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based on spatial distributions derived from t-SNE methodology,

where differential expression of specific genes such as HEY1, CD36,

and ACKR1 among the endothelial subtypes served as the basis for

classification (Figure 8D). A feature plot of the NFIB gene was

employed to elucidate its expression patterns, providing clues to its

functional roles across different cell types. Figure 8H presents a

stacked bar graph showing the proportions of endothelial cell

subtypes across different patient samples, facilitating comparisons

of cellular composition among samples. A density plot (Figure 8I)

illustrates the pseudotemporal analysis results of the endothelial cell

subgroups, displaying the distribution of arterial endothelial cells,

venous endothelial cells, and capillary endothelial cells along the
TABLE 2 This table presents molecular docking results showing the interaction of various drugs with specific targets.

Target PDB ID Pubchem iD Binding energy Drug

BCL2 1G5M 164448 −3.56 Monoisoamyl-2,3-dimercaptosuccinate

BCL2 1GJH 164448 −3.26 Monoisoamyl-2,3-dimercaptosuccinate

CDK20 – 164448 −2.17 Monoisoamyl-2,3-dimercaptosuccinate

BCL2 1G5M 5035 −7.91 Menadione sodium bisulfite

BCL2 1GJH 5035 −10.11 Menadione sodium bisulfite

AOX1 8EMT 5035 −4.08 Menadione sodium bisulfite
It includes the Protein Data Bank (PDB) ID, PubChem ID of the drugs, and their binding energy values indicating the strength of interaction. The table lists multiple interactions for BCL2,
CDK20, and AOX1 targets, with corresponding drugs such as Monoisamyl-2,3-dimercaptosuccinate and Menadione sodium bisulfite, highlighting potential therapeutic implications.
FIGURE 9

(A) BCL2 (PDB ID: 1G5M) docked with Monoisopropyl-2,3-dimercaptosuccinate. (B) BCL2 (PDB ID: 1GJH) docked with Monoisopropyl-2,3-
dimercaptosuccinate. (C) CDK20 (no PDB ID) docked with Monoisopropyl-2,3-dimercaptosuccinate. (D) BCL2 (PDB ID: 1G5M) docked with Menadione
sodium bisulfite. (E) BCL2 (PDB ID: 1GJH) docked with Menadione sodium bisulfite. (F) AOX1 (PDB ID: 8EMT) docked with Menadione sodium bisulfite.
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predicted developmental timeline. Arterial endothelial cells displayed

a density peak at earlier hypothetical time points, while capillary

endothelial cells showed peaks at later time points, suggesting that

these cell types may undergo different developmental paths and

timings. The distribution of venous endothelial cells was relatively

uniform, indicating a steady presence throughout the time series.

Through such analyses, we observed the dynamic changes of different

endothelial cell types during tumor progression, revealing their

potential developmental trajectories and functional evolution. This

provides vital insights into how endothelial cells adapt and evolve

within the tumor microenvironment.
3.6 Drug prediction

In our study, Mendelian Randomization was applied in

conjunction with the Drug Signatures Database (DsigDB) to

predict potential therapeutics targeting genes identified from top

SNPs. The following drugs demonstrated significant associations with

specific genes: Menadione Sodium Bisulfite (p-value = 3.91×10^-4,

OR = 80.94), predicted by genes BCL2 and AOX1; Monosomy1-2-3-

dimercaptosuccinate (p-value = 1.74×10^-4, OR = 71.12), associated

with genes BCL2 and CDK20; Raloxifene (p-value = 1.01×10^-4,

OR = 47.86), also predicted by BCL2 and AOX1; MehP (p-value =

0.00187, OR = 35.45) and D-Sorbitol (p-value = 0.00400, OR =

23.87), both linked to BCL2 and AOX1; Trichloroethylene (p-value =

0.00265, OR = 29.64), affecting NFIB and BCL2; Menadione (p-value

= 0.00285, OR = 28.55), impacting BCL2 and CPEB3; Thymidine (p-

value = 0.00491, OR = 21.45), associated with BCL2 and CDK20;

Acetaldehyde (p-value = 0.00544, OR = 20.32) and Ethene (p-value =

0.00727, OR = 17.42), the former related to BCL2 and AOX1, and the

latter to RIT2 and BCL2. These findings provide robust molecular

evidence for drug development targeting specific cell subtypes within

the tumor microenvironment, emphasizing the importance of gene-

targeted drug screening.
3.7 Molecular docking

In this study, we conducted a detailed analysis of the binding

affinities and interactions between six different small molecules and

their target proteins using molecular docking methods (Figures 9A–

F). We observed that the binding affinities of BCL2 protein with two

different ligands (PDB IDs: 1G5M and 1GJH) were -7.91 kcal/mol

and -10.11 kcal/mol, respectively, indicating strong binding

capabilities. This robust affinity is attributed to multipoint

hydrogen bonding and van der Waals interactions with key

residues such as Gly181, Ser184, Arg143, and Thr141, ensuring

efficient and stable ligand binding at the active site. In contrast, the

binding affinity with CDK20 protein was lower (-2.17 kcal/mol),

primarily due to relatively weaker interactions with residues Lys33

and Ala35. Additionally, the binding affinity of AOX1 protein with

its ligand was -4.08 kcal/mol, characterized by moderate binding

strength through hydrogen bonds with the residue Arg400. Detailed

analyses of these binding characteristics and interactions have been

visualized using Pymol 2.6.0 software and are thoroughly
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documented in the Supplementary Files of the study

(Supplementary File 4; Table 2), providing a crucial molecular

basis for future drug development and optimization.
4 Discussion

The investigation into the interrelationship between the oral

microbiome and colorectal cancer reveals significant gaps in

existing research. Compared to the extensively studied gut

microbiome, research on the oral microbiome is relatively scarce.

This disparity in research not only limits our comprehensive

understanding of the relationship but also hinders the discovery

of potential preventative and therapeutic approaches. Traditional

microbiome studies, reliant on sequencing technologies, face

limitations due to technological and sampling constraints,

resulting in significant heterogeneity in findings. Our research

aims to explore the causal relationship between the oral

microbiome and colorectal cancer, emphasizing the role of oral

microbes in the oncogenic process. Moreover, our study delves

deeper into colorectal cancer at the single-cell level, identifying

significant expression of oral microbiome-related genes in

colorectal cancer cells, which led to drug prediction and

molecular docking analysis. This innovative approach enhances

the robustness of our results and advances precise inference of the

causal relationship between microbiomes and colorectal cancer.

Utilizing summary statistics from GWAS meta-analyses of oral

microbiomes and colorectal cancer provided by the MiBioGen

Consortium, we conducted a two-sample MR analysis to evaluate

their causal relationship. The bidirectional MR analysis aims to

comprehensively understand the complex interactions between the

oral microbiome and colorectal cancer. This method not only

assesses how the microbiome influences the onset of colorectal

cancer but also systematically considers reverse causality, thereby

revealing potential changes in the oral microbiome induced by

colorectal cancer. The study highlights that controlling for

confounders through common genetic factors ensures reliable

causal inference.

In our study, we identified various oral microbial taxa and

analyzed their correlation with colorectal cancer (CRC). By

examining saliva and tongue samples, we found that the

enrichment of Absconditabacterales (in saliva), Campylobacter_A

(in tongue), Prevotella (in tongue), and Catonella (in saliva) is

associated with an increased risk of CRC, suggesting these microbes

may act as risk factors. Conversely, the presence of Capnocytophaga,

Gemella (in both saliva and tongue samples), Anaerovoracaceae (in

tongue), Peptostreptococcaceae (in tongue), Streptococcus,

Centipeda, and Lachnospiraceae (in saliva) appears to exert a

protective effect, potentially inhibiting cancer development. These

findings not only enhance our understanding of the role of oral

microbial diversity in the onset of CRC but may also provide a

theoretical basis for developing microbiome-based preventive or

therapeutic strategies. Campylobacter_A is a principal cause of

bacterial colon infections globally and has shown a robust capacity

to survive under various stressful conditions by interacting with

certain intestinal pathogens (Kim et al., 2020). Studies indicate that
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Campylobacter jejuni promotes the occurrence of colorectal tumors

through multiple mechanisms. Notably, it produces a genotoxin

known as cytolethal distending toxin (CDT), which has been

proven to cause DNA damage. Animal model studies suggest that

introducing C. jejuni into a germ-free environment can significantly

alter the gut microbiota and enhance tumor formation, indicating

complex interactions between this bacterium, the gut microbiome,

and the carcinogenic process (He et al., 2019). Further human clinical

data and animal studies reveal higher abundance of Campylobacter

species, including C. jejuni, in CRC tissues compared to normal

tissues, suggesting that the presence of Campylobacter may influence

the development of CRC by altering microbial community structures

(Costa et al., 2022). Additionally, a comprehensive review of the

mucosal microbiota of CRC patients found that Campylobacter and

several other bacteria are more common in cancerous tissues

compared to healthy controls, supporting the hypothesis that

Campylobacter and specific bacteria are related to CRC pathology

(Butzler, 1982). In a pioneering study conducted in Iran, researchers

analyzed the overall microbiome of saliva and fecal samples from

CRC patients and healthy controls. The study identified significant

changes in the abundance of certain bacterial genera, including

Catonella, potentially linking these bacteria to CRC development.

Furthermore, differences in microbial diversity between the saliva

samples of healthy controls and CRC patients suggest that oral

microbiota may be relevant for the early detection and prevention

of CRC (Rezasoltani et al., 2022). Research has also highlighted that

Prevotella abundance is significantly higher in Indian populations

compared to Western populations, suggesting a relationship with

dietary habits and gut health status (Vishnu Prasoodanan et al., 2021).

Moreover, the presence of Prevotella in CRC patients is linked to

prognosis, with specific species’ relative abundance in pre-operative

fecal samples correlating with clinical outcomes, serving as potential

prognostic biomarkers (Huh et al., 2022). Further, Prevotella plays a

role in modulating immune responses, with studies showing a

positive correlation between Prevotella and the expression of

intestinal inflammatory markers like IL-9, which may promote the

pathological process of CRC (Niccolai et al., 2020). Despite these

microbial groups showing potential to increase the risk of CRC, our

research has also revealed other taxa that may inhibit the progression

of colorectal cancer. The Anaerovoracaceae family, for instance, may

influence the response to cancer immunotherapy by affecting T-cell

function (Blumenberg et al., 2021). These preliminary findings

suggest that the gut microbiome, including the Anaerovoracaceae,

could play a role in the tumor immune environment, thereby

impacting the efficacy of immunotherapies, consistent with our

results. Lachnospiraceae may play a significant role in the

development of CRC. The negative correlation of this family with

CRC risk offers critical insights into preventing and treating CRC by

regulating the gut microbiota and controlling inflammatory factors

(Ma et al., 2024). Specifically, bacteria from the Lachnospiraceae

family are thought to reduce colorectal tumor formation by altering

the tumor immune microenvironment. For instance, studies suggest

that fiber-rich Lachnospiraceae may reduce CRC incidence by

modulating immune responses (Almeida et al., 2021). Additionally,

the metabolic products of Lachnospiraceae bacteria, particularly

short-chain fatty acids (SCFAs) like butyrate, play roles in gut
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health and cancer prevention. SCFAs promote the health of colon

epithelial cells and have anti-inflammatory effects, which are crucial

in the anticancer process (Coker et al., 2022). Existing research also

shows that the Streptococcus genus is associated with the

development and progression of CRC (Wang et al., 2021; Quaglio

et al., 2022). Findings reveal geographical and racial differences in the

association rates between S. bovis/gallolyticus and colorectal tumors.

Additionally, the link between S. bovis/gallolyticus-related colonic

lesions and bloodstream infections (bacteremia/endocarditis)

suggests a unique pathway for these bacteria to enter the

bloodstream via the portal venous system (Alozie et al., 2015). In a

prospective study targeting low-income and African-American

populations, analyzing the oral microbiome and subsequent CRC

risk revealed that several bacterial taxa, including the Streptococcus

genus, were associated with reduced CRC risk, although these

associations were not significant after multiple testing corrections

(de Almeida et al., 2018).

To better understand the biological functions of these genes in

disease, we conducted GO and KEGG analyses. We discovered that

the JAK-STAT signaling pathway, an essential intracellular

signaling system, is ubiquitous across a variety of organisms, from

humans to fruit flies. This pathway is primarily initiated by

extracellular signals such as cytokines and growth factors, which

transmit signals through receptors on the cell membrane to the

intracellular Janus kinase (JAK), subsequently triggering the

phosphorylation of signal transducer and activator of

transcription (STAT). Phosphorylated STAT proteins form

dimers that regulate the expression of specific genes by entering

the nucleus (Hu et al., 2023). The JAK-STAT pathway plays a

crucial role in cellular processes such as growth, differentiation,

apoptosis, and immune regulation. For instance, it is vital in

determining the fate of T-helper cells, influencing the

differentiation of various cell types such as Th1, Th2, Th17, and

regulatory T cells (Seif et al., 2017). However, aberrant activation of

this pathway is often associated with various diseases, particularly in

cancer. For example, the activation of STAT3 is closely linked to the

occurrence of multiple tumors, the formation of drug resistance,

and the maintenance of cancer stem cells (Rah et al., 2022).

Therefore, the JAK-STAT signaling pathway is a significant target

in cancer therapy, and a deeper understanding of it could lead to the

development of more effective treatment methods.

In mammals, the intrinsic pathway of apoptosis primarily

revolves around mitochondria, involving several key proteins

such as members of the Bcl-2 family, which maintain cell survival

by directly or indirectly inhibiting pro-apoptotic proteins (like BAK

and BAX). When cells are overwhelmed by stress or developmental

signals, this survival signal is overridden, triggering the initiation of

apoptosis (Cavalcante et al., 2019). Additionally, studies have

indicated that miRNAs also play a crucial role in regulating

apoptosis-related genes, and any imbalance in these mechanisms

could lead to the development of various diseases (Cavalcante et al.,

2019). Apoptosis is not just a form of cell death; it involves

numerous finely regulated molecular mechanisms, significantly

impacting the understanding and treatment of various diseases.

Tyrosine metabolism is a complex biochemical process primarily

occurring in the liver, involving multiple enzymes and metabolic
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pathways. In diseases like hepatocellular carcinoma, abnormalities in

tyrosine metabolism can affect the regulation of the cell cycle and

cellular proliferation. Studies have shown that the expression of

tyrosine metabolism enzymes is decreased in hepatocellular

carcinoma, closely associated with poor prognosis. Furthermore,

abnormalities in tyrosine metabolism can also activate the cell

cycle, promoting cell proliferation (Wang et al., 2022). Niacin and

nicotinamide metabolism are crucial biochemical processes related to

cellular energy production and repair. Studies have found that niacin

and nicotinamide metabolism, through their metabolites such as

NAD+ and 1-methyl nicotinamide, play a significant role in treating

various diseases. For instance, nicotinamidemononucleotide (NMN),

a vital precursor of NAD+, has been shown to combat aging and

enhance cellular metabolic status (Song et al., 2023; Malik et al.,

2024). Moreover, niacin and nicotinamide metabolism are also

closely linked to the development of many diseases, such as

diabetic peripheral neuropathy and the inflammatory processes in

rheumatoid arthritis. Regulating this metabolic pathway can

influence the progression and treatment outcomes of diseases

(Malik et al., 2024; Ye et al., 2024). Tryptophan metabolism plays a

key role in various physiological and pathological processes,

particularly in digestive system tumors, including gastric and

colorectal cancers. The expression levels of tryptophan and its

metabolites are closely associated with the clinical characteristics of

tumors. For example, in gastric cancer, increased expression of the

tryptophan-metabolizing enzyme TDO2 is negatively correlated with

tumor aggressiveness and overall patient survival (Ye et al., 2021; Yu

et al., 2024). Additionally, tryptophan metabolism pathways, such as

the kynurenine pathway, also play roles in regulating gut

inflammation and brain health, demonstrating potential therapeutic

applications (Chen et al., 2021; Roth et al., 2021; Michaudel

et al., 2023).

In our study, we utilized the DsigDB database to predict

potential drug candidates targeting genes identified through

Mendelian randomization from top SNP data. Among these, the

vitamin K derivative Menadione sodium bisulfite (MSB) has

demonstrated potential value in cancer therapy. Existing research

indicates that MSB can inhibit tumor cell growth by depleting the

pool of acid-soluble thiols such as glutathione, particularly evident

in mouse leukemia L1210 cells (Akman et al., 1985). Additionally,

when used in combination with vitamin C, MSB significantly

enhances the cytotoxicity against prostate cancer cells and can

synergize with anticancer drugs like bortezomib to reduce toxicity

and enhance antitumor effects (sodium ascorbate study). These

studies suggest that MSB impacts cancer cell survival and

proliferation through multiple mechanisms, warranting further

exploration and validation of its application in cancer treatment

(Astakhova et al., 2018). Other potential drug candidates include

the heavy metal chelator Monoisomy1-2-3-dimercaptosuccinate,

which may facilitate the removal of heavy metals from cells;

Raloxifene, a selective estrogen receptor modulator that may

influence endothelial cells via the estrogen receptor pathway; and

MEHP, which could affect cellular behavior through endocrine

disruption. Additionally, the industrial solvent Trichloroethylene

may induce oxidative stress and cytotoxicity affecting cellular

physiology, while Menadione acts by influencing redox reactions
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and pathways related to cellular apoptosis. D-Sorbitol, as an

osmotic diuretic, may regulate intracellular osmotic pressure and

carbohydrate metabolism; Thymidine affects cell cycles by

impacting DNA synthesis; Acetaldehyde may induce DNA

damage and stress responses; and Ethene could influence

hormonal signaling and cellular response mechanisms (Janakiram

et al., 2009; McGuire et al., 2012; Shih et al., 2023). These analytical

results not only highlight the potential of drug screening based on

single-cell data but also provide valuable insights for developing

treatment strategies targeting specific cell subtypes within the tumor

microenvironment. This study presents several notable advantages.

Firstly, we utilized the latest genome-wide association study

(GWAS) data related to the oral microbiome and employed

Mendelian Randomization (MR) as a methodological approach to

establish causative relationships. This method allows us to assess

potential links between the components of the oral microbiome and

colorectal cancer from a genetic perspective. Secondly, we

innovatively integrated single-cell transcriptome analysis,

precisely identifying endothelial cell populations through cell-

specific scoring techniques. Enrichment analysis further revealed

the functional characteristics of the gene sets we identified. Lastly,

through drug prediction and molecular docking techniques, we

explored several genes as potential therapeutic targets and predicted

potential therapeutic drugs associated with these targets. This series

of studies provides new insights into the development of

personalized treatment strategies for colorectal cancer and offers

pre l iminary candidate targe t s and drugs for future

drug development.

However, several limitations of this study must be

acknowledged . A s ign ificant concern in Mende l i an

Randomization studies is the possibility of horizontal pleiotropy,

which could affect the accuracy of selecting instrumental variables.

The composition of the oral microbiome can be influenced by

multiple factors, including genetic background, lifestyle choices,

dietary habits, and environmental factors, all of which could impact

the outcomes of the study. Additionally, the instrumental variables

used may only explain a small portion of the observed variability,

necessitating further research to fully understand the complex

changes in the oral microbiome. Moreover, our MR analysis

focused predominantly on populations of Asian descent, meaning

our results may not be generalizable to other ethnicities, such as

those of European descent. Further research is needed to validate

and extend our findings to other populations. Single-cell RNA

sequencing (scRNA-seq) and drug prediction analyses offer

tremendous potential for providing high-resolution cellular

characteristics and identifying potential therapeutic strategies.

However, several limitations of these methods must be

acknowledged. Firstly, the quality and resolution of scRNA-seq

data are highly dependent on sampling and technical factors, such

as cell capture efficiency and sequencing depth. This dependency

may result in underrepresentation of certain cell types or

subpopulations. Additionally, the complexity of single-cell data

analysis increases the difficulty of interpreting results, particularly

in distinguishing between technical noise and biological

significance. In the realm of drug prediction, although databases

like DSigDB offer extensive gene-drug association information,
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these predictions require further experimental validation to confirm

their efficacy and safety. The accuracy of prediction models is also

limited by the coverage of existing datasets and the assumptions

made by algorithms. Furthermore, the effects of drugs observed at

the cellular level may not directly translate to in vivo outcomes.

Hence, more in vivo studies and clinical trials are necessary to verify

their practical application value.

Future research should expand to populations of different

ethnic and geographical backgrounds to validate and generalize

current findings, and collect larger sample sizes to improve

statistical accuracy and result robustness. Longitudinal studies will

reveal the temporal dynamics between the oral microbiome and

colorectal cancer development. In-depth functional genomics and

metabolomics studies will elucidate the specific mechanisms of the

microbiome. Future studies should integrate multi-omics data and

apply single-cell multi-omics and spatial transcriptomics

technologies to depict interactions between the microbiome and

host cells at higher resolution. These directions will deepen our

understanding of the oral microbiome’s relationship with colorectal

cancer and advance personalized medicine and precision therapy.
5 Conclusion

This study establishes the significant role of the oral

microbiome in colorectal cancer (CRC) development through

Mendelian Randomization (MR) analysis. We identified 19

bacterial taxa associated with CRC risk, with specific microbes

showing both protective and harmful effects. Single-cell RNA

sequencing highlighted key pathways, including JAK-STAT

signaling, involved in CRC progression. Drug prediction and

molecular docking identified potential therapeutics like

Menadione Sodium Bisulfite and Raloxifene. These findings offer

new insights and therapeutic targets for personalized CRC

treatment strategies.
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