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Introduction: SARS-CoV-2 infection drove senescent cells and the senescence-

associated phenotypes were reported playing roles in disease progression, which

contributes to severe COVID-19 and related sequelae. Cdc42 is involved in the

regulation of cellular senescence. This study, aimed to investigate themechanism of

the SARS-CoV-2 spike protein regulating cellular senescence through Cdc42.

Methods: K18-hACE2 mice were infected with SARS-CoV-2 Omicron BA.4 or

stimulated with spike protein through the airway, the senescent cells and Cdc42

expression in lung tissue were detected. Overexpression of spike protein or

exogenous incubation of spike protein was used to simulate the induction of

cellular senescence by spike protein. Mechanistic insights into the role of Cdc42

were mainly explored using Western Blot and qRT-PCR.

Results: Spike protein, SARS-CoV-2 infection related, accelerates cell aging by

upregulating Cdc42 expression, which furtherly activated the Wnt/b-catenin
signaling pathway. Conversely, treatment with ML141 in animal models, a Cdc42

inhibitor, reduced cellular senescence and ameliorated lung injury and inflammation.

These results suggest that the upregulation of Cdc42 by the SARS-CoV-2 spike

protein induces cellular senescence and enhances b-catenin nuclear translocation.

Discussion: This study provides insights into the mechanisms underlying cellular

senescence induced by the SARS-CoV-2 spike protein, offering potential

strategies to mitigate the inflammatory response and complications associated

with COVID-19 in both the acute and long-term phases.
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1 Introduction

Since its emergence as a global pandemic in December 2019,

SARS-CoV-2 has infected over 700 million people worldwide,

leading to more than 7 million deaths as of February 2024

(World Health Organization, 2024). Notably, a significant

proportion of patients continue to experience persistent

symptoms or related sequelae even after the virus has cleared,

including systemic fatigue, chest pain, respiratory dysfunction,

nervous system, and cognitive impairments (Ballering et al., 2022;

Ceban et al., 2022; Davis et al., 2023; Mandal et al., 2021; Mo et al.,

2020). Consequently, a deeper understanding of the biological

responses to SARS-CoV-2 infection, particularly the persistent

manifestations, is urgently required.

Aging is recognized as a significant risk factor for severe COVID-

19, with older individuals being more susceptible to severe disease

manifestations.Thisheightened susceptibility is primarily attributed to

age-related impairments in pulmonary function and immune

responses within the aging lung (Bartleson et al., 2021; Schneider

et al., 2021). Cellular senescence, initially observed in normal diploid

cells, ceasing proliferation after a limited number of replications and

divisions (Hayflick and Moorhead, 1961), is considered a response to

various stressors, including exposure to toxic substances, hypoxia,

mitochondrial dysfunction, activation of oncogenes, and viral

infections (Gorgoulis et al., 2019). Cellular senescence represents an

irreversible state of cell-cycle arrest accompanied by alterations in

transcriptional, epigenetic, morphological, secretory properties, and

metabolic capacity (Wiley and Campisi, 2021). While senescence

serves as a beneficial mechanism for tumor suppression and wound

healing (Campisi, 2001; Demaria et al., 2014; Munoz-Espin and

Serrano, 2014), the aberrant accumulation of senescent cells can

contribute to an inflammatory microenvironment, chronic tissue

damage, and the onset and progression of chronic diseases such as

chronic obstructive pulmonary disease and pulmonary fibrosis (Araya

et al., 2019; Barnes et al., 2019; Guan et al., 2022). A principal hazard

associated with these cells is their ability to secrete a range of bioactive

substances, including proinflammatory factors, chemokines, growth

factors, and matrix metalloproteinases, collectively referred to as

senescence-associated secretory phenotypes (SASP) (Gorgoulis et al.,

2019; Rodier and Campisi, 2011). The release of these factors

contributes to the development of acute or chronic inflammation

and potentially regulates immune responses. Furthermore, SASP can

induce secondary senescence in neighboring healthy and proliferative

cells, through paracrine signaling while activating immune

surveillance (Acosta et al., 2013; Coppe et al., 2008).

SARS-CoV-2 induces cellular senescence through various

mechanisms, a phenomenon known as virus-induced senescence

(VIS) (Meyer et al., 2021; Tripathi et al., 2021). Bulk and single-cell

transcriptomic analyses further support the concept that SARS-CoV-2

triggered senescence drives pathology in COVID-19 and the lungs of

patients with severe COVID-19 showed higher levels of p16INK4a

positive cells compared with that in individuals with other lung

diseases (Schmitt et al., 2022). Senescence is a universal host cell

response to SARS-CoV-2 stress. VIS cells aggravate the inflammatory

response by secreting a plethora of SASP factors, many of which are

bonafide NF-kB targets. Besides, only VIS cells show activation of the
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cGAS–STING pathway and are involved in driving SASP-mediated

interferon responses, which indicates that virus-induced senescence is

a driver and therapeutic target in COVID-19 (Lee et al., 2021). Given

that older individuals already have a high prevalence of senescent cells,

exposure toSARS-CoV-2may increase thisburden,potentially leading

to an abnormal release of SASP and resulting in a cascade of

inflammatory factors that culminate in an inflammatory storm. This

inflammatory storm may be a primary reason why older individuals

are more susceptible to developing severe illness from COVID-19.

SARS-CoV-2 S1 protein exacerbates the SASP of human

senescent cells, leading to an active inflammatory response in

severe patients. Furthermore, anti-aging drugs targeting senescent

cells have been found to reduce mortality rates in infected mice

(Weiss and Murdoch, 2020). Moreover, SARS-CoV-2 triggers

senescence in infected cells, upregulating the expression of ACE2

receptors, thereby increasing the likelihood of infection and

establishing a vicious cycle (Camell et al., 2021; Duarte et al.,

2021). Even after viral clearance, the persistence of senescent cells

in lung tissue, evidenced by the increased number of cells expressing

p16 and p21, may contribute to post-acute COVID-19 syndrome

(Lipskaia et al., 2022). These findings suggest that senescent cells

play a role in the pathogenesis of COVID-19, highlighting the

importance of reducing cellular senescence for the treatment of

COVID-19 and the prevention of its long-term effects.

Cell division cycle protein 42 (Cdc42) is a small GTPase belonging

to the Rho family, which plays a pivotal role in various fundamental

cellular processes, including the reorganization of the actin

cytoskeleton, cell polarity, and growth (Cerione, 2004; Fu et al., 2022;

Mosaddeghzadeh andAhmadian, 2021).Aberrant activation ofCdc42

has been implicated in several pathological conditions, including

carcinogenesis and neurodegenerative diseases (Sinha and Yang,

2008). In addition to its involvement in these pathological states,

recent research has highlighted the critical role of Cdc42 in cellular

senescence. Inhibiting Cdc42 activity can restore the regenerative

potential of senescent intestinal stem cells. Furthermore, Cdc42 is

implicated in the senescence process of hematopoietic stem cells and

mesenchymal stem cells (Florian et al., 2013; Nalapareddy et al., 2021;

Umbayev et al., 2018). In studies involving aged mice, a specific

inhibitor of Cdc42 called Casin has been utilized to reduce chronic

inflammation levels and extend the average lifespan(Florian

et al., 2020).

The removal of senescent cells, either through genetic or

pharmacological means, can reportedly delay the onset of age-related

inflammatory diseases in aged mice (Baker et al., 2016; Di Micco et al.,

2021). Building upon the observed relationship between Cdc42 and

cellular senescence, our study aimed to explore the potential of

targeting Cdc42 as a therapeutic and preventive approach for

COVID-19 and its associated complications.
2 Materials and methods

2.1 Animals

All animal experiments and protocols conducted in this study

were approved by the National Institutional Animal Care and
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Medical Ethics Committee of Southern Medical University. Male-

specific pathogen-free (SPF) K18-hACE2 mice, aged 8−10 weeks,

were obtained from Gempharmatech company (Jiangsu, China).

Prior to the experiment, all mice were acclimated in cages for five

days. The animal model was generated using two approaches:

infection with SARS-CoV-2 Omicron BA.4 and stimulation with

SARS-CoV-2 spike protein via the trachea.

2.1.1 Infection of SARS-CoV-2 Omicron BA.4
The mice were allocated randomly into control and BA.4

groups (n=6 each). Mice in the control group were intranasally

inoculated with 50 mL of PBS. Conversely, mice in the BA.4 group

were intranasally inoculated with 105 plaque-forming units (PFU)

of SARS-CoV-2 Omicron BA.4, prediluted in 50 mL of PBS. On the

fourth day following inoculation, all mice were euthanized, and

organ tissues were collected for histopathological analyses. The

experimental procedures were conducted in accordance with

approved guidelines under Biosafety Level 3 (BSL-3) conditions.

2.1.2 Stimulation of SARS-CoV-2 spike protein
The mice were segregated randomly into control, SARS-CoV-2

ancestral spike, and SARS-CoV-2 omicron spike groups (n=6 each).

K18-hACE2 mice were stimulated via the trachea with 5 mg spike

protein, prediluted in 40 mL of PBS. The control group received an

equivalent volume of PBS similarly. For mice undergoing ML141

treatment, ML141 (8 mg/kg) was administered intraperitoneally 1 h

prior to SARS-CoV-2 spike protein stimulation. This regimen was

administered once daily for five consecutive days during the same

time period. On the sixth day, the mice were euthanized for

further analysis.
2.2 Hematoxylin and Eosin (H&E) staining

Lung tissues from experimental mice were fixed in 4%

paraformaldehyde for 48 h and embedded in paraffin. Sections

(5mm thick) were stained with H&E and examined under a light

microscope (Nikon, Japan) to assess histopathological alterations.
2.3 Immunohistochemistry assay

Hydrated sections were separately incubated in citrate buffer

(pH 6.0), followed by exposure to 3% H2O2. A blocking solution

with 10% goat serum was applied at room temperature for 1 h. The

sections were then incubated overnight at 4°C with primary

antibodies, including anti-p16 (1:200, Affinity Biosciences, OH,

USA), anti-p21 (1:200, ABMART, China), and anti-Cdc42 (1:250,

Abcam, UK). Subsequently, the sections were incubated with HRP-

labeled goat anti-rabbit IgG or anti-mouse IgG secondary

antibodies (both from ZSGB-BIO, Beijing, China) for 1 h at 37°C,

and immunoreactivity was detected using DAB staining (Solarbio,

Beijing, China). Quantitative analysis of related indicators was

performed using ImageJ 1.8.0.
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2.4 qRT-PCR

Total RNA was extracted using the FastPure Cell/Tissue Total

RNA Isolation Kit V2 (RC112-01, Vazyme, Nanjing, China), and

reverse transcription was performed using the PrimeScript™ RT

Master Mix (RR036A, Takara Biomedical Technology, Beijing,

China) according to the manufacturer’s protocol. For quantitative

real-time polymerase chain reaction (qRT-PCR), SYBR Green Real-

time PCR Master Mix (Q711-02, Vazyme, Nanjing, China) was

used. The sequences used are shown in Table 1.
2.5 Western blot analysis

According to the provided proportions, RIPA Lysis Buffer (ES-

8148-100ml, ECOTOP SCIENTIFIC, Guangzhou, China), Protease

Inhibitor Cocktail (20124ES03, Yeasen, Shanghai, China), and

Phosphatase Inhibitor Cocktail (20109ES05, Yeasen, Shanghai,

China) were prepared to extract the protein. Approximately 20 mg
of proteins were separated by SDS-PAGE and then transferred to

polyvinyl difluoride (PVDF) membranes (ISEQ00010, Merck

Millipore, Darmstadt, Germany). Primary antibodies, including

anti-p16 (AF0228-50mL, Affinity Biosciences, OH, USA), anti-p21

(TD6423S, Abmart, China), anti-Cdc42 (10155-1-AP, Proteintech,

USA), anti-b-catenin (51067-2-AP, Proteintech, USA), and anti-

GAPDH (FD0063, Hangzhou Fude Biological Technology,

Hangzhou, China) were used. The next day, Goat Anti-Rabbit

HRP IgG (FDR007, Hangzhou Fude Biological Technology,

Hangzhou, China) and Goat Anti-Mouse HRP IgG (Hangzhou

Fude Biological Technology, Hangzhou, China) were used for

room-temperature incubation.
2.6 Cell culture, plasmids, and transfection

HEK-293T cells stably expressing human ACE2 (ACE2/293T)

were previously described (Yang et al., 2021). Similarly, we

generated A549 cells that stably express human ACE2 receptors

using the same method. The cells were cultured in Dulbecco’s

Modified Eagle’s Medium (DMEM) or RPMI-1640 medium

supplemented with 10% fetal bovine serum (FBS) and 1%

penicillin-streptomycin. The cell cultures were maintained in a

humidified atmosphere containing 5% CO2 at 37°C. The plasmid

encoding the SARS-CoV-2 S protein (pcDNA3.1-SARS-CoV-2 S)

was described in a previous study (Yang et al., 2021). Additionally,

our laboratory constructed the pcDNA3.1-Spike-omicron plasmid

and maintained an empty vector, pcDNA3.1. To perform

transfections, the cells were cultured overnight in 6-well plates

and transfected with the desired plasmid (pcDNA-SARS-CoV-2 S,

pcDNA3.1-Spike-omicron) or the empty vector (2.5mg/well).
Liofectamine 3000 (L3000001, ThermoFisher, USA) was used for

transfection following the manufacturer’s instructions. The

corresponding assays or experiments were conducted 72 hours

after transfection.
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2.7 Senescence-associated b-
galactosidase expression

The senescence-associated b-galactosidase (SA-b-Gal) activity
in ACE2/A549 cells overexpressing spike proteins was assessed

using a cellular senescence staining kit (C0602, Beyotime

Biotechnology, China) following the manufacturer’s instructions.

The staining procedure allows the visualization of blue-colored cells

indicative of senescent cells.
2.8 Statistical analysis

Data are presented as mean ± SD. Statistical comparisons were

performed using one-way analysis of variance (ANOVA) and

unpaired Student’s t-tests, utilizing GraphPad Prism 9.

Significance thresholds were set at *p<0.05, **p<0.01,

and ***p<0.001.
3 Results

3.1 SARS-CoV-2 spike protein promotes
cellular senescence

Cellular senescence has been implicated in the poor clinical

outcomes of patients with COVID-19 (Paschalaki et al., 2021). In

our study, we induced lung injury in mice using SARS-CoV-2

Omicron BA.4 (Figure 1A) and identified senescent cells through

immunohistochemical staining. Our results demonstrated an

increase in the expression of senescence-related markers, p16, and

p21, in the lungs of K18-hACE2 mice four days after infection with

SARS-CoV-2 Omicron BA.4 (Figures 1B, C), indicating a potential

role of novel coronaviruses in triggering cellular senescence.
Frontiers in Cellular and Infection Microbiology 04
To further investigate the role of the SARS-CoV-2 spike protein

in promoting cellular senescence, we administered the spike protein

to K18-hACE2 mice via the trachea. Subsequently, we observed

lung injury and evaluated the senescence of alveolar epithelial cells.

Given the emergence of several SARS-CoV-2 variants with

heightened transmissibility and immune evasion, such as the

Omicron variants, these have become dominant globally and have

led to increased morbidity (He et al., 2023). Therefore, in this study,

we focused on the potential mechanisms of cellular senescence

induced by both ancestral and omicron spike variants. Post-

treatment with the spike protein, the lungs of mice displayed

signs of damage and elevated inflammation levels. Consistent

with other reports (Sievers et al., 2022; Wolter et al., 2022),

histological examination of ancestral spike-stimulated mice lungs

revealed prominent pathological changes in the alveoli, including

alveolar wall collapse and infiltration of inflammatory cells.

Conversely, Omicron spike-stimulated mice exhibited less severe

pathological changes and inflammation (Figures 1D, E).

Additionally, an increased senescence phenotype was observed

compared with that in the control group (Figures 1F, G).

The relationship between Cdc42 and aging is well-established,

thus, we also examined its expression. We observed upregulation of

Cdc42 expression post-infection with SARS-CoV-2 Omicron BA.4

or following spike protein stimulation (Figures 1H, I), indicating

that the spike protein induces senescence in alveolar epithelial cells

in mice, and Cdc42 may be involved in this process.
3.2 ML141 alleviates spike protein-induced
cellular senescence

To investigate the role of Cdc42 in initiating cellular senescence

triggered by the SARS-CoV-2 spike protein, we employed the

Cdc42 inhibitor ML141 and assessed senescent cells status in
TABLE 1 Primer sequences for qRT-PCR.

Gene Forward primer 5′-3′ Reverse primer 5′-3′

p16 CTTCCTGGACACGCTGGT GGGATGTCTGAGGGACCTT

p21 TCGCTCAGGGGAGCAGGCTGAA CTCGCGCTTCCAGGACTGCAGGCT

IL-1b ATGATGGCTTATTACAGTGGCAA GTCGGAGATTCGTAGCTGGA

IL-6 ACTCACCTCTTCAGAACGAATTG CCATCTTTGGAAGGTTCAGGTTG

TNF-a CCTCTCTCTAATCAGCCCTCTG GAGGACCTGGGAGTAGATGAG

IL-8 GAAGTTTTTGAAGAGGGCTGAGA GCCCTTGGCCTCAATTTTGC

GAPDH CACATGGCCTCCAAGGAGTAA TGAGGGTCTCTCTCTTCCTCTTGT

m-TNF-a CAGGCGGTGCCTATGTCTC CGATCACCCCGAAGTTCAGTAG

m-IFN-g GCCACGGCACAGTCATTGA TGCTGATGGCCTGATTGTCTT

m-IL-17 TTTAACTCCCTTGGCGCAAAA CTTTCCCTCCGCATTGACAC

m-IL-6 CTGCAAGAGACTTCCATCCAG AGTGGTATAGACAGGTCTGTTGG

m-IL-1b GAAATGCCACCTTTTGACAGTG TGGATGCTCTCATCAGGACAG

m-b-actin GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT
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FIGURE 1

Spike protein accelerates the senescence of alveolar cells. (A) H&E staining of lung injury in mice induced by SARS-CoV-2 Omicron BA.4, bar = 100mm;
(B) IHC staining of p16 and p21 and (C) quantitative analysis of p16 and p21 in lung tissue after SARS-CoV-2 Omicron BA.4 infection, bar = 50mm; (D)
H&E staining of lung injury in mice induced by spike protein, bar = 100mm; (E) mRNA expression of IL-1b, IL-6, TNF-a, INF-g, and IL-17 in lung tissues of
K18-hACE2 mice stimulated by spike protein; (F) IHC staining and (G) quantitative analysis of p16 and p21 in lung tissue of mice stimulated by spike
protein, bar = 50mm; (H) IHC staining and (I) quantitative analysis of Cdc42 in lung tissue of mice under different treatments, bar = 50mm.
Data represent the mean ± SD (n=6). *p<0.05, **p<0.01, ***p<0.001.
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mouse lung tissues post-spike protein stimulation. The

experimental flow chart is depicted in Figure 2A.

Immunohistochemical analysis revealed that ML141 prevented

the spike protein-induced increase in the number of senescent cells

in the lungs, primarily manifested by decreased expression of p16

and p21, however, the number of senescent cells remained higher

than that in the control group after ML141 treatment (Figures 2C,

D). Additionally, ML141 administration resulted in a reduction in

the levels of inflammatory factors and contributed to the alleviation
Frontiers in Cellular and Infection Microbiology 06
of lung injury in mice, but conditions did not return to normal

compared with that in the control group (Figures 2B, E).

3.3 Cdc42 expression is significantly
elevated in the senescent cells induced by
spike protein

In our in vivo experiments, we observed that the spike protein

promotes lung aging in mice. To further explore the role of the spike
FIGURE 2

ML141 attenuates spike protein-induced senescence-related phenotypes in mice lung tissues. (A) Diagram showing the experimental design for
animal treatment; (B) H&E staining of mice lung injury induced by spike protein was alleviated by ML141, bar = 100 mm; (C) IHC staining of p16 and
p21 in mouse lung tissue and (D) quantitative analysis, bar = 50mm; (E) mRNA expression of inflammatory factors in mouse lung. Data represent the
mean ± SD (n=6). *p<0.05, **p<0.01 and ***p<0.001.
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protein in aging, we incubated spike protein exogenously and

transfected ACE2/A549 cells with different plasmids: pcDNA-

SARS-CoV-2 S (Ancestral), pcDNA3.1-Spike-Omicron, and

pcDNA3.1 empty vector as a control. Subsequently 72h post-

transfection, we confirmed the expression of cellular spike

protein (Figure 3A).

SA-b-Gal, a lysosomal hydrolase and classic marker of cellular

senescence (Esposito et al., 2024). Following transfection with

SARS-CoV-2 ancestral-spike and omicron-spike plasmids, we

observed an increase in the number of SA-b-Gal-positive cells,

along with the formation of giant fusion cells induced by the spike

protein (Figure 3B). Consistent with the experimental results in

vivo, both p16 and p21 were elevated under the stimulation of spike

protein, and the expression of p16 and p21 induced by omicron

spike seems to be higher than that induced by ancestral (Figures 3C,

D), and the expression of some SASP factors was increased

compared to the control group (Figure 3E). Cdc42 expression,

consistent with the in vivo results, increased after spike

transfection (Figures 3F, H). Moreover, treatment of ACE2/A549

cells with purified spike protein for 96 hours enhanced protein

levels of p16, p21, and Cdc42, indicating that spike protein

incubation could accelerate cellular senescence, potentially

mediated by Cdc42 (Supplementary Figure 1B).

b-Catenin, a downstream effector of WNT signals and closely

related to cellular senescence (Zhou et al., 2015). Previous research

has shown that WNT/b-catenin activity is increased in the type II

alveolar epithelial cells of aged mice compared to young mice, and

prolonged activation of WNT/b-catenin signaling accelerates

cellular senescence (Lehmann et al., 2020). b-catenin is a

substrate of GSK3b, in the resting state, GSK3b and CKI could

phosphorylate b-catenin, triggering its destabilization and

degradation to maintain the balance of b-catenin in the cytosol/

nucleus. We observed increased phosphorylation of GSK3b,
suggesting decreased GSK3b activity (Supplementary Figures 1A,

C). Compared with control cells, following spike protein

stimulation or overexpression, b-catenin translocated to the

nuclear compartment, indicating activation of the WNT/b-
catenin pathway (Figures 3G, H, Supplementary Figure 1C).

Collectively, our findings suggest that spike protein induces

cellular senescence, potentially mediated by regulation of Cdc42

expression and b-catenin translocation to the nucleus.
3.4 Inhibition of Cdc42 alleviates
senescence-associated phenotypes
promoted by spike protein

To investigate the contribution of Cdc42 upregulation to spike-

induced senescence, we pretreated ACE2/A549 cells, which

overexpressed or incubated with spike protein, with the Cdc42

inhibitor ML141. SA-b-Gal staining assessed cellular senescence,

revealing that ML141 treatment effectively blocked the spike-

mediated increase in the number of senescent cells (Figure 4A).

Furthermore, the upregulation of p16, p21, and SASP, induced by

spike protein, was abolished by ML141 treatment, and for the other

inflammatory factors, there were no significant differences between
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ancestral and omicron, but it seems to be a higher TNF-a level of

omicron induced than that in ancestral, while there was no

significant change in Cdc42 (Figures 4B, C, F). Besides, similar

results were obtained in the ACE2/A549 cells groups with

exogenous spike protein incubation (Supplementary Figure 2B).

Compared with the untreated ML141 groups, ML141 reduced the

phosphorylat ion of GSK3b and restored its act ivi ty ,

correspondingly, ML141 significantly inhibited the spike-induced

localization of b-catenin to the nucleus (Figures 4D, E,

Supplementary Figure 2A, C). In order to further clarify the role

of Cdc42 in regulating cellular senescence, we knockdown Cdc42 by

siRNA. Consistent with the effect of using ML141, Cdc42

knockdown resulted in down-regulation of both p16 and p21

expression (Supplementary Figure 3A). Meanwhile, the

transfecting cells with Cdc42 siRNA abolished GSK3b
phosphorylation and reversed the spike protein incubation-

induced increase in b-catenin nuclear t rans locat ion

(Supplementary Figures 3B, C).

These findings provide evidence that Cdc42 contributes to

cellular senescence triggered by the spike protein. The inhibitory

effects of Cdc42 are mainly manifested as the reduction of age-

related phenotypes and the inhibition of b-catenin nuclear

translocation, highlighting the therapeutic potential of targeting

Cdc42 in mitigating spike protein-induced senescence.
3.5 Cdc42 drives spike-induced cellular
senescence by promoting b-catenin
translocation to the nucleus

Our results confirm the central role of Cdc42 in spike protein-

mediated cellular senescence. To investigate whether this effect is

mediated through the activation of the WNT/b-catenin signaling

pathway, we treated ACE2/A549 cells with the WNT/b-catenin
pathway inhibitor, KYA1797K, followed by transfection

with plasmids.

The application of KYA1797K significantly influenced cellular

senescence, as evidenced by the decreased number of SA-b-Gal-
positive cells compared to groups expressing spike protein alone

(Figure 5A). Furthermore, upon treatment with KYA1797K,

western blot analysis revealed a downregulation of p16 and p21

(Figures 5B, C). We also examined the WNT/b-catenin pathway,

spike protein overexpression resulted in reduced b-catenin
translocation into the nucleus (Figures 5D, E). Additionally, the

mRNA levels of SASP factors decreased in response to KYA1797K

(Figure 5F). These findings highlight the impact of the interaction

between Cdc42 and the WNT/b-catenin pathway in spike protein-

induced cellular senescence.
4 Discussion

Aging is a major risk factor for severe COVID-19, with older

individuals being more susceptible to worsened symptoms and

outcomes (D’Agnillo et al., 2021; Santesmasses et al., 2020). This

association may be attributed to the accumulation of senescent cells
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during aging. Alongside naturally occurring senescent cells, SARS-

CoV-2 infection can induce cellular senescence, further

exacerbating the accumulation of these cells. When the burden of

senescent cells surpasses the capacity of the immune system to
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eliminate them, they release SASPs, provoking an inflammatory

response. This chronic inflammation hampers tissue proliferation

and repair, exacerbating disease progression. Several studies have

highlighted the potential role of senescent cells in intensifying the
FIGURE 3

Cdc42 expression increases in senescent cells induced by spike protein. (A) Expression of spike protein in ACE2/A549 cells transfected with plasmids
for 72 h; (B) SA-b-Gal staining of ACE2/A549 cells in different treatment groups and the red arrow indicates spike protein-mediated membrane
fusion, bar =100mm; (C) Western blot analysis of senescence indicators p16, p21 in ACE2/A549 cells under different treatment factors and (D)
quantitative analysis; (E) mRNA levels of p16, p21, and SASP in ACE2/A549 cells in different groups; (F) Western blot analysis of Cdc42 expression and
level of b-catenin in the whole cells under different treatments; (G) Western blot analysis of b-catenin in cytoplasm and nucleus and (H) quantitative
analysis. Data represent the mean ± SD (n=3). *p<0.05, ** p<0.01, ***p<0.001.
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immune response against SARS-CoV-2 (Blagosklonny, 2020;

Kirkland and Tchkonia, 2020; Malavolta et al., 2020; Nehme

et al., 2020). Thus, comprehending the connection between

cellular senescence and COVID-19 pathogenesis is crucial

for developing therapeutic and preventive strategies against

its sequelae.
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Senescence is a cellular response that occurs in the presence of

various internal and external stress signals. In this study, we

investigated the role of the spike protein in triggering cellular

senescence. In mice lung tissues exposed to the spike protein, we

observed an increase in the number of cells positive for the senescence

markers p16 and p21, with ancestral spike-induced cell aging
FIGURE 4

Cdc42 inhibition attenuates spike protein-induced senescence phenotype. (A) SA-b-Gal staining of ACE2/A549 cells in different treatment groups,
bar = 100mm; (B) Western blot detection of Cdc42, p16, and p21 expression in ACE2/A549 cells under different treatments and (C) quantitative
analysis; (D) Western blot detection of the whole cell, cytoplasmic and nuclear expression levels of b-catenin and (E) quantitative analysis; (F) mRNA
levels of p16, p21, and SASP in different groups. Data represent the mean ± SD (n=3). *p<0.05, ** p<0.01, ***p<0.001.
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appearing more severe than omicron. Moreover, compared with the

ancestral spike, omicron induced substantially attenuated lung

pathology with downregulation of proinflammatory cytokines,

consistent with the decreased pathogenicity of omicron that has
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been reported (Chan et al., 2022; Shuai et al., 2022; Tamura et al.,

2023), and may even relate to the weaker ability of omicron to induce

cellular senescence. Notably, we also noticed an upregulation in the

expression of Cdc42, a protein associated with cellular processes.
FIGURE 5

Cdc42 drives senescence by promoting b-catenin translocation to the nucleus. (A) SA-b-Gal staining of ACE2/A549 cells in different groups, bar =
100mm; (B) Protein levels of p16, p21, and (C) quantitative analysis in different treatments; (D) Protein levels of b-catenin and (E) quantitative analysis
in different treatment groups; (F) mRNA levels of SASP in different groups; (G) Schematic of Cdc42 involved in the spike-induced cellular senescence
by promoting b-catenin translocation to the nucleus. Data represent the mean ± SD (n=3). *p<0.05, ** p<0.01, ***p<0.001.
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Cdc42 is an evolutionarily ancient protein widely expressed and

involved in fundamental cellular functions. Numerous studies have

highlighted its role in the development and progression of age-

related pathologies, including neurodegenerative diseases

(Stankiewicz and Linseman, 2014), cardiovascular disease (Florian

et al., 2017; Hirano et al., 2008), and degenerative joint diseases

(Suzuki et al., 2015). For example, in Alzheimer’s disease, there is a

significant upregulation of Cdc42 activity (Chen-Plotkin et al., 2009;

Zhu et al., 2000). Additionally, while elevated Cdc42 activity has

been associated with the senescence of intestinal stem cells, its

inhibition enhances the regenerative capacity of the stem cells

(Castillo-Azofeifa et al., 2023). Senolytics, which selectively

eliminate senescent cells by inducing apoptosis, have shown

promise in delaying, preventing, and even reversing the aging

process , thereby extending l i fespan (Lagoumtzi and

Chondrogianni, 2021). Studies focusing on Cdc42 inhibition have

demonstrated significant therapeutic and anti-aging effects in aged

mice and models of aging-related diseases (Amoah et al., 2022;

Florian et al., 2020). Based on these findings, we infer that Cdc42

plays a crucial role in spike protein-induced cellular senescence. For

inflammation, inhibition of Cdc42 reduced cytokine secretion

during TNF-a-induced inflammation, and also had an effect on

cytokine gene transcription. Additionally, other reports showed that

Rho proteins are needed for cytokine activation of NF-kB for

proinflammatory signaling and it was reported that Cdc42 could

promote the release of IL-1b by activating IQGAP1 (Bahia et al.,

2020; Rowayna and Gary, 2024; Yun et al., 2022). Notably, however,

Takashi K et al. suggest that inhibition of Cdc42 signaling had a

much weaker influence on acute inflammation than chronic

inflammation, which supports the notion that the Cdc42-

dependent proinflammatory pathway is specifically activated by

senescence-associated stimuli (Takashi K et al., 2014). Inhibition of

CDC42, particularly using Cdc42 inhibitors as senolytic-associated

drugs could potentially block spike protein-induced cellular

senescence, alleviating the inflammatory response and mitigating

the disease progression associated with senescent cells.

b-catenin is a crucial molecule involved in the classical WNT

signaling pathway. Under normal conditions, the WNT pathway is

inactive. However, abnormal activation of the pathway leads to the

inhibition of b-catenin phosphorylation and ubiquitination, leading

to an increase in free cytoplasmic b-catenin levels. This elevated b-
catenin translocates into the nucleus, activating downstream WNT

target genes (Angers and Moon, 2009; Vallee et al., 2021). Recent

evidence suggests that classical WNT/b-catenin pathway activation

is associated with inflammation and cytokine storms in COVID-19

patients (Choi et al., 2020; Vallee et al., 2021). Additionally, the

WNT/b-catenin signaling pathway has been implicated in cellular

senescence processes such as intervertebral disc degeneration,

senescence of type II alveolar epithelial cells promoting

pulmonary fibrosis, and renal tubular senescence (Chen et al.,

2019; Gong et al., 2021; Lehmann et al., 2020; Yang et al., 2022).

Furthermore, the relationship between Cdc42 and b-catenin has

been established, with Cdc42 being involved in cell proliferation,

migration, and differentiation through the activation of WNT/b-
catenin signaling (Han et al., 2017; Wu et al., 2006). Cdc42 is known
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to initiate p-PKCz/pGSK3b signaling, which is involved in renal

fibrosis by inhibiting p-b-catenin and upregulating b-catenin (Hu

et al., 2024). Consistently, we observed that Cdc42 regulates b-
catenin, with Cdc42 inhibition increasing its degradation and

reducing its entry into the nucleus. It has been reported that the

increase of b-catenin nuclear translocation can induce cellular

senescence by activating the p53/p21 signaling pathway, and in

our study, spike protein was found to promote the up-regulation of

p21 expression (Gu et al., 2014). Furthermore, p16 was found to

colocalize with b-catenin to regulate the cellular aging process,

indicating that these signals are closely related (Meng et al., 2022).

In our study, we observed that the spike protein induces

increased translocation of b-catenin into the nucleus, activating

the WNT/b-catenin pathway. However, Cdc42 knockdown and the

use of ML141, a Cdc42 inhibitor, and KYA1797K, a WNT/b-
catenin pathway inhibitor, can block the translocation of

cytoplasmic b-catenin into the nucleus, thus alleviating the

senescence-associated phenotype induced by SARS-CoV-

2 infection.

In conclusion, our study findings confirm that the spike protein

of SARS-CoV-2 promotes b-catenin translocation into the nucleus

by upregulating Cdc42. This activates the WNT/b-catenin pathway,

inducing cellular senescence (Figure 5G). By inhibiting Cdc42

activity, we observed decreased spike-induced cellular senescence

and lung injury alleviation in mice lung tissues. These findings

suggest targeting Cdc42 as a therapeutic strategy may mitigate the

detrimental effects of spike protein-induced cellular senescence

associated with SARS-CoV-2 infection and the lack of validation

of possible pathways by which Cdc42 regulates related

inflammatory factors is a limitation of this study. Further study is

warranted to explore the precise mechanisms underlying the

interplay between Cdc42, b-catenin, spike protein-mediated

cellular senescence, and inflammatory response, and evaluate the

therapeutic implications of targeting Cdc42 in the context of

COVID-19 and other age-related diseases.
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