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Background: Currently, Sodium-glucose cotransporter 2 (SGLT2) inhibitors

demonstrate additional effects beyond glucose control on the gut microbiota

and circulating metabolites. The gut microbiota and metabolites have been

found to be useful in elucidating potential biological mechanisms of

pulmonary diseases. Therefore, our study aims to investigate the effects of gut

microbiota and metabolites mediating SGLT2 inhibition in 10 pulmonary diseases

through Mendelian randomization (MR) research.

Methods: We conducted a two-sample, two-step MR study to assess the

association between SGLT2 inhibition and 10 pulmonary diseases and to

investigate the mediating effects of gut microbiota and metabolite. Gene-fine

mapping and annotation of mediators by FUMA and Magma analyses were

performed, and causal associations of mapped genes with diseases were

assessed by muti-omics MR analyses. Possible side effects of SGLT2 inhibition

were assessed by PheWAS analysis.

Results: SGLT2 inhibition was linked to a reduced risk of T2DM, Interstitial lung

disease (ILD), Pneumoconiosis, Pulmonary tuberculosis, and Asthma(OR=0.457,

0.054, 0.002, 0.280, 0.706). The family Enterobacteriaceae and order

Enterobacteriales were associated with SGLT2 inhibition and ILD(95% CI:0.079–

0.138). The family Alcaligenaceae and X-12719 were linked to pneumoconiosis (95%

CI: 0.042–0.120, 0.050–0.099). The genus Phascolarctobacterium was connected

to pulmonary tuberculosis (95% CI: 0.236–0.703).The degree of unsaturation (Fatty

Acids), ratio of docosahexaenoic acid to total fatty acids, and 4-androsten-

3beta,17beta-diol disulfate 2, were associated with asthma(95% CI: 0.042–0.119,

0.039–0.101, 0.181–0.473). Furthermore, Fuma and Magma analyses identified

target genes for the four diseases, and proteomic MR analysis revealed six

overlapping target genes in asthma. PheWAS analysis also highlighted potential

side effects of SGLT2 inhibition.

Conclusions: This comprehensive study strongly supports a multi-omics

association between SGLT2 inhibition and reduced risk of interstitial lung

disease, tuberculosis, pneumoconiosis, and asthma. Four identified gut
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microbiota, four metabolites, sixteen metabolic pathways, and six target genes

appear to play a potential role in this association. The results of the

comprehensive phenome-wide association analysis also identified the full

effect of SGLT2 inhibitors.
KEYWORDS

sodium-glucose cotransporter 2 inhibition, gut microbiota, circulating metabolites,
interstitial lung disease, pulmonary tuberculosis, pneumoconiosis, asthma, fine mapping
1 Introduction

Pulmonary diseases are intricately linked to human life and lead

to significant public health challenges on a global scale due to their

high incidence or mortality rates (Zhou et al., 2019). In recent years,

with the emergence of gut microbiota, metabolomics, and

proteomics, this area is receiving increasing attention. The

discovery of the gut-lung axis suggests the potential manipulative

role of the gut microbiome(gene) in treating pulmonary diseases

(Budden et al., 2017). Metabolomics, through the study of

metabolites, reveals potential biomarkers that can pave the way

for disease prevention (Qiu et al., 2023). Metabolites, serving as the

end products or intermediate compounds of metabolism, fulfill

essential functions in the human body. The exploration of changes

in intermediate metabolites or metabolic pathways provides a

profound understanding of the progression of diseases (Johnson

et al., 2016). Changes in blood proteins more finely reflect changes

in the functioning of the organism. Thus, co-alterations in the gut

microbiota, metabolites, and their proteins may play a key role in

the etiologic formation of lung-related diseases and the

identification of key therapeutic targets.

Sodium-glucose cotransporter 2 (SGLT2) inhibitors constitute a

class of oral antidiabetic drugs, which includes dapagliflozin,

empagliflozin, and others (Zannad et al., 2020). These inhibitors

have been found to affect glycemic control, as well as potentially

altering levels of gut microbiota and blood metabolites (particularly

amino acids, ketones, and lipids), which can affect disease

progression (Kappel et al., 2017; Cowie and Fisher, 2020; Herat

et al., 2020; Szekeres et al., 2021). This finding may play a crucial

role in improving pulmonary diseases.

Exploring the impact of SGLT2 inhibitors on pulmonary

diseases faces significant challenges. Recently, Mendelian

randomization (MR) has gained prominence as a widely used

research method to assess the causal effects between exposure and

outcomes, while minimizing biases arising from confounding

factors or reverse causation (Kintu et al., 2023). MR analysis

utilizes individual genetic variations as instrumental variables

(IVs), simulating a randomized controlled trial (Georgakis and

Gill, 2021). We employed this method, leveraging extensive
02
Genome-Wide Association Studies (GWAS) and identified single

nucleotide polymorphisms (SNPs) associated with SGLT2

inhibitors, to establish the causal relationship between SGLT2

inhibitors and pulmonary diseases.

The previous studies have applied MR analysis to assess the

relationship between SGLT2 inhibitors and atrial fibrillation,

coronary artery disease, and fractures, involving circulating

metabolites as intermediaries (Xu et al., 2022; Dai et al., 2023; Li

et al., 2023). Therefore, to gain a more comprehensive

understanding of the association between SGLT2 and pulmonary

diseases, building upon these studies, we hypothesize that gut

microbiota and circulating metabolites may mediate the impact of

SGLT2 inhibition on pulmonary diseases. Therefore, the objective

of this article is to implement a two-sample MR approach to:

(1) assess the causal effects of SGLT2 inhibitors and pulmonary

diseases; (2) investigated the potential causal effects of SGLT2

inhibitors on gut microbiota and circulating metabolites;

(3) conducted a two-step MR study to determine the mediating

effects of gut microbiota and circulating metabolites on the

relationship between SGLT2 inhibitors and pulmonary diseases;

(4) analyzed relevant metabolites to gain insights into potential

metabolic pathways underlying the association between SGLT2 and

pulmonary diseases; (5) fine mapping based on instrumental

variables of mediators and proteomic MR analysis to obtain

effector genes; and (6) phenome-wide association analyses to

determine potential side effects of SGLT2 inhibitors.
2 Materials and methods

2.1 Study design

Figure 1 presents a schematic overview of the study design. The

MR design should meet three necessary assumptions (Figure 1):

(A) The genetic variants selected as instrumental variables (IVs)

should demonstrate a robust correlation with the exposure (SGLT2

inhibitors, gut microbiota, metabolites); (B) The genetic

instruments should exhibit no correlation with the occurrence of

pulmonary diseases and should remain independent of potential
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confounding factors; (C) The genetic variant should show a distinct

association with pulmonary diseases, mediated specifically through

exposure rather than other pathways.
2.2 IVs for SGLT2 inhibitors

IVs for SGLT2 inhibitors were obtained by the study

methodology reported in a previous article (Li et al., 2023).
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In brief, SNP information concerning SLC5A2 mRNA levels

was obtained from blood or whole tissue data available

on the Genotype-Tissue Expression (GTEx) (2020) and

eQTLGenwebsites (Võsa et al . , 2021). The SNPs were

evaluated and screened for variants significantly associated

with glycated hemoglobin (HbA1c) levels (glucose-lowering

target) on the basis of r2 < 0.8 and 250 kb (P< 1×10-4).

Finally, shared variants between the two were confirmed by co-

localization analysis.
FIGURE 1

A schematic overview of the study design. We conducted a two-sample, two-step MR study to assess the association between SGLT2 inhibition and
10 pulmonary diseases and to investigate the mediating effects of gut microbiota and metabolite. Gene-fine mapping and annotation of mediators
by FUMA and Magma analyses were performed, and causal associations of mapped genes with diseases were assessed by muti-omics MR analyses.
IVs, instrumental variables; IVW, inverse-variance weighted; MR, Mendelian randomization; SNPs, single nucleotide polymorphisms.
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2.3 Data sources on the gut microbiota
and circulating metabolites

The MiBioGen Consortium provided comprehensive summary

statistics on the genetic impact on the human gut microbiota, including

genome-wide genotyping data from 14,363 individuals of European

ancestry (Kurilshikov et al., 2021). A total of 211 taxonomic groups (16

orders, 35 families, 131 genera, 20 classes, 9 phyla) were included in the

relevant analysis of this study. To incorporate a more comprehensive

set of metabolites, we selected data from two sources. One dataset

comprised 249 circulating metabolites from 121,000 participants of

European ancestry, generated by Nightingale Health, primarily

covering lipids and lipoprotein particles (81%) (Ritchie et al., 2023).

The second dataset involved 486 metabolites from 7,824 participants of

European ancestry in the TwinsUK and KORA studies, encompassing

eight categories of metabolites: Amino acid, Lipid, Carbohydrate,

Nucleotide, Energy, Cofactors and vitamins, Peptide, and Xenobiotics

(Shin et al., 2014). For overlapping metabolites from two data sources,

we chose to exclude them if the direction of their impact on the

outcomes of pulmonary diseases was inconsistent.
2.4 IVs selection for gut microbiota and
circulating metabolites

In the analysis of 249 metabolites, SNPs with p-values below the

genome-wide significance threshold (5 × 10-8) were selected as IVs.

In the analysis of 211 gut microbiota and 486 blood metabolites, to

enhance sensitivity to IVs and obtain more comprehensive results,

SNPs with p-values below the genome-wide significance threshold

(5 × 10-6) were chosen as IVs. Subsequently, all IVs underwent

linkage disequilibrium (LD) clumping (r2 = 0.01; distance = 10,000

kb) to alleviate the impact of correlated SNPs. Additionally, we used

the PhenoScanner version to prevent the selected SNP from

showing significant pleiotropic associations. Furthermore, we

calculated the F-statistic (R2 (N–2)/(1–R2)), assessing the strength

of each instrument, where R2 represents the proportion of variance

explained by the genetic instrument, and N is the effective sample

size (Kwok et al., 2020). Finally, we excluded palindromic SNPs

from our study.
2.5 IVs selection for pQTL

pQTL data for blood proteins were obtained from a study based

on the Icelandic (n = 35559) population (Ferkingstad et al., 2021)

and were analyzed in the MR analysis using the same SNP screening

conditions as previously (P < 5 × 10-8).
2.6 Data sources on the
pulmonary diseases

Ten pulmonary diseases are categorized according to clinical

criteria outlined by the World Health Organization (WHO) and the
Frontiers in Cellular and Infection Microbiology 04
tenth edition of the International Classification of Diseases (ICD-

10). Data summaries for interstitial lung disease, pulmonary

tuberculosis, and pneumoconiosis were extracted from publicly

accessible datasets as provided by the GWAS conducted by

Sakaue et al (Sakaue et al., 2021). For asthma, pneumonia, and

emphysema/chronic bronchitis outcomes, we utilized data from the

UK Biobank, a large cohort of UK adult volunteers, to provide

detailed information (Bycroft et al., 2018). Summary-level data for

pulmonary embolism, acute bronchitis, and chronic obstructive

pulmonary disease (COPD) were generated from the FinnGen

Biobank (Kurki et al., 2023). Lung cancer was sourced from the

Transdisciplinary Research into Cancer of the Lung consortium

(Park et al., 2014). All studies within these consortia obtained

approval from local research ethics committees and institutional

review boards, and participants in each study provided written

informed consent. Table 1 outlines the characteristics of the

summarized datasets for the ten pulmonary diseases.
2.7 MR statistical analysis

A two-sample MR analysis was employed to assess the causal

relationship between SGLT2 inhibition and ten pulmonary

diseases as well as T2DM. A two-step MR was performed to

estimate the mediating effect of gut microbiota and circulating

metabolites on the association between SGLT2 inhibition and

positive pulmonary diseases. The first step of the two-step MR

involved assessing the impact of SGLT2 inhibition on gut

microbiota and circulating metabolites (beta1). In the second

step, we evaluated the influence of gut microbiota and

metabolites significantly associated with SGLT2 inhibition on

the positive pulmonary diseases (beta2). The proportion

mediated by gut microbiota and metabolites in the association
TABLE 1 The characteristics of the ten pulmonary diseases.

Pulmonary
diseases

Ethnicity
Sample
size

Cases Control

Interstitial lung disease European 469,827 2,267 467,560

Pulmonary
tuberculosis

European 477,386 895 476,491

Pneumoconiosis European 479,040 433 478,607

Asthma European 408,442 56,167 352,255

Pulmonary embolism European 218,413 4,185 214,228

Acute bronchitis European 216,027 7,338 208,689

Chronic obstructive
pulmonary disease

European 193,318 6,595 186,723

Pneumonia European 486,484 22,567 463,917

Emphysema/
chronic bronchitis

European 462,013 7,844 454,169

Lung cancer European 40,453 23,848 16,605
fro
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between SGLT2 inhibition and positive pulmonary diseases was

calculated as the product of beta1 and beta2 divided by the total

effect of SGLT2 inhibition on positive pulmonary diseases (beta 3).

The 95% confidence interval for the mediation proportion was

calculated using the product of coefficients method.

The primary analysis employed the IVW method to derive the

final effect estimate. To ensure the accuracy of the results, additional

sensitivity analyses were performed, including the MR-Egger

method, weighted median analysis, and MR pleiotropy residual

sum and outlier (MR-PRESSO) test. The MR Egger method, known

for accommodating directional horizontal pleiotropic effects,

addresses the possibility of SNP effects on target outcomes

through alternative biological pathways independent of the

investigated exposure (Wu et al., 2020). SNPs were assessed using

a weighted median approach, considering precision relative to

magnitude, with the median determining the overall MR estimate,

and standard errors estimated through bootstrapping (Mohus et al.,

2022). The MR-PRESSO test identified potential horizontal

pleiotropy, and its impact was addressed by excluding outliers

from the analysis (Verbanck et al., 2018). Leave-one-out analyses

were conducted to assess pleiotropy associated with individual

SNPs. Heterogeneity and outliers were examined using I2 and

Cochran Q-derived P-values in the IVW and MR-Egger analyses.

In this study, a p-value less than 0.05 was considered nominally

associated. When assessing the impact of SGLT2 inhibition on 10

pulmonary diseases, we employed Bonferroni correction (Sedgwick,

2014) to rigorously control for false positives across multiple tests.

Additionally, for the associations of microbiota and metabolites

with pulmonary diseases, we applied a slightly more lenient False

Discovery Rate (FDR) correction (Storey and Tibshirani, 2003) to

control for false positives across multiple tests. To identify

additional microbiota and metabolites that may potentially be

associated, we expanded the FDR-corrected p-value threshold

to 0.2.

Statistical analyses were executed with R software version 4.2.3,

and the MR analyses were carried out using the TwoSampleMR

package along with the MRPRESSO package.
2.8 Fine mapping to identify target gene
affecting disease

We used FUMA (https://fuma.ctglab.nl/) for fine mapping of

instrumental variables for metabolites and gut microbiota with

mediating effects, using a maximum P-value of 1× 10-5 for lead

SNPs for annotation (Watanabe et al., 2017).
2.9 Magma analysis

The genes obtained by fuma are put into the “GENE2FUNC

function” to annotate the genes according to the biological

background. GTEX V8 was used as the background gene set.
Frontiers in Cellular and Infection Microbiology 05
2.10 Muti-omic analysis

Two-sample MR analysis was performed to assess the causal

relationship between pQTL of finely mapped acquired genes and lung

disease. P-value less than 0.05 was considered nominally associated.
2.11 PheWAS analysis

We conducted a comprehensive whole-phenotype MR analysis

to explore the potential side effects associated with SGLT2

inhibitors. In this study, we utilized gene expression data as the

exposure variable and disease summary statistics from the UK

Biobank cohort, encompassing a substantial sample size of up to

408,961 individuals, as the outcome measure. To ensure robustness

in our phenotype-MR analysis, we meticulously selected 783

distinct traits, each with a substantial case count exceeding 500,

thereby enhancing the reliability and generalizability of

our findings.
2.12 Metabolic pathway analysis

We conducted an analysis of metabolic pathways using the

network-based MetOrigin (http://metorigin.met-bioinformatics.cn/)

(Yu et al., 2022) for functional enrichment and pathway exploration.

This approach aimed to identify potential connections between

metabolic pathways, metabolite groups, or biological processes and

the impact of SGLT2 inhibitors on pulmonary diseases. The

significance threshold for the pathway analysis was set at 0.05.

Additionally, our study only focused on analyzing metabolites

identified by the IVW method with associations surpassing the

recommended threshold (P < 0.05).
3 Results

3.1 Selection of IVs

Ten independent IVs were chosen as genetic instruments for

SGLT2 inhibition (Supplementary Table S1). The analysis involved

a range of 3 to 12 selected IVs for gut microbiota (Supplementary

Table S1) and 3 to 159 IVs for metabolites (Supplementary Tables

S2, S3). It is crucial to note that the F statistics for all SNPs

surpassed the threshold of 10, suggesting a negligible probability

of encountering weak instrument bias.
3.2 Causal effects of SGLT2 inhibition on
10 pulmonary diseases and T2DM

In the MR analysis, after Bonferroni correction (p<0.05/11),

we observed that SGLT2 inhibition was associated with a lowered
frontiersin.org
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riskof Interstitial lung disease (OR: 0.054, 95% CI: 0.020–0.148, p =

1.31×10-8), Pulmonary tuberculosis (OR: 0.280, 95% CI: 0.123–0.639,

p = 2.48×10-3), Pneumoconiosis(OR: 0.002, 95% CI: 7.58×10-5–0.037,

p = 5.18×10-5), Asthma (OR: 0.706, 95%CI:0.601–0.829, p = 2.22×10-5)

and T2DM (OR: 0.457, 95% CI: 0.253–0.823, p = 9.13×10-3)

(Supplementary Table S4). The results of the sensitivity analysis did

not indicate the presence of heterogeneity or directional pleiotropy

(Figure 2).
3.3 Causal effects of SGLT2 inhibition on
gut microbiota and metabolites

The IVW method revealed 152 nominally significant

associations (p < 0.05) between SGLT2 inhibition and gut

microbiota, 173 nominal associations with 249 circulating

metabolites, and 220 nominal associations with 486 metabolites

(Figures 3–5; Supplementary Table S4).
3.4 Causal effects of gut microbiota and
metabolites on interstitial lung disease,
pulmonary tuberculosis, pneumoconiosis
and asthma

We performed causal estimation for Interstitial Lung Disease,

Pulmonary Tuberculosis, Pneumoconiosis, and Asthma using 152

nominally significant gut microbiota, 173 out of 249 circulating

metabolites and 220 out of 486 metabolites, respectively (Figures 3–

5). Among the 211 types of gut microbiota included in the analysis,

a total of 22 gut microbiota (representing 1 order, 2 families, 7

genera, and 7 species) were found to have a causal relationship with

Interstitial Lung Disease; 6 gut microbiota (representing 1 order, 4

families, 1 genera) were found to have a causal relationship with

Pneumoconiosis; 8 gut microbiota (representing 2 families, 6

genera) were found to have a causal relationship with Pulmonary

Tuberculosis; 8 gut microbiota (representing 2 families, 6 genera)

were found to have a causal relationship with Asthma.

As for metabolites, X-11422–xanthine, X-09108, X-14208–

phenylalanylserine, Gamma-glutamyltyrosine were highly

correlated with interstitial lung disease;X-12719, Erythrose, N-
Frontiers in Cellular and Infection Microbiology 06
acetylalanine, X-11478, X-12116, and Gamma-glutamylleucine

were highly correlated with pneumoconiosis;X-11437 and X-

11374 were highly correlated with pulmonary tuberculosis;17 out

of 21 circulating metabolites, 10 out of 20 metabolites showed

significant correlations with asthma.

The all results were as follows:

Interstitial lung disease: The IVW method revealed nominally

significant associations (p < 0.05) between 22 gut microbiota,15 out of

173 circulating metabolites, and 17 out of 220 metabolites with

interstitial lung disease. After FDR correction, we observed 12 gut

microbiota, 0 out of 15 circulating metabolites, 4 out of 17metabolites

with significant causative correlations to interstitial lung disease.

Among gut microbiota, the family Enterobacteriaceae id.3469 (OR:

1.577, 95% CI: 1.423–1.749, p = 4.93×10-18, FDR = 3.70×10-16), the

family Bacteroidaceae id.917 (OR: 1.174, 95% CI: 1.039–1.327,

p =0.01, FDR =0.125), the genus Eisenbergiella id.11304 (OR:

1.275, 95% CI: 1.158–1.404, p = 7.50×10-7, FDR = 3.75×10-5), the

genus Ruminococcaceae UCG010 id.11367 (OR: 0.822, 95% CI:

0.760–0.890, p = 1.37×10-6, FDR = 5.14×10-5), the genus

Odoribacter id.952 (OR: 1.463, 95% CI: 1.242–1.723, p = 5.05×10-6,

FDR = 1.52×10-4), the genus Christensenellaceae R 7group id.11283

(OR: 0.523, 95% CI: 0.352–0.776, p = 1.28×10-3, FDR =0.026), the

genus Candidatus Soleaferrea id.11350 (OR: 1.222, 95% CI: 1.080–

1.382, p = 1.41×10-3, FDR =0.026), the genus Sutterella id.2896 (OR:

0.602, 95% CI: 0.602–0.921, p = 6.54×10-3, FDR =0.109), the genus

Ruminiclostridium9 id.11357 (OR: 0.846, 95% CI: 0.748–0.956,

p =7.45×10-3, FDR =0.112), the genus Bacteroides id.918(OR:

1.174, 95% CI: 1.039–1.327,p=0.01, FDR=0.125), the order

Enterobacteriales id.3468 (OR: 1.577, 95% CI: 1.423–1.749, p =

4.93×10-18, FDR = 3.70×10-16), and the phylum Euryarchaeota

id.55 (OR: 1.270, 95% CI: 1.115–1.446, p = 3.05×10-4, FDR =

7.62×10-3) were strongly associated with interstitial lung disease. As

for metabolites, X-11422–xanthine(OR: 0.327, 95% CI: 0.219–0.489,

p = 5.11×10-8, FDR =1.06×10-5), X-09108 (OR: 0.190, 95% CI: 0.084–

0.428, p = 6.34×10-5, FDR = 6.56×10-3), X-14208–phenylalanylserine

(OR: 0.650, 95% CI: 0.519–0.813, p = 1.70×10-4, FDR = 0.012),

Gamma-glutamyltyrosine(OR: 4.357, 95% CI: 1.948–9.748, p =

3.4×10-4, FDR =0.018) were highly correlated with interstitial

lung disease.

Pneumoconiosis: The IVWmethod revealed nominally significant

11 gut microbiota, 3 out of 173 circulating metabolites and 18 out of
FIGURE 2

Causal effects of SGLT2 inhibition on 10 pulmonary diseases and T2DM. Forest plot showing the Inverse Variance-Weighted method for determining
causal associations between SGLT2 inhibitors and ten prior lung diseases. MR-ivw analyses with P-value < 0.05 were determined to be positive
results, P for pleiotropy > 0.05 showed that MR analyses were not pleiotropic, and P for heterogeneity > 0.05 indicated that MR analyses were not
heterogeneous. IVW, inverse-variance weighted; OR, odds ratio.
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220 metabolites. After FDR correction, we observed 6 gut microbiota,

0 out of 3 circulating metabolites, 6 out of 18 metabolites with

significant correlations to pneumoconiosis. Among gut microbiota,

the genus Ruminococcaceae UCG010 id.11367 (OR: 0.256, 95% CI:

0.205–0.318, p = 4.77×10-34, FDR =7.16×10-32), the genus Peptococcus

id.2037 (OR: 0.577, 95% CI: 0.386–0.865, p = 7.66×10-3, FDR =0.191),

the family Enterobacteriaceae id.3469 (OR: 0.263, 95% CI: 0.111–

0.628, p = 2.60×10-3, FDR =0.112), the family Family XI id.1936 (OR:

1.597, 95% CI: 1.172–2.175, p = 3.00×10-3, FDR =0.112), the

family Alcaligenaceae id.2875 (OR: 0.568, 95% CI: 0.379–0.850, p =

5.95×10-3, FDR =0.179), and the order Enterobacteriales id.3468 (OR:

0.263, 95% CI: 0.111–0.628, p = 2.60×10-3, FDR =0.112) were

associated with pneumoconiosis. As for metabolites, X-12719 (OR:

3.793, 95% CI: 3.061–4.702, p = 4.25×10-34, FDR =8.79×10-32),

Erythrose(OR: 8.096, 95% CI: 3.470–18.885, p = 1.30×10-6,

FDR =1.35×10-4), N-acetylalanine (OR: 8.096, 95% CI: 3.470–

18.885, p = 2.89×10-5, FDR =1.20×10-3), X-11478 (OR: 0.410, 95%

CI: 0.268–0.629, p = 4.27×10-5, FDR =2.21×10-3), X-12116 (OR: 0.126,

95% CI: 0.041–0.389, p = 3.18×10-4, FDR =0.013), and Gamma-
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glutamylleucine (OR: 41.849, 95% CI: 4.207–416.246, p = 1.44×10-3,

FDR =0.049) were highly correlated with pneumoconiosis.

Pulmonary Tuberculosis: The nominally significant

associations included 16 gut microbiota, 12 out of 173

circulating metabolites, 24 out of 220 metabolites. After FDR

correction, we observed 8 gut microbiota, 0 out of 12 circulating

metabolites, 2 out of 24 metabolites with significant correlations to

pneumoconiosis. Among gut microbiota, the genus Sutterella

id.2896 (OR: 0.666, 95% CI: 0.609–0.728, p = 7.23×10-19, FDR

=1.08×10-16), the genus Rikenellaceae RC9 gut group id.11191

(OR: 0.885, 95% CI: 0.826–0.949, p = 5.59×10-4, FDR =0.042), the

genus Collinsella id.815 (OR: 1.353, 95% CI: 1.090–1.679, p =

6.07×10-3, FDR =0.152), genus Ruminococcus1 id.11373 (OR:

0.798, 95% CI: 0.679–0.937, p = 6.03×10-3, FDR =0.152), the

genus Phascolarctobacterium id.2168(OR: 0.714, 95% CI: 0.555–

0.918, p = 8.62×10-3, FDR =0.180), the genus Ruminococcaceae

UCG002 id.11360 (OR: 0.842, 95% CI: 0.739–0.959, p = 9.58×10-3,

FDR =0.180), the family Lactobacillaceae id.1836 (OR: 0.967, 95%

CI: 0.945–0.990, p = 4.87×10-3, FDR =0.152), and the family
FIGURE 3

Causal effects of gut microbiota on interstitial lung disease, pulmonary tuberculosis, pneumoconiosis, and asthma. Circumferential thermograms
showing causally linked gut microbiota in interstitial lung disease, tuberculosis, pneumoconiosis and asthma. The circular thermogram is divided into
five layers representing the P-value results of MR analysis of SGLT2i, interstitial lung disease, pulmonary tuberculosis, pneumoconiosis, and asthma
with gut microbiota. The change in color of each cell indicates the magnitude of the P-value. The redder the color of each cell, the smaller the P
value; the bluer the color of each cell, the larger the value.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1447327
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Yuan et al. 10.3389/fcimb.2024.1447327
Peptococcaceae id.2024 (OR: 0.786, 95% CI: 0.665–0.929, p =

4.73×10-3, FDR =0.152) were associated with pulmonary

tuberculosis. As for metabolites, X-11437 (OR: 1.064, 95% CI:

1.036–1.094, p = 8.09×10-6, FDR =1.68×10-3), and X-11374 (OR:

0.541, 95% CI: 0.390–0.752, p = 2.55×10-4, FDR =0.026) were

highly correlated with pulmonary tuberculosis.

Asthma: The nominally significant associations included 18 gut

microbiota, 21 out of 173 circulating metabolites, 20 out of 220

metabolites. After FDR correction, we observed 8 gut microbiota, 17

out of 21 circulating metabolites, 10 out of 20 metabolites showed

significant correlations with asthma. Among gut microbiota, the

genus Barnesiella id.944(OR: 1.072, 95% CI: 1.036–1.110, p =

7.10×10-5,FDR=0.011),the genus Holdemanella id.11393(OR: 0.951,

95% CI: 0.925–0.978, p = 4.47×10-4,FDR=0.016), the genus

Lachnospiraceae FCS020 group id.11314 (OR: 0.934, 95% CI:

0 .900–0 .970 , p = 4 .08×10 - 4 ,FDR=0 .016) , the genus

Methanobrevibacter id.123 (OR: 0.979, 95% CI: 0.968–0.991, p =
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5.42×10-4,FDR=0.016), the unknown genus id.2001 (OR: 0.944, 95%

CI: 0.913–0.976, p = 6.64×10-4,FDR=0.017), the genus Bacteroides

id.918(OR: 1.135, 95% CI: 1.045–1.233, p = 2.63×10-3,FDR=0.049),

the family Bacteroidaceae id.917 (OR: 1.135, 95% CI: 1.045–1.233, p =

2.63×10-3,FDR=0.049), and the family Porphyromonadaceae id.943

(OR: 0.850, 95% CI: 0.751–0.962, p = 0.01, FDR=0.169) were highly

associated with asthma. As for metabolites, Degree of unsaturation

(Fatty Acids) (OR: 1.109, 95% CI: 1.066–1.154, p = 3.19×10-7, FDR

=5.53×10-5), Ratio of docosahexaenoic acid to total fatty acids (OR:

1.121, 95% CI: 1.071–1.173, p = 8.36×10-7,FDR =7.23×10-5), Ratio of

omega-3 fatty acids to total fatty acids(OR: 1.079, 95% CI: 1.038–

1.122, p = 1.31×10-4,FDR =7.58×10-3), Phospholipids in HDL(OR:

0.947, 95% CI: 0.915–0.980, p = 1.95×10-3,FDR = 0.078),

Concentration of HDL particles (OR: 0.933, 95% CI: 0.892–0.975, p

= 2.26×10-3,FDR = 0.078), Concentration of medium HDL particles

(OR: 0.952, 95% CI: 0.919–0.987, p = 7.73×10-3,FDR = 0.138),

Cholesteryl esters in medium HD(OR: 0.953, 95% CI: 0.919–0.988,
FIGURE 4

Causal effects of metabolites on interstitial lung disease, pulmonary tuberculosis, pneumoconiosis, and asthma. Circumferential thermograms
showing causally linked metabolites (249 class) in interstitial lung disease, tuberculosis, pneumoconiosis and asthma. The circular thermogram is
divided into five layers representing the P-value results of MR analysis of SGLT2i, interstitial lung disease, pulmonary tuberculosis, pneumoconiosis,
and asthma with metabolites. The change in color of each cell indicates the magnitude of the P-value. The redder the color of each cell, the smaller
the P value; the bluer the color of each cell, the larger the value.
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p = 8.61×10-3,FDR = 0.138), Total lipids in medium HDL(OR: 0.952,

95% CI: 0.918–0.988, p = 8.78×10-3,FDR = 0.138), Total fatty acids

(OR: 0.945, 95% CI: 0.905–0.987, p = 0.011,FDR = 0.152), Total

concentration of lipoprotein particles(OR: 0.945, 95% CI: 0.905–

0.987, p = 0.011,FDR = 0.152), Phospholipids to total lipids ratio in

large LDL(OR: 1.048, 95% CI: 1.010–1.088, p = 0.014,FDR = 0.171),

Apolipoprotein A1(OR: 0.951, 95% CI: 0.914–0.990, p = 0.015,FDR =

0.173), Phospholipids to total lipids ratio in large HDL(OR: 1.051,

95% CI: 1.008–0.990, p = 1.095,FDR = 0.199), X-12407(OR: 0.920,

95% CI: 0.897–0.944, p = 1.36×10-10,FDR =2.84×10-8), 1-

myristoylglycerophosphocholine(OR: 1.113, 95% CI: 1.061–1.169, p

= 1.45×10-5,FDR =1.50×10-3), X-14056 (OR: 1.354, 95% CI: 1.142–

1.604, p = 4.70×10-4, FDR =0.025), X-11795(OR: 1.696, 95% CI:

1.260–2.282, p = 4.89×10-4, FDR =0.025), X-11374(OR: 1.171, 95%

CI: 1.055–1.298, p = 2.89×10-3, FDR =0.120), X-13215(OR: 0.773,

95% CI: 0.647–0.922, p = 4.25×10-3, FDR =0.130), Dodecanedioate

(OR: 1.218, 95% CI: 1.063–1.395, p = 4.45×10-3, FDR =0.130), 4-

androsten-3beta,17beta-diol disulfate 2* (OR: 0.758, 95% CI: 0.624–
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0.920, p = 5.01×10-3, FDR =0.130), Bilirubin (Z,Z) (OR: 0.938, 95%

CI: 0.896–0.982, p = 5.83×10-3, FDR =0.135), and Erythronate*(OR:

0.666, 95% CI: 0.495–0.895, p = 7.01×10-3, FDR =0.146) were highly

associated with asthma.

In relation to asthma, the Ratio of docosahexaenoic acid to total

fatty acids and the Degree of unsaturation exhibited evidence of

heterogeneity in Cochran’s Q test. MR-PRESSO identified outliers,

providing corrected values after observing anomalies. The

remaining results showed no evidence of heterogeneity in

Cochran’s Q test, and MR-PRESSO did not detect any significant

horizontal pleiotropy. (Supplementary Tables S1–3).
3.5 Mediation MR

After screening for potential intermediate factors, we identified

a total of 4 gut microbiota and 4 metabolites that met our

selection criteria.
FIGURE 5

Causal effects of metabolites on interstitial lung disease, pulmonary tuberculosis, pneumoconiosis, and asthma. Circumferential thermograms
showing causally linked metabolites (486 class) in interstitial lung disease, tuberculosis, pneumoconiosis and asthma. The circular thermogram is
divided into five layers representing the P-value results of MR analysis of SGLT2i, interstitial lung disease, pulmonary tuberculosis, pneumoconiosis,
and asthma with metabolites. The change in color of each cell indicates the magnitude of the P-value. The redder the color of each cell, the smaller
the P value; the bluer the color of each cell, the larger the value.
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Interstitial lung disease: We identified an indirect effect of

SGLT2 inhibition on interstitial lung disease through the family

Enterobacteriaceae id.3469 (OR: 0.499, 95% CI: 0.396–0.629, P =

3.71×10-9), and the order Enterobacteriales id.3468(OR: 0.499, 95%

CI: 0.396–0.629, P = 3.71×10-9), with a mediated proportion of

10.87% (95% CI: 0.079–0.138, P = 2.08×10-4) and 10.87% (95% CI:

0.079–0.138, P = 2.08×10-4) of the total effect.

Pneumoconiosis: We identified an indirect effect of SGLT2

inhibition on pneumoconiosis through the family Alcaligenaceae

id.2875 (OR: 0.401, 95% CI: 0.249–0.646, P = 1.71×10-4) and X-

12719 (OR: 0.701, 95% CI: 0.503–0.975, P =0.035). The mediated

proportion of the total effect was 8.10% (95%CI: 0.042–0.120, P =0.039)

and 7.43% (95% CI: 0.050–0.099, P = 2.65×10-3), respectively.

Pulmonary tuberculosis: We found a mediated effect of SGLT2

inhibition on pulmonary tuberculosis through the involvement of the

genus Phascolarctobacterium id.2168 (OR: 0.170, 95% CI: 0.123–0.236,

P = 1.57×10-26). This mediation contributed significantly, accounting

for 46.94% (95% CI: 0.236–0.703, P = 0.045) of the total effect.

Asthma: We identified an indirect effect of SGLT2 inhibition on

asthma through the Degree of unsaturation (Fatty Acids) (OR:

0.762, 95% CI: 0.692–0.839, P = 2.75×10-8), Ratio of

docosahexaenoic acid to total fatty acids (OR: 0.809, 95% CI:

0.734–0.891, P = 1.69×10-5),4-androsten-3beta,17beta-diol

disulfate 2*(OR: 0.663, 95% CI: 0.540–0.814, P = 8.60×10-5),with

a mediated proportion of 8.10% (95% CI: 0.042–0.119, P = 0.036),

6.96% (95% CI: 0.039–0.101, P = 0.025), 32.71% (95% CI: 0.181–

0.473, P = 0.025), of the total effect.
3.6 Metabolic pathway analysis

After analyzing the associated metabolites, we identified a total of

16 metabolic pathways that are integrated with SGLT2 and associated

with pulmonary disease (Figure 6). There are four metabolic pathways

associated with interstitial lung disease, with the most significant

pathway being “Caffeine metabolism” (p=7.83×10-3). For
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pneumoconiosis, the most significant pathway among the three

identified is “Glutathione metabolism” (p =1.67×10-2). In the case of

pulmonary tuberculosis, among the eight metabolic pathways, themost

significant one is “Aminoacyl-tRNA biosynthesis” (p = 1.07×10-3).

Finally, for asthma, “Glycerophospholipid metabolism” (p=3.87×10-2)

emerges as the only statistically significant. In addition, we noted a

shared metabolic pathway, “Biosynthesis of unsaturated fatty acids”,

between interstitial lung disease and pulmonary tuberculosis.

Moreover, “Fructose and mannose metabolism” emerged as a

common metabolic pathway between interstitial lung disease and

pneumoconiosis, while “Phenylalanine metabolism” was identified as

a shared pathway between pneumoconiosis and pulmonary

tuberculosis (Supplementary Table S4).
3.7 Fine mapping and magma analysis

We used the instrumental variable SNP for mediating metabolites

and bacteriophages for fine mapping, leading to extensive identification

of relevant target genes.16, 36, 63, and 1165 genes were mapped by

FUMA in Interstitial lung disease, Pulmonary tuberculosis,

Pneumoconiosis, and Asthma (Supplementary Table S5). Magma

analysis then helped us to further identify the distribution of genes in

tissues, and we found that in Pulmonary tuberculosis the differential

genes mapped significantly in skin tissues; in Interstitial lung disease the

differential genes mapped significantly in Heart tissues; and in Asthma

the differential genes mapped significantly in Liver tissues. In Asthma,

the differential gene mapped significantly in Liver tissue (Figure 7).
3.8 Multi-omics analysis to identify
target genes

Proteins are important forms of function in the body. We used

the cis-pQTL for analysis to identify positive proteins that were

causally associated with outcomes (Supplementary Table S6). We
FIGURE 6

Metabolic pathways. Bar graph showing metabolic pathways enriched for metabolites causally associated with interstitial lung disease, tuberculosis,
pneumoconiosis, asthma.
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found 71,66 and 71 causally associated proteins, but no overlap with

the fine mapping results in Pulmonary tuberculosis ,

Pneumoconiosis and Interstitial lung disease; we found 125

causally associated proteins, with 6 overlapping proteins obtained

from the fine mapping results in Asthma, and the results of the

overlapping proteins are shown in Table 2. Proteins TCN2,

TNFRSF1B and C10orf54 were positively associated with the

development of asthma (B>0); proteins PDGFD,INHBC and

ANXA7 were negatively associated with the development of

asthma (B<0).
3.9 Multiple effect evaluation of SGLT2
inhibitors across PheWAS analysis

PheWAS analyses were performed using instrumental variables

for SGLT2 inhibitors to determine their possible side effects and
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thus assess their effects more fully. After FDR correction, we found

that SGLT2 inhibitors were associated with Portal hypertension

(B<0, Pval=2.80E-18), Uterine leiomyoma (B>0, Pval=3.03E-13),

Glaucoma (B<0, Pval=1.25E-09), Rheumatism, unspecified and

fibrositis (B>0, Pval=1.94E-16) and Secondary malignant

neoplasm of digestive systems (B>0, Pval=1.08E-15) had

significant causal associations (Figure 8, Supplementary Table S7).
4 Discussion

Over the past few decades, the rapid advancements in gut

microbiota and metabolome studies have greatly enhanced our

understanding of diseases. The discovery of the gut-lung axis and

biomarkers such as metabolites has had a profound impact on the

treatment and early diagnosis of diseases (Budden et al., 2017; Dang

and Marsland, 2019). Our study is the first to comprehensively
FIGURE 7

Magma analysis annotates the distribution of finely mapped DEG genes in tissues. Using the result of gene analysis (gene level p-value), (competitive)
gene-set analysis is performed with default parameters with MAGMA v1.6. (A) Distribution of mapped genes in tissues of genus Phascolarctobacterium
(B) Distribution of mapped genes in tissues of family Alcaligenaceae (C) Distribution of mapped genes in tissues of X-12719 (D) Distribution of mapped
genes in tissues of family Enterobacteriaceae (E) Distribution of mapped genes in tissues of order Enterobacteriales (F) Distribution of mapped genes
in tissues of Ratio of docosahexaenoic acid to total fatty acids (G) Distribution of mapped genes in tissues of Degree of unsaturation (H) Distribution of
mapped genes in tissues of 4-androsten-3beta,17beta-diol disulfate 2.
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identify the lung-gut axis role of SGLT2 using a fine-mapping-based

multi-omics research approach. We explored the potential

mediating role of the gut microbiota and metabolites by

examining the effects of SGLT2 inhibition on the gut microbiota

and metabolites and their impact on lung-related diseases, and

performed a multi-omics analysis to identify target genes that drive

disease (Figure 9). In addition, our analyses identified 16 important

metabolic pathways strongly associated with SGLT2 inhibition and

the four lung diseases studied (interstitial lung disease,
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pneumoconiosis, tuberculosis, and asthma), and comprehensively

assessed the possible side effects of SGLT2 inhibitors.
4.1 The relationship between SGLT2
inhibition and ten pulmonary diseases

Some previous clinical trials, cohort studies, and retrospective

analyses have investigated the role of SGLT2 inhibition in
TABLE 2 Co-evidence of fine mapping and multi-omics.

Protein Outcome MR-Method Beta SE Pval

ANXA7

Asthma

Maximum likelihood -0.172 0.068 0.011

Inverse variance weighted -0.172 0.067 0.0097

TCN2 Inverse variance weighted 0.011 0.006 0.047

MR Egger 0.0278 0.013 0.048

Maximum likelihood 0.011 0.006 0.047

TNFRSF1B Maximum likelihood 0.066 0.033 0.049

Inverse variance weighted 0.066 0.033 0.048

C10orf54 Weighted median 0.059 0.019 0.002

Inverse variance weighted 0.042 0.020 0.037

Maximum likelihood 0.043 0.016 0.009

PDGFD Maximum likelihood -0.034 0.0170 0.042

Weighted median -0.045 0.022 0.037

Inverse variance weighted -0.035 0.0170 0.041

INHBC Weighted median -0.186 0.065 0.004

Inverse variance weighted -0.165 0.077 0.033

Maximum likelihood -0.172 0.056 0.002
FIGURE 8

Multiple Effect Evaluation of SGLT2 Inhibitors Across PheWAS analysis. Manhattan plot showing phenotypic traits causally associated with
instrumental variables for SGLT2. Horizontal coordinates indicate the categorization of phenotypes and vertical coordinates represent
-log10 (Pvalue).
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pulmonary diseases. They found that SGLT2 inhibitors may

reduce the risk of asthma, pneumonia, exacerbations in patients

with chronic obstructive pulmonary disease, improve pulmonary

arterial hypertension in patients with interstitial lung disease, and

serve as a therapeutic target for early-stage lung adenocarcinoma

(Scafoglio et al., 2018; Qiu et al., 2021; Pradhan et al., 2022; Wu

et al., 2022). However, there is still controversy surrounding their

results. Moreover, there remains a paucity of research on the

correlation between SGLT2 inhibitors and pneumoconiosis,

pulmonary tuberculosis. Our MR study results affirm the risk

reduction in asthma and interstitial lung disease, supporting the

aforementioned associations. However, no favorable outcomes

were discerned for COPD, pneumonia, and lung cancer. The

precise mechanisms underlying the protective effects of SGLT2

inhibitors against respiratory diseases have not been fully

elucidated thus far. In a murine model of asthma, it was

observed that SGLT2 inhibitors could reduce airway

hyperreact iv i ty , amel iorate airway inflammation and

remodeling. In the microscopic structure of the lungs, they

alleviated thickening of the bronchiolar epithelium, hyperplasia

of goblet cells, fibrosis, and hypertrophy of smooth muscles

(Hussein et al., 2023). Additionally, SGLT2 inhibitors were

found to possess anti-pulmonary fibrosis effects (Park et al.,

2019). Finally, our study results also revealed a decreased risk of

pneumoconiosis and pulmonary tuberculosis with SGLT2

inhibition. However, further validation is required in

future research.
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4.2 The relationship between SGLT2
inhibition and gut microbiota, as well as
circulating metabolites

In animal models, the significant SGLT2 inhibitors, dapagliflozin,

and empagliflozin, have been observed to induce changes in the gut

microbiota, impacting the progression of various diseases.

Empagliflozin, for instance, reduces lipopolysaccharide-producing

bacteria like Oscillibacter while increasing short-chain fatty acid-

producing bacteria such as Bacteroid and Odoribacter, thereby

contributing to the amelioration of diabetic nephropathy (Deng

et al., 2022). Similarly, dapagliflozin is associated with improvements

in arterial stiffness, vascular smooth muscle function, and alterations in

the composition of gut microbiota, including Actinobacteria,

Bacteroidetes, Firmicutes, Verrucomicrobia and Proteobacteria (Lee

et al., 2018). However, in human studies, no significant changes in the

gut microbiota composition were observed in fecal samples after 12

weeks of treatment with dapagliflozin (van Bommel et al., 2020). These

studies might be affected by remaining confounding factors, and the

precise alterations in the gut microbiota induced by SGLT2 inhibitors

remain unclear. Hence, our MR study delved into the relationship

between SGLT2 inhibition and the gut microbiota, uncovering

modifications in 152 gut microbiota. Further research is needed to

elucidate the connections between these microbiota changes and

various diseases.

The impact of SGLT2 inhibitors on metabolites has been

observed in early studies. The SGLT2 inhibitors were initially
FIGURE 9

Mechanism role diagram. Mechanisms of SGLT2i action in lung disease inferred herein.
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discovered to induce changes in lipid metabolites. In diabetic mouse

models, the use of canagliflozin was associated with a reduction in

circulating cholesterol (Osataphan et al., 2019), and treating high-

fat-fed mice with dapagliflozin inhibited lipid accumulation (Sato

et al., 2022). In a meta-analysis study, SGLT2 inhibitors have been

shown to alter levels of total cholesterol, low-density lipoprotein

cholesterol, non-high-density lipoprotein cholesterol, high-density

lipoprotein cholesterol, and triglycerides (Sánchez-Garcıá et al.,

2020). The impact of SGLT2 inhibition extends to other blood

metabolites, as evidenced by a study measuring plasma metabolite

changes in patients treated with empagliflozin, revealing significant

alterations in the tricarboxylic acid cycle, unsaturated fatty acids,

butyric acid, propionic acid, alanine, aspartic acid, and glutamic

acid (Liu et al., 2021). However, there is ongoing debate about how

metabolites are altered. Therefore, in our study, we utilized SGLT2

genetic variants as instrumental variables to explore changes in

metabolites. To identify more metabolite changes, we employed two

metabolite GWAS datasets—one predominantly containing lipid

metabolites and the other encompassing various blood metabolites.

Our study results revealed changes in 173 out of 249 metabolites

and 220 out of 486 metabolites in the two respective datasets. The

connections between metabolites and multiple diseases still require

further exploration.
4.3 The mediating role of gut microbiota
and metabolites in the association between
SGLT2 inhibition and interstitial lung
disease, pneumoconiosis, pulmonary
tuberculosis, and asthma

The aforementioned studies have already revealed that SGLT2

inhibitors induce changes in gut microbiota and metabolites. The

investigation into the role of gut microbiota and metabolites in

pulmonary diseases is currently progressing vigorously.

Our research results indicate that the family Enterobacteriaceae

and the order Enterobacteriales play a mediating role in interstitial lung

disease. These two bacteria have not been identified in current research

on interstitial lung disease. In a study predominantly involving females

with interstitial lung disease, the dysregulation of gut microbiota was

identified as a significant factor exacerbating the disease (Chioma et al.,

2023). However, the specific bacteria responsible for the dysregulation

have not been elucidated. Currently, there is limited data on the gut

microbiota of patients with interstitial lung disease. In our study, in

addition to these two clearly identified intermediate bacterial groups,

there are also some significant bacteria. However, these bacteria still

require further investigation in future studies. Additionally, in the study

of metabolites and interstitial lung disease, while no mediating

metabolites were identified, there are several significant metabolites,

such as X-11422 (xanthine), X-14208 (phenylalanylserine), and

Gamma-glutamyltyrosine. In a study involving blood samples related

to interstitial lung disease in systemic sclerosis, xanthine was found to

distinguish the severity of the condition (Meier et al., 2020).

Metabolomic research on cellular metabolism in lung fibrosis

revealed changes in various amino acids such as glutamine,

glutamate, glycine, and lipid metabolites (Roque and Romero, 2021).
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While our study partially corroborates these findings, we also identified

additional metabolites that require further investigation. Furthermore,

our research uncovered numerous lipid metabolites associated with

interstitial pneumonia; however, they did not maintain significance

after multiple corrections and are therefore not discussed in our

analysis. We hope that future studies will provide better insights to

validate these observations.

Our research findings suggest that the family Alcaligenaceae

and X-12719 play a mediating role in pneumoconiosis. In a

Mendelian randomization study investigating the relationship

between gut microbiota and pneumoconiosis, utilizing a database

from Finland, we also identified a significant association between

the Alcaligenaceae family and pneumoconiosis (Shi et al., 2023).

This bacterium has not been previously discovered in

pneumoconiosis research. Another significant bacterium in the

results was Ruminococcaceae, but it did not act as a mediator. A

similar finding was observed in a pneumoconiosis rat study, where

they observed changes in bacteria such as Ruminococcaceae

NK4A214 group, Ruminiclostridium 5, Allobaculum, among

others (Guo et al., 2023). The involvement of other bacteria

identified in the results still requires further confirmation.

Regarding metabolites, our result indicates an unknown

metabolite in an intermediate position, which requires further

clarification in the future. In our study, we also identified some

significant metabolites that did not act as intermediates, such as

Erythrose, N-acetylalanine, Gamma-glutamylleucine, etc. Changes

in amino acids and peptides have been observed in previous studies

on pneumoconiosis patients (Li et al., 2022b). Notably, N-

acetylalanine and Gamma-glutamylleucine belong to the category

of amino acids and peptides. Therefore, the metabolites we

discovered, combined with findings from previous research, can

contribute to future studies on pneumoconiosis.

Our research findings suggest that the genus Phascolarctobacterium

is the only one playing a mediating role in pneumoconiosis. In a study

focusing on the gut microbiota of tuberculosis patients, significant

enrichment of Phascolarctobacterium, Eubacterium, Faecalibacterium,

and Roseburia was observed (Maji et al., 2018). This finding provides

strong validation for our research results. Additionally, in another study

involving 16S rRNA gene sequencing of fecal samples from tuberculosis

patients, Eubacterium was identified as a diagnostic biomarker for

tuberculosis (Ye et al., 2022). Although Eubacterium lost statistical

significance in our study results after multiple corrections, considering

that multiple corrections are a stringent correction method, it may lead

to the loss of some potential positive findings. Therefore, in the future,

integrating our microbiota results may provide a basis for more detailed

studies on the treatment of pulmonary tuberculosis patients. Regarding

metabolites, all the metabolites in our study lost statistical significance

after multiple corrections. In metabolomic studies of pulmonary

tuberculosis patients, a decrease in levels of cholesterol and other lipid

metabolites (Wang et al., 2022), as well as changes in some amino acid

levels (Szeszko et al., 2007), have been observed. Similar changes in these

metabolites were also noted in our results. Therefore, further research is

needed to explore metabolites in studies involving pulmonary

tuberculosis patients.

Our research indicates that the degree of unsaturation (fatty

acids), ratio of docosahexaenoic acid to total fatty acids, and 4-
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androsten-3beta,17beta-diol disulfate 2* serve as mediating factor in

asthma. Our results did not reveal mediating gut microbiota, but

some significant bacteria were identified, such as Barnesiella,

Lachnospiraceae, Holdemanella, Bacteroidaceae, Bacteroides, etc.

The alterations of these bacteria have been reported in asthma

patients or mouse models of asthma (Zimmermann et al., 2019; Gu

et al., 2023; Liu et al., 2023a). Regarding mediating metabolites, it

has been demonstrated in mouse models that controlling the

metabolism of long-chain unsaturated fatty acids can alter airway

inflammation, thereby influencing allergic asthma (Hou et al.,

2022). In a study on infant growth and development, the addition

of polyunsaturated fatty acids, docosahexaenoic acid, and

arachidonic acid to formula can reduce the incidence of asthma

(Miles et al., 2021). There are also numerous studies on fatty acids

and asthma, with fatty acids playing a crucial role in the

development and resolution of inflammation pathways associated

with asthma (Wendell et al., 2014; Garcia-Larsen, 2021). Another

mediating metabolite, 4-androsten-3beta,17beta-diol disulfate 2*,

belongs to lipid metabolites. Current research suggests its potential

association with stroke (Zhang et al., 2023), but there is currently no

research on its correlation with asthma. Lipid metabolites identified

in our research can validate previous studies on metabolites related

to asthma patients and provide some yet undiscovered metabolites.

However, further validation of their association with asthma is still

needed in future research.
4.4 The metabolic pathways in the
association between SGLT2 inhibition and
interstitial lung disease, pneumoconiosis,
pulmonary tuberculosis, and asthma

Our MR analysis identified metabolic pathways that exhibit a

causal relationship with the development of interstitial lung disease,

pneumoconiosis, pulmonary tuberculosis, and asthma. In

interstitial lung disease, four metabolic pathways were discovered,

including the caffeine metabolism, biosynthesis of unsaturated fatty

acids, purine metabolism and fructose and mannose metabolism.

These four metabolic pathways have not been previously reported

in studies on interstitial lung disease. In our results, the primary

metabolites associated with caffeine metabolism and purine

metabolism include xanthine, as discussed earlier. The

“Biosynthesis of unsaturated fatty acids” pathway is commonly

present in both interstitial lung disease and pulmonary tuberculosis,

with the main metabolite involved being Eicosapentaenoate. While

Eicosapentaenoate has not been reported in these two diseases, it

belongs to the category of unsaturated fatty acids, which have been

previously studied in the context of both interstitial lung disease and

pulmonary tuberculosis (Yi et al., 2019; Kim et al., 2021).

The metabolic pathways identified in pneumoconiosis include

glutathione metabolism, phenylalanine metabolism, and fructose and

mannose metabolism. The metabolic pathway of “Fructose and

mannose metabolism” is shared between interstitial lung disease

and pneumoconiosis, with Mannitol being a key metabolite

involved. The glutathione metabolism and phenylalanine
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metabolism involved metabolites are 5-oxoproline and 3-(3-

hydroxyphenyl)propionate. The three metabolites mentioned, have

not been reported in the existing literature. Both 5-oxoproline and 3-

(3-hydroxyphenyl)propionate belong to amino acids, and alterations

in amino acids have been reported in studies involving

pneumoconiosis patients (Li et al., 2022b; Kan et al., 2023).

The metabolic pathways found to be associated with pulmonary

tuberculosis encompass Aminoacyl-tRNA biosynthesis, Arginine

biosynthesis, Valine, leucine and isoleucine biosynthesis,

Phenylalanine, tyrosine and tryptophan biosynthesis, Biosynthesis

of unsaturated fatty acids, Phenylalanine metabolism, Biosynthesis

of various other secondary metabolites, and Glycine, serine and

threonine metabolism. The key metabolites implicated in these

pathways include Phenylalanine, Threonine, Citrulline, and

Eicosapentaenoate. As previously discussed, Eicosapentaenoate

has been covered earlier, and the remaining three metabolites all

belong to amino acids, with reported associations in studies related

to tuberculosis (Lima et al., 2013; Das et al., 2015; Li et al., 2022a).

The only identified metabolic pathway in asthma is

Glycerophospholipid metabolism. In previous plasma lipidomics

studies on asthma patients, Glycerophospholipid metabolism has

been revealed to play a crucial role in asthma. Our research findings

strongly validate the aforementioned discoveries. The main metabolite

involved in this pathway is 1-myristoylglycerophosphocholine, which

currently lacks relevant reports.

Additionally, disparities exist between the metabolites

predominantly implicated in pathway analysis and those

highlighted in our significant results. This suggests the presence

of potentially overlooked metabolic pathways. Further investigation

is essential to gain a more comprehensive understanding of the

interconnections among metabolites, metabolic pathways, and

pulmonary diseases.
4.5 Fine mapping and multi-omics analysis

Mediation analysis based on metabolites and gut flora does not

allow for more in-depth determination of the mechanisms by which

they affect disease. That is why it is said that with Fuma it is possible

to identify very efficiently the genes that are annotated and mapped

for further evaluation with the disease (Liu et al., 2023b). This study

accordingly identified multiple mapping sets for four lung diseases.

Six effector genes that overlap in asthma were further identified by

proteomic MR analysis.
4.6 Strengths and limitations

Our study is the first to comprehensively identify the lung-gut

axis role of SGLT2 using a fine-mapping-based multi-omics

research approach. However, it is important to recognize some

inherent limitations of our study. First, the study participants were

predominantly of European descent, and thus the generalizability of

our findings to other populations needs to be assessed. Second,

metabolites from the two data sources may overlap, which may bias
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the results. Finally, although MR has helped to determine the effects

of SGLT2 inhibition on the gut microbiota, metabolites, and genes,

which in turn affect associated lung diseases, prospective or

randomized controlled studies are needed to delve deeper into the

underlying mechanisms.
5 Conclusion

This comprehensive study strongly supports a multi-omics

association between SGLT2 inhibition and reduced risk of

interstitial lung disease, tuberculosis, pneumoconiosis, and asthma.

Four identified gut microbiota, four metabolites, 16 metabolic

pathways, and six target genes appear to play a potential role

in this association. The results of the comprehensive phenome-

wide association analysis also identified the full effect of

SGLT2 inhibitors.
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