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Introduction: This study aims to utilize proteomics, bioinformatics, and machine

learning algorithms to identify diagnostic biomarkers in the serum of patients

with acute and chronic brucellosis

Methods: Proteomic analysis was conducted on serum samples from patients

with acute and chronic brucellosis, as well as from healthy controls. Differential

expression analysis was performed to identify proteins with altered expression,

while Weighted Gene Co-expression Network Analysis (WGCNA) was applied to

detect co-expression modules associated with clinical features of brucellosis.

Machine learning algorithms were subsequently used to identify the optimal

combination of diagnostic biomarkers. Finally, ELISA was employed to validate

the identified proteins.

Results: A total of 1,494 differentially expressed proteins were identified,

revealing two co-expression modules significantly associated with the clinical

characteristics of brucellosis. The Gaussian Mixture Model (GMM) algorithm

identified six proteins that were concurrently present in both the differentially

expressed and co-expression modules, demonstrating promising diagnostic

potential. After ELISA validation, five proteins were ultimately selected.

Discussion: These five proteins are implicated in the innate immune processes of

brucellosis, potentially associated with its pathogenic mechanisms and

chronicity. Furthermore, we highlighted their potential as diagnostic

biomarkers for brucellosis. This study further enhances our understanding of

brucellosis at the protein level, paving the way for future research endeavors.
KEYWORDS

brucellosis, biomarkers, proteomics, bioinformatics, differential expression analysis,
weighted gene co-expression network analysis (WGCNA), machine learning
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1 Introduction

Brucellosis is a zoonotic disease caused by bacteria of the genus

Brucella invading the body, posing a significant threat to public

safety and human health as a shared illness between humans and

animals (Franco et al., 2007). Humans can become infected through

contact with the secretions of infected animals or carriers, including

milk, feces, and urine (Jiang et al., 2020). In the acute phase of the

disease, patients often present with symptoms such as fever,

sweating, fatigue, and abnormalities in the blood system. In the

chronic phase, joint pain and arthritis become predominant

symptoms (Liu et al., 2021). Due to the disease’s diverse clinical

manifestations and significant individual variations among patients,

brucellosis is prone to misdiagnosis and underdiagnosis. This often

leads to missed opportunities for optimal treatment and can result

in the progression of the disease to a chronic state (Wu et al., 2022).

Currently, combination antibiotic therapy is the primary treatment

for brucellosis. Diagnosis is typically made by clinicians through a

combination of patient history, clinical presentations, and

laboratory tests (Shakir, 2021). According to a report by the

World Health Organization (WHO), approximately 500,000 new

cases of brucellosis are reported annually. However, due to

limitations in diagnostic techniques, the actual incidence rate is

likely to be much higher (Marvi et al., 2018). Over the past two

years, the incidence of brucellosis in Inner Mongolia and

surrounding regions has increased exponentially, exhibiting

distinct spatiotemporal distribution patterns (Yang et al., 2023a).

Laboratory diagnosis of brucellosis typically relies on bacterial

culture and serological immunological tests. Common serological

tests include the Rose Bengal Plate Test (RBPT) and the standard tube

agglutination test (SAT) (Yagupsky et al., 2019). However, these

methods have certain limitations. For example, bacterial culture is

time-consuming, which can delay timely disease treatment.

Additionally, serological tests are often limited by issues related to

sensitivity and specificity, which may lead to misdiagnosis,

particularly in the early stages of infection (Di Bonaventura et al.,
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2021). Serum proteins, which are derived from various tissues and

organs, dynamically reflect the body’s physiological processes. Their

expression levels can change during the onset and progression of

diseases. In many cases, serum protein levels can serve as biomarkers

to assist physicians in diagnosing diseases, monitoring their

progression, evaluating treatment efficacy, and predicting patient

prognosis. With the advancements in mass spectrometry

technology, it is now possible to detect and identify low-abundance

proteins in serum with high sensitivity and specificity. This has

opened up new possibilities for screening and discovering protein

biomarkers associated with diseases (Geyer et al., 2017). In this study,

we applied Astral-DIA proteomics technology and bioinformatics

analysis to serum samples collected from both acute and chronic

brucellosis patients, as well as healthy controls. The primary objective

was to identify potential protein biomarkers that could effectively

differentiate between acute and chronic brucellosis and distinguish

brucellosis patients from healthy individuals.

In this study, we enrolled 40 participants, consisting of 15 acute

Brucellosis patients, 15 chronic Brucellosis patients, and 10 healthy

controls. Serum samples were collected from all participants, and

their protein expression profiles were analyzed using an Orbitrap

Astral mass spectrometer. A total of 6,064 proteins were identified,

and both differential expression analysis and Weighted Gene Co-

expression Network Analysis (WGCNA) were performed on these

proteins. The differential expression analysis identified three groups

of key differentially expressed proteins: 42 common differentially

expressed proteins, 120 proteins related to chronicity, and 227

proteins associated with the acute phase. WGCNA revealed two

modules that were significantly correlated with Brucellosis

characteristics. Combining the results from both approaches, 69

proteins were identified as common to both analyses. Subsequently,

machine learning algorithms were applied to further refine the

results, leading to the identification of six proteins that hold

potential for improving the diagnosis and understanding of

Brucellosis mechanisms. A flowchart summarizing the study

design is shown in Figure 1.
FIGURE 1

Flowchart of this study.
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2 Materials and methods

2.1 Research populations

A total of 40 participants were included in this study, divided

into three groups: 15 individuals with acute Brucellosis, 15 with

chronic Brucellosis, and 10 healthy controls. The diagnostic criteria

for Brucellosis were as follows: (1) Epidemiological history. (2)

Laboratory tests: Isolation of Brucella from blood cultures or

positive results in both the Rose Bengal Plate Test (RBPT) and

the serum agglutination test (SAT) with titers of 1:100++ or higher,

or patients with symptoms persisting for more than one year with

titers of 1:50++ or higher. (3) Clinical manifestations: Symptoms

such as fever, sweating, fatigue, joint pain, and other signs of

infection. A diagnosis of Brucellosis is confirmed when all three

criteria are met (Liu et al., 2022). (4) Clinical staging: A diagnosis is

classified as acute if symptoms occur within 3 months of onset,

while cases presenting after more than 6 months are considered

chronic (Jiang et al., 2019). (5) Inclusion criteria: Participants

meeting the diagnostic criteria with complete and sufficient

clinical and laboratory data. (6) Exclusion criteria: Excluding

individuals with concurrent infections, immunological disorders,

underlying diseases, or abnormalities in the immune system.
2.2 Preparation for the removal of high-
abundance protein samples

All samples were initially frozen and then transferred to

centrifuge tubes. Following the instructions provided in the High-

Select™ Top14 Abundant Protein Depletion Resin Kit protocol,

high-abundance proteins were removed, and the protein solution

was collected. The samples were concentrated to the appropriate

volume using a 3 kDa ultrafiltration tube. Subsequently, the samples

were exchanged with 8M urea solution (containing a protease

inhibitor) three times, with each exchange lasting 40 seconds. The

samples were then lysed on ice for 30 minutes, with vortexing every

5 minutes for 5-10 seconds. After lysis, the samples were centrifuged

at 12,000g for 30 minutes at 4°C to collect the supernatant. Protein

concentration was determined using the bicinchoninic acid (BCA)

assay, according to the manufacturer’s instructions. Finally, to

assess the efficiency of the high-abundance protein removal, SDS-

PAGE electrophoresis was performed.
2.3 Protein digestion

A 100mg aliquot of the protein sample was resuspended in 100

mM Triethylammonium bicarbonate buffer (TEAB) to achieve the

final concentration. The mixture was reduced by adding 10 mM

Tris(2-carboxyethyl) phosphine (TCEP), and the reaction was

allowed to proceed at 37°C for 60 minutes. Following reduction,

40 mM iodoacetamide (IAM) was added, and the reaction was

incubated in the dark at room temperature for 40 minutes. To

precipitate the proteins, pre-chilled acetone was added in a 6:1
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(acetone: sample) ratio, and the mixture was incubated at -20°C for

4 hours. The protein pellet was resuspended in 100µL of 100 mM

TEAB for thorough dissolution. Trypsin was added at a mass ratio

of 1:50 (enzyme: protein), and the mixture was incubated overnight

at 37°C for digestion.
2.4 Peptide desalting and quantification

After trypsin digestion, the peptides were concentrated using a

vacuum pump. The resulting peptides were then re-solubilized in

0.1% trifluoroacetic acid (TFA). Desalting was performed using an

HLB (Hydrophilic-Lipophilic Balance) column, and the desalted

peptides were further concentrated using a vacuum concentrator.

Finally, the peptide concentration was determined using the

Thermo Fisher Scientific Peptide Quantification Kit (Item #23275).
2.5 DIA mass detection

Based on peptide quantification results, the peptides were

analyzed by an Vanquish Neo UHPLC system (Thermo, USA)

coupled with an Orbitrap Astral mass spectrometer (Thermo, USA)

at Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China).

Briefly, a uPAC High Throughput column (75 mm × 5.5 cm,

Thermo Fisher Scientific, USA) was used for chromatographic

separation. The mobile phases consisted of solvent A (water with

2% acetonitrile (ACN) and 0.1% formic acid) and solvent B (water

with 80% ACN and 0.1% formic acid). The peptides were eluted

using a 180-minute gradient at a flow rate of 500 nL/min.

Data-independent acquisition (DIA) data were collected using

an Orbitrap Astral mass spectrometer operating in DIA mode. The

detection mode was set to positive ionization, with the ionization

source voltage set to 1.5 kV. Both MS and MS/MS data were

acquired over a m/z range of 100 to 1700.
2.6 Protein identification

Spectronaut™ software (Version 18) was used to analyze the

DIA raw data (Zhang et al., 2020). A selection criterion of 6 peptides

per protein and 3 daughter ions per peptide was applied for

quantitative analysis. The parameters were set as follows: Protein

FDR ≤ 0.01, Peptide FDR ≤ 0.01, Peptide Confidence ≥ 99%, and

XIC width ≤ 75 ppm. Shared and modified peptides were excluded,

and the peak areas were calculated and summed to generate the

quantitative results. Only proteins with at least one unique peptide

were included in the protein identification.
2.7 Data preprocessing and
differential analysis

The protein expression matrix was preprocessed using

R software (version 4.3.1) and the “SeqKnn” package (version

1.0.1). Initially, proteins with missing values in ≥70% of the
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samples were removed. Missing values in other proteins were

imputed using the SeqKnn method, and the data were then log-

transformed. Differential expression analysis was performed using

the “limma” package (version 3.56.2) (Ritchie et al., 2015),

comparing the acute, chronic, and control groups. Proteins with a

|Fold Change| ≥ 1.5 and a p-value ≤ 0.05 were considered

significantly upregulated or downregulated. Volcano plots and

box plots were generated using the “ggplot2” package (version

3.4.4), and a heatmap was created using the “pheatmap” package

(version 1.0.12).
2.8 Weighted correlation network analysis

To identify highly correlated gene modules, we performed a

Weighted Gene Co-expression Network Analysis (WGCNA). This

analysis aimed to explore the relationships between modules and

their associations with external traits, such as clinical indicators, to

identify potential diagnostic biomarkers with clinical relevance. The

method is also applicable to proteomics research (Wu et al., 2020).

We used the “WGCNA” package (version 1.72.1) to construct the

co-expression network (Langfelder and Horvath, 2008). First, we

conducted a clustering analysis to identify potential outlier samples.

We then used the R function “pickSoftThreshold” to determine the

optimal soft-thresholding power parameter (b). The R function

“blockwiseModules” was subsequently applied to construct the co-

expression network automatically, with parameter settings:

minModuleSize = 30 and mergeCutHeight = 0.25. Next, we

calculated the correlation between different modules and external

traits, followed by the generation of a correlation heatmap. The

module with the highest correlation to the traits of interest was

selected as the key module, and the proteins within this module

were used for further feature protein selection. Gene significance

(GS) and module membership (MM) were computed, and a scatter

plot was generated. Finally, proteins with the strongest connections

in the key module were exported to Cytoscape (version 3.9.1) for

network visualization (Shannon et al., 2003).
2.9 Enrichment analysis of
characteristic genes

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses were performed on the feature

proteins using the Database for Annotation, Visualization, and

Integrated Discovery (DAVID) (https://david.ncifcrf.gov) (Huang

et al., 2007). A p-value ≤ 0.05 was considered statistically significant.
2.10 Machine learning

We employed three machine learning algorithms—LASSO,

SVM-RFE, and Gaussian Mixture Model (GMM)—to identify the

most valuable biomarkers for diagnosing Brucellosis. LASSO (Least

Absolute Shrinkage and Selection Operator) regression is used to

select variables by finding the optimal l that minimizes
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classification errors. During the fitting process, LASSO

automatically conducts variable selection, making it ideal for

feature screening when constructing optimal classification models.

The analysis was performed using the “glmnet” package (version

4.1.8) (Engebretsen and Bohlin, 2019). SVM-RFE (Support Vector

Machine-Recursive Feature Elimination) is a feature selection

method that iteratively eliminates features based on their

importance. Starting with all features, it evaluates each feature’s

score using model training samples and removes the features with

the lowest scores based on model performance. The remaining

features are then used to train the model for the next iteration. This

process continues until the most significant features are identified,

and model performance is evaluated using cross-validation (Huang

et al., 2017). The SVM-RFE analysis was conducted using the

“e1071” package, with K-Fold Cross-Validation (k = 5). Gaussian

Mixture Model (GMM) is a probabilistic unsupervised clustering

technique that partitions data variables into a mixture of multiple

Gaussian distributions. This approach aids in modeling the data

more flexibly and selecting optimal variable combinations. The

GMM analysis was carried out using the “mclust” package (version

6.0.0) (Scrucca et al., 2016), and the optimal variables were selected

based on the magnitude of their Area Under the Curve

(AUC) values.
2.11 Enzyme-linked immunosorbent assay

The potential diagnostic protein biomarkers were further

validated in a larger cohort using the following ELISA kits:

Human Serum Amyloid A2 (SAA2 GENLISA™ ELISA Kit, item

#KBH6164), Human Argininosuccinate Synthase (ASS1

GENLISA™ ELISA Kit, item #KBH4985), Human MARCO

(MARCO ELISA Kit, item #EK2242 and item #EK2049), Human

sICAM-1/CD54 (sICAM-1/CD54 ELISA Kit, item #EK189-96), and

Human HSP27/HSPB1 (HSP27/HSPB1 ELISA Kit, item #EK1244-

96). The cohort included 30 acute-phase patients, 30 chronic-phase

patients, and 20 healthy controls, totaling 80 participants, of whom

40 patients were also included in the proteomics analysis.
3 Results

3.1 Screening and biological function
enrichment analysis of differential proteins
in acute and chronic brucellosis

After mass spectrometry analysis, a total of 6064 proteins were

identified. After removing proteins with missing values greater than

or equal to 70%, 5060 proteins remained for further analysis.

Differential expression analysis was conducted using the “limma”

package in R software. The differentially expressed proteins across

the three groups were visualized using volcano plots, and the

overlap of these proteins among the groups was depicted with

Venn diagrams, as shown in Figure 2A. A total of 1494 proteins

exhibited differential expression across the three groups. Among

these, 248 proteins were differentially expressed only between the
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chronic Brucellosis group and the healthy control group, while 270

proteins were differentially expressed exclusively between the acute

Brucellosis group and the chronic Brucellosis group. Additionally,

380 proteins showed differential expression solely between the acute

Brucellosis group and the healthy control group. Furthermore, 42

proteins were differentially expressed in all three groups, indicating

their potential association with Brucella infection. A subset of 120

proteins showed consistent differential expression between the

acute Brucellosis group and the chronic Brucellosis group, as well
Frontiers in Cellular and Infection Microbiology 05
as between the chronic Brucellosis group and the healthy controls.

These proteins may play a role in the progression from acute to

chronic Brucellosis (Yang et al., 2023b), as illustrated in Figure 2A.

Lastly, we highlighted the differential expression of inflammatory

proteins (CRP, SAA1, and SAA2) in the volcano plot. Notably,

P02741 (CRP) and P0DJI9 (SAA2) showed differential expression

across all three groups, while P0DJI98 (SAA1) did not exhibit

differential expression between the chronic Brucellosis group and

the healthy controls. This suggests that CRP and SAA2 may hold
FIGURE 2

Differential protein expression and chronic protein enrichment analysis in three groups. (A) A volcano plot and a Venn diagram collectively depict the
differential protein expression among three groups in pairwise comparisons. (B) A heatmap illustrates the expression profiles of the 42 differentially
expressed proteins in serum samples from the three groups. (C) The box plot shows the expression levels of acute-phase proteins in serum samples
from the three groups. (D) Gene Ontology (GO) enrichment analysis of the 120 proteins potentially associated with the chronicity of Brucellosis.
(E) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the 120 proteins potentially associated with the chronicity
of Brucellosis.
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diagnostic value in monitoring the progression of Brucellosis to

chronic infection.

To further describe the expression patterns of the 42 common

differentially expressed proteins, we generated a heatmap.

Clustering analysis was performed on both the samples and

proteins within the heatmap. The results revealed that the

samples were effectively grouped into three main clusters: acute

Brucellosis, chronic Brucellosis, and healthy controls, as shown in

Figure 2B. Notably, the expression patterns of these 42 proteins

aligned with the results of the differential analysis. In addition, we

analyzed the expression levels of eight acute-phase proteins across

the three groups. The findings demonstrated that while these

proteins were elevated during the acute phase of Brucellosis, CRP,

FGB, LYZ, and AAT did not return to the baseline levels observed in

healthy controls in chronic patients. This suggests the persistence of

long-term inflammation in chronic Brucellosis, as illustrated

in Figure 2C.

To further investigate the biological processes and enriched

pathways involved in the chronic progression of Brucellosis, we

conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment analyses on the 120 commonly

differentially expressed proteins. The GO analysis (Figure 2D)

results show that several significantly enriched terms in the

biological process (BP) category are primarily related to immune

cell migration and proliferation, as well as cell movement and

adhesion; In the cellular component (CC) analysis, “extracellular

exosome” is a significantly enriched component; In the molecular

function (MF) category, “protein binding” is a significantly enriched

term. The KEGG pathway analysis (Figure 2E) revealed that the

differentially expressed proteins were primarily involved in

pathways including the VEGF signaling pathway, B cell receptor

signaling pathway, Fc gamma R-mediated phagocytosis, MAPK

signaling pathway, and natural killer cell-mediated cytotoxicity.

Additionally, we present the results of the Brucellosis group

analysis with the healthy control group in Supplementary Figure 1.
3.2 Identifying co-expressed protein
modules associated with clinical indicators
in brucellosis patients using WGCNA

To identify co-expressed protein modules, we applied the

Weighted Gene Co-expression Network Analysis (WGCNA)

method to construct a weighted co-expression network from the

expression data of 5060 proteins. Cluster analysis was performed

across three distinct sample groups, revealing clear differentiation

among them, with no outliers or abnormal samples identified

(Supplementary Figure 2A). As shown in Figure 3A, a scale-free

topology criterion with a fitting index of 0.9 indicated that the

minimum soft thresholding power required to achieve a scale-free

network was 5. Therefore, a soft thresholding power of 5 was

selected as the optimal parameter for subsequent analysis. This

process led to the identification of 12 distinct modules (Figure 3B),

including 11 co-expressed protein modules and one gray module

(MEgray), which was excluded from further analysis. The heatmap

displaying inter-module correlations is provided in Supplementary
Frontiers in Cellular and Infection Microbiology 06
Figure 2B. To assess the relationship between the identified modules

and clinical traits, we utilized the clinical symptoms and laboratory

indicators of Brucellosis patients. A heatmap was generated to

illustrate the correlations between these traits and the protein

modules (Figure 3C). Detailed clinical information for the

patients is provided in Supplementary Table 1, while the full

heatmap showing the correlations can be found in Supplementary

Figure 2C. The analysis revealed that the blue module was positively

correlated with the clinical symptom of fever, the blue and turquoise

modules were negatively correlated with Brucellosis infection, and

the green module was negatively correlated with the clinical

symptom of arthralgia.

Subsequently, we analyzed the significance of proteins in the

turquoise module related to Brucellosis infection and in the blue

module associated with fever, as shown in Figure 3D. The top 20

proteins with the highest connectivity within the turquoise and blue

modules were selected and imported into Cytoscape software for

further analysis. The network relationships of these top 20 hub

proteins in both the turquoise and blue modules are visualized in

Supplementary Figure 2D. These characteristic proteins may play

critical biological roles in Brucellosis infection and its associated

clinical symptoms.

Finally, we performed Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analyses

on all proteins in the turquoise and blue modules. The GO analysis

results (Figure 3E) show that in the biological process (BP) category,

multiple significantly enriched terms are primarily related to

immune response and cell function regulation. In the cellular

component (CC) analysis, “extracellular exosome” is a

significantly enriched component. In the molecular function (MF)

category, “protein binding” is the significantly enriched term. The

results of the KEGG enrichment analysis (Figure 3F) showed that

these proteins participate in pathways such as ECM-receptor

interaction, complement and coagulation cascades, PI3K-Akt

signaling, phagosome formation, and tuberculosis.
3.3 Identification of key proteins for the
diagnosis of brucellosis using
machine learning

We cross-referenced 42 commonly differentially expressed

proteins, 120 proteins potentially related to chronicity, and 227

proteins associated with the acute phase from differential analysis

with co-expressed proteins in the blue and turquoise modules of

WGCNA to identify key proteins. This process yielded a total of 229

cross-identified proteins. After retrieving data from the UniProt

database (https://www.uniprot.org), we excluded unreviewed

immunoglobulin complexes and proteins with missing expression

data. Ultimately, 69 proteins were retained for subsequent machine

learning analyses to identify the optimal combination of diagnostic

markers (Supplementary Table 2). Two machine learning

algorithms were applied: LASSO regression analysis and the

SVM-RFE algorithm, to select potential diagnostic proteins.

LASSO regression identified 12 proteins (Figure 4A), while the

SVM-RFE method identified 20 proteins (Figure 4B). A Venn
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diagram was used to illustrate the 11 common key proteins selected

by both methods (Figure 4C). Finally, the 11 key proteins were

input into the GMM algorithm, and the top 6 protein combinations

with the highest diagnostic values were obtained from the purple

module (Figure 4D). The identified proteins and their respective
Frontiers in Cellular and Infection Microbiology 07
UniProt IDs are as follows: A0A1S5UZ24 (Macrophage receptor),

A0A6Q8PFK8 (Heat shock protein family B (small) member 1),

B9EJA8 (Mannose receptor, C-type 1-like 1), P00966

(Argininosuccinate synthase), P05362 (Intercellular adhesion

molecule 1), and P0DJI9 (Serum amyloid A-2 protein).
FIGURE 3

Identification of co-expressed protein modules using WGCNA. (A) b=5 was selected to establish a scale-free network. (B) Dendrogram of clustering.
(C) Heatmap showing the correlation between gene modules and clinical features. (LC, Lymphocytes; EOS, Eosinophils; RBC, Red Blood Cells; Hb,
Hemoglobin; CRP, C-Reactive Protein; ALB, Albumin; PA, Prealbumin.) (D) Correlation of the two most highly correlated modules. (E) GO analysis of
modules. (F) KEGG analysis of modules.
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3.4 Enzyme-linked immunosorbent
assay validation

We validated the selected proteins using ELISA kits and found

that ASS1 did not decrease in the acute phase, as indicated by the

proteomics analysis. No statistically significant differences were

observed in ASS1 levels across the three groups. In contrast, the
Frontiers in Cellular and Infection Microbiology 08
results for CD206, MARCO, SAA2 and VCAM-1 were consistent

with the proteomics findings. HSPB1 was elevated in both the acute

and chronic phases, which did not align with the proteomics data but

still exhibited a notable difference (Supplementary Figure 3A). Based

on these discrepancies, we excluded ASS1 from further analysis and

combined the remaining five proteins, which demonstrated strong

diagnostic efficiency for brucellosis (Supplementary Figure 3B).
FIGURE 4

Machine learning algorithm selection of potential protein biomarkers for brucellosis diagnosis. (A) Key proteins were selected using the Lasso model,
with the number of proteins at the lowest point of the curve (n = 12) considered the most suitable for the Lasso model. (B) Key proteins were
selected using the SVM-RFE model, with 20 proteins included. (C) Venn diagram showing proteins common to both algorithms. (D) The GMM
algorithm was used for the 11 common proteins, and the combination with the optimal AUC was selected as the potential biomarker.
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4 Discussion

In this study, we utilized Orbitrap-DIA mass spectrometry

technology combined with bioinformatics methods to perform a

proteomic analysis of serum samples from patients with acute and

chronic brucellosis, as well as healthy controls. The primary goal

was to identify potential serum biomarkers associated with Brucella

infection. Our analysis revealed a set of differentially expressed

proteins that show promise for aiding in the diagnosis of brucellosis.

Furthermore, these proteins may offer valuable insights into the

pathogenesis of the disease, providing a foundation for future

research efforts.

Through differential protein analysis, we identified 42 proteins

that were differentially expressed across all three groups, 120

proteins associated with chronic brucellosis, and 227 proteins

linked to the acute phase. Using weighted gene co-expression

network analysis (WGCNA), we identified two co-expression

protein modules that were associated with clinical features of

brucellosis. Following machine learning algorithm selection, we

identified 6 proteins with superior diagnostic efficacy. After final

validation using ELISA, five proteins were confirmed as potential

diagnostic biomarkers, demonstrating strong combined diagnostic

capability. These five proteins show significant diagnostic value,

especially in cases where acute-phase patients have not yet

developed antibodies, leading to false-negative results, or when

delays in blood culture processing complicate diagnosis. In

addition, for clinical patients with low antibody titers but

presenting symptoms, these protein biomarkers may provide

valuable diagnostic guidance. In the next section, we will discuss

the potential roles of these five proteins in Brucella infection.

The Macrophage Receptor with Collagenous Structure

(MARCO), represented by the protein ID A0A1S5UZ24, is a

member of the class A scavenger receptor family and plays a key

role in the innate antimicrobial immune response. Under normal

conditions, it is primarily expressed on tissue macrophages,

particularly in the spleen and lymph nodes (Kraal et al., 2000).

Brucella, a facultative intracellular pathogen, primarily resides within

the host’s macrophages. The pathogen-associated molecular patterns

(PAMPs) of Brucella, such as lipopolysaccharides (LPS), can be

recognized and bound by pattern recognition receptors (PRRs) on

macrophages, initiating innate immune responses (Yu et al., 2024).

MARCO has several functions, including adhesion, migration,

phagocytosis, and cytokine secretion, all of which involve complex

interactions among various immune cells. As such, MARCO plays a

crucial role in triggering immune responses, bridging innate and

adaptive immunity, and helping to eliminate pathogens (Zhou et al.,

2024). MARCO can also interact with other PRRs, such as Toll-like

receptors (TLRs). The binding of LPS-LBP-CD14 complexes to TLR4

induces the upregulation of MARCO on macrophages, enhancing

their phagocytic function (Chen et al., 2010). This may explain the

upregulation of MARCO expression observed in acute-phase patients

in this study (Supplementary Figure 3C). Additionally, research

shows that Brucella ‘s LPS binds to class A scavenger receptors,

promoting bacterial internalization into macrophages (Kim et al.,

2004). This interaction may contribute to the establishment of

chronic infection and immune evasion by Brucella.
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Mannose Receptor, C-Type 1-Like 1 (MRC1L1), also known as

CD206 (protein ID: B9EJA8), is primarily expressed on the surface of

activated macrophages. It recognizes various polysaccharide

components of the cell wall, including mannose, lipopolysaccharides

(LPS), and capsular polysaccharides (Cummings, 2022). As a pattern

recognition receptor (PRR), CD206 plays a crucial role in both innate

and adaptive immunity by enhancing the phagocytic and antigen-

presentation capabilities of macrophages (Kerrigan and Brown, 2009).

In addition to its membrane-bound form, CD206 can be cleaved by

matrix metalloproteinases (MMPs) (Martıńez-Pomares et al., 1998)

and released into the extracellular space as a soluble form known as

soluble mannose receptor (sMR). Research indicates that pathogen-

specific stimulation can trigger shedding of sMR, which can then be

detected in serum (van der Zande et al., 2021). Elevated levels of sMR

have been observed in patients with various inflammatory conditions,

such as pneumonia (Kazuo et al., 2019) and sepsis (Kjærgaard et al.,

2014), suggesting that sMR could serve as a novel biomarker for

inflammation. However, its exact role in these diseases remains unclear.

One study has proposed that sMR can activate pro-inflammatory

macrophages (M1 phenotype) by binding to CD45 on macrophages

(Embgenbroich et al., 2021). In our study, we observed elevated sMR

levels in patients during the acute phase (Supplementary Figure 3D),

indicating that Brucella infection may be associated with sMR-induced

innate immune responses.

Intercellular Adhesion Molecule-1 (ICAM-1), also known as

CD54, with the protein ID P05362, plays a crucial role in the

inflammatory response. During inflammation, ICAM-1 is

upregulated on a variety of cell types, particularly leukocytes and

endothelial cells. This upregulation facilitates leukocyte adhesion to

the endothelial cell surface, their transmigration across the vascular

wall, and the repair of endothelial cell damage (Haydinger et al.,

2023). ICAM-1 expression is induced by a range of inflammatory

stimuli, including tumor necrosis factor-alpha (TNF-a),
lipopolysaccharide (LPS), interleukin-6 (IL-6) (Caldenhoven et al.,

1994), and reactive oxygen species(ROS) (Roebuck et al., 1995).

Under normal conditions, ICAM-1 expression on macrophages is

relatively low. However, in response to inflammatory stimuli, this

expression is markedly upregulated, enhancing macrophage

function. Specifically, studies have shown that ICAM-1

upregulation in macrophages enhances their phagocytic activity

in response to LPS stimulation (Zhong et al., 2021). In the context of

inflammation, ICAM-1, together with vascular cell adhesion

molecule-1 (VCAM-1), mediates leukocyte-endothelial

interactions, such as adhesion and luminal crawling. This process

facilitates the migration of immune cells, including neutrophils and

macrophages, across the endothelium (Ren et al., 2023). Upon

infection with Brucella bacteria, the bacteria adhere to endothelial

cells, triggering pro-inflammatory responses and endothelial

damage (Togan et al., 2015), This inflammatory response leads to

leukocyte infiltration around blood vessels and an increase in the

expression of adhesion molecules like ICAM-1 and VCAM-1. In

our study, we observed elevated levels of endothelial injury markers,

including vonWillebrand factor (VWF), VCAM-1, and ICAM-1, in

patients with acute and chronic Brucellosis (Supplementary

Figure 3E). Moreover, indicators of platelet adhesion, which are

involved in endothelial repair, were reduced due to platelet attrition
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(Supplementary Figure 3F). We speculate that Brucellamay damage

vascular endothelial cells, destabilizing endothelial function.

Additionally, this observation may be related to the direct binding

of platelets to Brucella, forming complexes that influence Brucella

infection of macrophages. Thrombocytopenia could thus contribute

to the progression of Brucellosis and the persistence of the infection

(Trotta et al., 2018).

Heat Shock Protein Beta-1 (HSPB1), also known as HSP27,

with the protein ID A0A6Q8PFK8, plays a pivotal role in

antioxidation, anti-apoptosis, and the innate immune response. In

this study, we observed that HSPB1 was significantly upregulated in

patients with chronic Brucellosis compared to those with acute

Brucellosis and healthy controls. KEGG enrichment analysis further

revealed that both P15153 and A0A6Q8PFK8 were significantly

enriched in the VEGF signaling pathway. Previous research has

shown that HSPB1 can be released from endothelial cells and

inhibit angiogenesis by interacting with vascular endothelial

growth factor (VEGF) (Lee et al., 2012). Additionally,

extracellular HSPB1 can exert pro-inflammatory effects by

upregulating the expression of monocyte chemoattractant protein

(MCP-1) and intercellular adhesion molecule (ICAM-1) on human

coronary artery endothelial cells. This occurs through activation of

the NF-kB pathway following interaction with Toll-like receptors

TLR-2 and TLR-4 (Jin et al., 2014). Moreover, overexpression of

HSPB1 enhances its antioxidative properties, which can help

prevent cardiovascular ischemic injury (Vidyasagar et al., 2012).

The Rac family small GTPase (P15153) has been shown to increase

reactive oxygen species (ROS) production (Mittal et al., 2014);

however, its expression is decreased in chronic phase patients

(Supplementary Figure 3G). Additionally, the upregulation of

superoxide dismutase 1 (SOD1) in chronic phase patients

suggests that Brucella may facilitate chronic infection by reducing

intracellular ROS levels, thus inhibiting apoptosis (Li et al., 2016).

Oxidative stress, which results from increased ROS levels,

significantly induces HSPB1 expression (Singer et al., 2022).

HSPB1 can act as an antioxidant by reducing intracellular iron

levels, thereby mitigating ROS accumulation and exerting anti-

apoptotic effects (Arrigo et al., 2005).

Serum amyloid A-2 (SAA2), identified by the protein ID P0DJI9,

is a member of the apolipoprotein serum amyloid A family, primarily

produced by the liver as an acute-phase reactant. During

inflammation and tissue damage, both SAA1 and SAA2 are

upregulated, with varying degrees of elevation observed during the

acute and chronic phases of diseases. Currently, research on SAA2 is

limited, with most studies focusing primarily on SAA1. SAA1 is

known to upregulate the expression of various inflammatory

mediators in multiple cell types, including leukocytes, fibroblasts,

and endothelial cells. These mediators include cell adhesion

molecules, cytokines, chemokines, matrix-degrading proteinases,

reactive oxygen species (ROS), and pro-angiogenic molecules

(Abouelasrar Salama et al., 2020). In this study, we found that in

patients with chronic Brucellosis, the levels of SAA2 were elevated

compared to SAA1, while the expression levels of SAA1 during the

chronic phase were comparable to those of healthy individuals.

Finally, we created a diagram illustrating the potential mechanisms
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of these biomarkers as diagnostic tools for Brucellosis infection and

its chronic progression (Supplementary Figure 4).

Our study has several limitations. First, the sample size is relatively

small, which may have caused low-abundance proteins to be

overlooked. Second, the sample types are homogeneous, consisting

solely of serum from patients. However, our study population includes

individuals in the acute phase with NeuroBrucellosis and chronic phase

patients with joint pain symptoms. Future studies incorporating other

bodily fluids, such as cerebrospinal or synovial fluid, could help

to further elucidate the pathogenic mechanisms and biomarkers of

Brucellosis in these specific conditions. Additionally, immunoglobulin

fragments in the serum proteome were excluded from our analysis,

which may have led to the omission of potential biomarkers. Most

importantly, we are unable to pinpoint which organs or cell types are

responsible for these changes. Despite these limitations, the identified

proteins demonstrate promising diagnostic potential for differentiating

acute, chronic, and healthy groups, providing a basis for future studies

into the detailed pathogenic mechanisms of Brucellosis.
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