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Group B Streptococcus vaginal
colonisation throughout
pregnancy is associated with
decreased Lactobacillus crispatus
and increased Lactobacillus iners
abundance in the vaginal
microbial community
Toby I. Maidment1, Elise S. Pelzer1, Danielle J. Borg2,3,
Eddie Cheung1, Jake Begun4,5, Marloes Dekker Nitert6,
Kym M. Rae2, Vicki L. Clifton2,3 and Alison J. Carey1*

1Centre for Immunology & Infection Control, School of Biomedical Sciences, Queensland University
of Technology, Brisbane, QLD, Australia, 2Mater Research Institute, University of Queensland,
Brisbane, QLD, Australia, 3Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia,
4Mater Young Adult Health Centre, Mater Misericordiae Ltd, Brisbane, QLD, Australia, 5Mater Clinical
School and Princess Alexandra Clinical School, School of Medicine, University of Queensland, St.
Lucia, QLD, Australia, 6School of Chemistry and Molecular Biosciences, The University of Queensland,
St. Lucia, QLD, Australia
Group B Streptococcus (GBS) asymptomatically colonises the vagina of up to

40% of pregnant women and can transmit to neonates during birth, causing

neonatal pneumonia, sepsis, meningitis, and significant mortality. Vaginal GBS

colonisation can be attributed to a range of host and bacterial factors, which may

include the composition of the vaginal microbial community. There are few

studies that have examined the vaginal community composition in relation to

GBS colonisation throughout pregnancy. Here, we performed 16S rRNA

sequencing (V3-V4) on vaginal swabs from women at 24- and 36-weeks’

gestation, who were GBS culture-negative or GBS culture-positive at either 24

weeks or 36 weeks’ gestation or at both timepoints. Vaginal swabs from 93

women were analysed; 46 women were culture-negative, 11 women GBS

culture-positive at 24 weeks only, 21 women GBS culture-positive at 36 weeks

only and 15 women GBS culture-positive at both timepoints on Brilliance GBS

agar. V3-V4 16S rRNA gene amplicon sequencing demonstrated that in women

that were GBS culture-positive at 36 weeks gestation only, G. vaginalis was

significantly more abundant at 24-weeks’ gestation despite a lack of significant

changes in community richness between the 24- and 36-week samples. The

vaginal microbial communities of women persistently colonised with GBS, had a

significantly higher abundance of Lactobacillus iners, compared to other groups

where L. crispatus, L. gasseri or L. jenseniiwere dominant. We have characterised

the vaginal microbial community composition during pregnancy in relation to

GBS colonisation status, in a longitudinal study for the first time. The most

interesting finding was that in women that were persistently colonised with GBS
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throughout pregnancy, there was a significant increase in L. iners and significant

reduction in L. crispatus abundance. Given the lack of detail of the role that the

vaginal microbial community plays in GBS colonisation in the literature, it is

imperative that the relationship between L. iners and GBS in this unique

environmental niche is further investigated.
KEYWORDS

Group B Streptococcus, vaginal microbiome, pregnancy, Lactobacillus sp.,
Lactobacillus iners
Background

Streptococcus agalactiae (Group B Streptococcus; herein GBS) is

a significant cause of global neonatal and perinatal morbidity and

mortality (Brokaw et al., 2021). GBS is a gastrointestinal commensal

in adults, and up to 40% of pregnant women demonstrate

asymptomatic vaginal GBS colonisation (Brokaw et al., 2021).

Vaginal colonisation during pregnancy can lead to life-

threatening invasive GBS infection of neonates through vertical

transmission during delivery (Brokaw et al., 2021; Chaguza et al.,

2022). Early onset disease (EOD) due to invasive GBS infection (< 7

days post-partum) can cause severe pneumonia and meningitis.

GBS is the leading cause of neonatal sepsis, accounting for

approximately 35% of global neonatal mortality cases (Sweeney

et al., 2020; Alotaibi et al., 2023). In addition to EOD, ascending

GBS infection prior to delivery is associated with an increased risk

of preterm birth, stillbirth, premature rupture of membranes and

fetal organ damage (Bianchi-Jassir et al., 2017; Brokaw et al., 2021;

Mei and Silverman, 2023).

GBS colonisation of the vagina can be attributed to a range of

host and bacterial factors. These include biological factors such as a

history of ruptured membranes, age, diet, ethnicity, and

gastrointestinal colonisation, as well as socioeconomic factors

such as hygiene practices, occupation, illiteracy, and sexual

activity (Stapleton et al., 2005; Le Doare and Heath, 2013; Capan-

Melser et al., 2015; Brokaw et al., 2021). It is important to consider

that GBS colonisation occurs within a distinct and typically hostile

microbial ecosystem, which likely plays a determining role in

facilitating or inhibiting persistent colonisation during pregnancy.

Persistent GBS colonisation of the vagina occurs through the

expression of several bacterial factors such as adhesins (Baron

et al., 2004; Sheen et al., 2011; Jiang and Wessels, 2014), biofilm

formation (D’Urzo et al., 2014), immune evasion (Jones et al., 2003;

Carey et al., 2014; Kolar et al., 2015), and competitive antimicrobial

defences (Gori et al., 2020). However, women can also be transiently

colonised by GBS throughout pregnancy (Hansen et al., 2004) and

the effects this has on pregnancy outcomes are unknown.

The vaginal microbial community exhibits hormone-dependent

changes across the menstrual cycle and during pregnancy a loss of

community diversity occurs, decreasing in species richness as
02
pregnancy progresses (Ravel et al., 2011; Romero et al., 2014; Pace

et al., 2021; Romero et al., 2023). A healthy vaginal microbial

community is dominated by a small number of vaginal lactobacillus

species (L. crispatus, L. gasseri, L. iners, and L. jensenii) (Ravel et al.,

2011), representing community state types I, II, III and V respectively

These lactobacilli populations maintain a low-pH environment (pH

~4.5) through production of lactic acid, which offers protection against

colonising pathogens and is thereby an important facet of reproductive

health (Ravel et al., 2011; O’Hanlon et al., 2013). Conversely, increased

species diversity in the vaginal microbial community and/or

dominance of other bacteria such as Gardnerella spp., Prevotella spp.,

Bifidobacterium spp., or Atopobium spp., can negatively alter the

vaginal environment, causing vaginal dysbiosis (Ravel et al., 2011;

Coudray and Madhivanan, 2020). Vaginal dysbiosis is associated with

adverse maternal and neonatal sequelae; however, causality is difficult

to assign to specific microorganisms (Brooks et al., 2017). GBS

represents an opportunistic pathogen, present in the vaginal

community of a significant number of women throughout pregnancy

but is implicated in adverse outcomes only when invasion occurs

(Brokaw et al., 2021). To date, characterisation of the vaginal microbial

community in health and disease has primarily focussed on taxonomic

classification of lactobacilli to species level; however, changes in the

vaginal microbial community in the context of lactobacilli alone do not

explain GBS colonisation and adverse pregnancy outcomes. Increased

taxonomic diversity, Gardnerella vaginalis abundance, and loss of

Lactobacillus dominance appear as possible drivers and regulators of

GBS colonisation and invasion risk during pregnancy (Sroka-Oleksiak

et al., 2020). In healthy, non-pregnant women GBS is not considered a

pathogen, and in pregnant women GBS is only considered significant if

invasion occurs. Thus, GBS has likely been disregarded in studies

examining vaginal microbial communities. Indeed, the less than 30% of

studies in this field reporting on GBS, highlight that this opportunistic

pathogen is under-reported (Brooks et al., 2015; Lim et al., 2021).

Several cultivation-dependent investigations of the vaginal

microbial community have previously identified compositional

features associated with GBS colonisation similar to those in

bacterial vaginosis (BV) (Bayo et al., 2002; Ronnqvist et al., 2006;

Brzychczy-Wеloch et al., 2014; Tano et al., 2021). These include

reductions in lactobacilli and increased populations of several BV-

associated taxa such as Gardnerella vaginalis, Prevotella spp., and
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Atopobium spp., in addition to frequent co-colonisation with the

opportunistic yeast Candida albicans (Bayo et al., 2002; Ronnqvist

et al., 2006; Brzychczy-Wеloch et al., 2014; Pidwill et al., 2018; Tano

et al., 2021). Using cultivation-independent analysis of the vaginal

microbiota of 44 Egyptian women during the third trimester of

pregnancy (Shabayek et al., 2022), Shabayek et al. (2022) similarly

found GBS positive women to have significantly increased

community diversity and lower abundances of Lactobacillus spp.,

compared to GBS negative women (Shabayek et al., 2022). Despite

these findings however, our understanding of how GBS impacts the

vaginal microbial community remains extremely limited. A

considerable knowledge gap remains regarding community-wide

changes in the vaginal microbial community throughout pregnancy

that are associated with transient versus persistent GBS colonisation.

In this study, we used 16S rRNA gene amplicon sequencing to

characterise the vaginal microbial communities of GBS culture-

positive and -negative women at both 24- and 36-weeks’ gestation.

We defined community-wide patterns in the vaginal microbiota

associated with transient (culture-positive at one time point only)

and persistent GBS carriage (culture-positive at both timepoints)

during pregnancy, to better understand risk factors associated with

GBS colonisation during pregnancy.
Methods

Participant enrolment

Participants, who freely gave informed consent, were recruited

as part of the Queensland Family Cohort (QFC) prospective,

longitudinal, and observational pilot study. The details of this

study are published (Borg et al., 2021) and has full ethical

approval by Mater Misericordiae Research Ethics committee

(HREC/16/MHS/113).
Participant data collection

At the 24- and 36- weeks’ gestation appointments the participants

completed surveys on medication and lifestyle substance use.

Medication use during labour and delivery, and delivery details

including complications, as well as neonatal outcomes were also

recorded and available. Participants were excluded from this study if

they received antibiotics in the two weeks prior to vaginal swab

collection, if they had diabetes (or developed gestational diabetes), or

indicated they were taking probiotics. These time points represent

sampling from the second and third trimester of gestation and occur

prior to full term gestation (<37 weeks), where GBS may contribute to

premature birth.
Sample collection

Upon enrolment participants were given detailed instructions on

how to self-collect the vaginal swab and provided with the E-swab

(Copan, CA, USA). Briefly, participants were instructed to insert the
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swab 3-5 centimetres into the vagina and while rolling the swab, wipe

the vaginal wall in 3 full circles, ensuring the swab was kept in the

vagina for a minimum of 20 seconds. Participants were instructed to

not use vaginal douches, feminine sprays, genital wipes, vaginal

medications/suppositories, or have sexual intercourse 48 hours prior

to swab collection. Swabs were collected at the participant’s 24- and 36-

week gestation maternal appointments and stored at -80°C until use.

Placentae were observed at the time of birth and classified as normal/

abnormal by the collector at the time.
GBS screening & characterisation

All swabs were thawed and cultured on Brilliance GBS agar plates

(ThermoFisher, Seventeen Mile Rocks QLD, Australia) using the 16-

streak dilution technique as per Australian diagnostic standards. Plates

were incubated at 37°C, atmospheric conditions (O2) for 24-48 hours

and the growth of GBS was recorded as per the manufacturer’s

instructions. Well isolated, individual GBS colonies were sub-

cultured onto 5% Horse blood agar containing Colistin and Nalidixic

Acid (CNA; ThermoFisher). Colony characteristics were recorded and

well isolated colonies from the CNA were used to determine the

serotype of the GBS using the ImmuLex Streptococcus-B kit (SSI

Diagnostica, Denmark) as per manufacturer’s instructions.
Vaginal swab DNA extraction

Based on the GBS culture results participants were grouped into

either GBS culture-negative, GBS culture-positive at 24 weeks or 36

weeks’ gestation only, or GBS culture-positive at both 24- and 36-weeks’

gestation. Vaginal swabs were thawed on ice, vortexed vigorously to

suspend the bacterial cells into the liquid Amies solution and 500 mL of

the liquid Amies was transferred to a sterile 2 mL tube on ice. For cell

lysis, 50 mL of lysozyme (10 mg/ml stock; Sigma-Aldrich, NSW,

Australia), 6 mL of mutanolysin (25,000 U/ml stock; Sigma-Aldrich),

3 mL of lysostaphin (4,000 U/ml in sodium acetate stock; Sigma-

Aldrich), and 41 mL of TE50 buffer (10 mM Tris-HCl, 50 mM

EDTA [pH 8.0]) were added to each sample. Samples were incubated

at 37°C for 1 hr, then 10 mL of proteinase K (20 mg/mL stock; Qiagen,

VIC, Australia), 100 mL of 10% sodium dodecyl sulfate, and 20 mL of

RNase A (20 mg/ml stock; ThermoFisher) to each sample. Samples

were incubated for 1 hr at 55°C. Following enzymatic lysis, samples

were mechanically disrupted and homogenized using a Biospec Mini-

BeadBeater 16 (Biospec, Oklahoma, USA). DNA was extracted using

the QIAampDNAmini kit (Qiagen) as permanufacturer’s instructions,

omitting the recommended lysis step, as enzymatic and physical lysis

was completed above. DNA was eluted using the molecular grade water

provided with the Qiagen kit, pre-warmed to 56°C.
16S rRNA amplicon sequencing

Library preparation and 16S rRNA gene amplicon sequencing

was performed at the Australian Genome Research Facility

(Melbourne, Victoria, Australia) using the Illumina MiSeq
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platform with 2x300bp chemistry. Sequencing was performed using

a modified 319F (5’-CCTACGGGAGGCAGCAGT-3’) primer and

806R (5’-GGACTACHVGGGTWTCTAAT-3’) primer targeting

the V3-V4 hypervariable region, which were selected due to use

in prior investigations of the vaginal microbial communities

(Graspeuntner et al., 2018; Van Der Pol et al., 2019; Romero

et al., 2023).
Bacterial community profiling & statistics

Demultiplexed, 300-bp paired-end reads were imported into

Quantitative Insights into Microbial Ecology-2 (QIIME2; v2021.11)

(Bolyen et al., 2019), after which adapter sequences were removed

using Cutadapt (Kechin et al., 2017) and reads quality checked using

Q2-Demux. Denoising and amplicon sequence variant (ASV)

assignment were performed on quality-filtered reads using the

Deblur ‘denoise-16S’ tool (Amir et al., 2017). Denoised representative

sequence outputs were then assigned taxonomy using a region-specific

V3-V4 taxonomic classifier with the Classify-sklearn tool (Bokulich

et al., 2018), which was built using q2-rescript (Robeson et al., 2021)

with the SILVA database (SSUr138, NR_99; https://www.arb-silva.de/),

and trained using the fit-classifier-naïve-bayes tool prior to use.

Following this, the feature table was filtered to remove rare taxa (< 2

samples), taxa unassigned past the domain level, chloroplast

sequences, and mitochondrial sequences. As contamination is

commonplace in 16S rRNA gene amplicon data, taxonomic data

was screened for putative contaminants using Decontam (Davis

et al., 2018), with suspected contaminant ASVs identified and

filtered from feature data based on their prevalence in negative

controls (threshold = 0.5). Assignment of vaginal community state

types (CSTs) to individual samples was performed manually based

on the relative abundance of important taxa outlined by France

et al. (2020), including sub-types for CSTs I, III, and IV (France

et al., 2020). Subsequent visualisation of taxonomic and CST data

was performed using QIIME2 (v2021.11) in addition to the R

packages ggplot2 (v3.4.1), Microbiome (v1.16.0), and Phyloseq

(v1.38.0) (Lahti and Shetty, [[NoYear]]; Wickham et al.,

[[NoYear]]; McMurdie and Holmes, 2013).

Rooted and unrooted phylogenetic trees used for subsequent

analysis were then produced using the align-to-tree-mafft-fasttree

QIIME2 command, after which generic alpha and beta diversity

calculations were generated using the q2-diversity core-metrics

phylogenetic tool from a feature table rarefied to 17,000 reads per

sample. Statistically significant differences in Shannon entropy

between sample groups were identified via Kruskal-Wallis test,

using the q2-diversity alpha-group-significance tool. Statistical

differences in community structure were calculated using Analysis

of Similarity (ANOSIM) testing on unweighted Unifrac distances

with 4000 permutations. Differential abundance testing was

performed with DeSeq2 (Love et al., 2014) via Phyloseq

(McMurdie and Holmes, 2013), using the geometric means of

CLR-transformed count data. The Wald test with Benjamini-

Hochberg multiple test corrections was used to identify taxa

which significantly differed in abundance between groups, with an

FDR-adjusted P-value <0.05 deemed statistically significant.
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Negative and positive sequencing controls

To ensure the validity of the low biomass vaginal samples,

several extraction controls were included. This included a negative

swab control where the swab was removed from the sterile transport

tube exposed to the air where extractions were to be performed and

sample lysis and DNA extraction was performed as described above.

There was a DNA extraction kit control, where the water used to

elute the DNA was used as a ‘sample’ and underwent DNA

extraction. These controls were completed to account for possible

kit and environmental contamination. A Gram-positive and Gram-

negative positive control were also included and consisted of a

combination of Enterococcus faecalis (ATCC29212) and Escherichia

coli (ATCC8739), respectively (Maidment et al., 2023).
Results

Participant demographics

Women were recruited to the pilot QFC study at Mater Hospital

and at their 24- and 36-weeks’ gestation appointment, completed

surveys and provided a self-collected vaginal swab (n = 209). Vaginal

swabs from 93 women were analysed and based on the culture of

vaginal swabs were grouped as follows: GBS culture-negative at both

24- and 36-weeks’ gestation (GBS NEG; n = 46 women), GBS culture-

positive at 24 weeks’ only (GBS 24 wk; n = 11 women), GBS culture-

positive at 36 weeks’ only (GBS 36 wk; n = 21 women) and GBS

culture-positive at both 24- and 36-weeks’ gestation (GBS 24/36 wk;

n = 15 women). There was no difference in the maternal age or

gestational age at birth between the groups and women were

primarily of Caucasian decent (Table 1). Interestingly in those

women that were GBS culture-positive at either or both collection

timepoints, there was a 1.5 – 2-fold increase in observed placental

abnormality, albeit not significant (Table 1).
GBS colonisation during pregnancy is
associated with a reduced vaginal L.
crispatus abundance

16s rRNA gene amplicon sequencing of the V3-V4 variable

region was performed on DNA extracted from vaginal swabs. This

yielded 11,350,333 reads across 202 samples (range 53 - 96,455;

Supplementary Table 1). Following denoising and ASV assignment,

we identified 727 features at a total frequency of 6,681,294 across

201 samples (median frequency – 33,790 per sample; full range - 27

to 66,127 per sample), of which 41 were deemed to be contaminant

artifacts and subsequently removed. One negative control sample

(ddH2O only control) was filtered from the dataset during

denoising. After filtering remaining control samples (n=11) and

two samples of unknown GBS status (ID 119) from the dataset, 706

features remained across 188 samples, at a total frequency of

4,708,210 (median frequency - 25,472.5 per sample).

Figure 1A displays the relative abundance of the top 12 most

abundant bacterial species. This highlights the high abundance of L.
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crispatus in the vaginal microbial community of GBS negative

pregnant women but not in women who were persistently

colonised with GBS at both collection timepoints.

To further characterise the vaginal microbial communities, we

examined the community state types at both timepoints (CSTs;

Figure 1B). Full taxonomic composition in each table can be found

in Supplementary Tables 2–5. In the GBS negative group (n = 46),

CST-I (L. crispatus dominant) represented the most prevalent CST

(60%), followed by CST-III (L. iners dominant; 20%), CST-V (L.

jensenii dominant; 7.37%), and CST-II (L. gasseri dominant; 5.26%).

A non-Lactobacillus CST (-IV) was also identified in 7.4% of samples,

with subtypes consisting of IV-B (Gardnerella vaginalis dominant; 1

sample at 24 weeks, 2 at 36 weeks), IV-C0 (even community with

Prevotella spp.; 1 sample at each timepoint), and IV-C3

(Bifidobacterium dominant; 1 sample at each timepoint). Overall, the

vaginal microbial community of GBS negative women remained stable

between the 24- and 36-week timepoints, displaying no significant

changes in community richness, and no significantly differentially

abundant taxa (Figure 1B).

In the GBS positive 24-week group (n = 11), CST-I was the most

prevalent vaginal CST at both gestational timepoints (43.5% total)

followed by CST-III (26.1%), and CST-IV (30.4%; Figure 1B).

Despite cultivation results, GBS was identified in just one

individual sample at 24-weeks’ gestation (relative abundance –

59.2%) and one at 36-weeks (0.3% relative abundance). All

samples containing Streptococcus spp. presented either CST-III or

IV, with none exhibiting L. crispatus (CST-I) dominance. A

decrease in the number of samples exhibiting CST-IV was

observed at the 36-week timepoint in this group (GBS 24 wk group).

The GBS positive 36-week group contained 21 paired samples and

CST-I represented the most common Lactobacillus-dominated vaginal

CST in this group at both 24- and 36-weeks’ gestation (45% samples at

both), followed by CST-III (24 weeks - 10%, 36 weeks – 30%), CST-V

(24 weeks - 10%, 36 weeks – 0%), and CST-II (5% both; Figure 1B). A

non-lactobacilli dominated CST-IV was identified in 30% and 25% of
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subjects at 24 weeks and 36 weeks’, respectively. These CST-IV samples

were comprised of the subtypes IV-B (24 week – 10%, 36 week – 15%),

IV-C0 (24 week – 20%, 36 week – 0%), and IV-C3 (24 week – 0%, 36

week – 5%). While there were no significant changes in community

richness between 24- and 36-week samples in this group, the

abundance of G. vaginalis was significantly more abundant at 24-

weeks’ gestation compared to 36 weeks’ (Wald P-adj < 0.01).

Interestingly, the 24-week timepoint samples in this group (GBS 36

wk), which were GBS culture negative, had a higher frequency of

participants that had a diverse microbial community (CST-IV).

The most prevalent vaginal microbial CST in the GBS positive 24/

36-week group (n = 15) was CST-III (L. iners dominated) which was

identified in 46.7% of samples at both gestational timepoints

(Figure 1B). CST-IV represented the next most prevalent

compositional profile in this group with a prevalence of 26.7% at

both timepoints, followed by CST-I (20% - both timepoints), and CST-

II (6.7% - both timepoints). GBS was detected by 16S rRNA gene

amplicon sequencing in the vaginal microbiota of 11/15 subjects in this

group for at least one gestational timepoint, seven of which were

positive at both, three at 24 weeks’ only, and one at 36 weeks’ only

(Figure 2A; Table 2). As observed in other groups, vaginal microbial

community richness remained stable between gestational time points,

with only three individuals exhibiting shifts between CSTs (excluding

changes within Lactobacillus-dominant CST subtypes).
Higher abundance of L. iners and lower
abundance of other Lactobacillus spp. is
associated with persistent
GBS colonisation

The relative abundance of GBS in samples that were culture-

positive at both gestational timepoints varied greatly between

individuals, ranging from 98.8% to 0.01% (median – 8.1%;

Figure 2A). In subjects where GBS was detected via 16S rRNA
TABLE 1 QFC demographics.

Group Maternal age at
conception
(median)
[P value]

Baby gestational
age range (median)
[P value]

Ethnicity (%) Placenta
abnormality (%)

GBS NEG
(46 women)

21 – 40 (30) 36.5 – 41.2 (39.35) Caucasian (67.4), Latin American (8.7),
North-East Asian, African, Aboriginal,
Eastern European (2.2 each), Southern-
Central Asian (4.3), South-East Asian (6.5),
Undefined (4.3)

23.9% (n/a 15.2%)

GBS POS
24 wk
(11 women)

20 – 42 (30)
[P = 0.735]

36.2 – 40.5 (39.2)
[P = 0.599]

Caucasian (81.8), South-East Asian (18.2) 45.5% (n/a 18.2%)
[P = 0.666]

GBS POS
36 wk
(21 women)

24 – 44 (32)
[P = 0.522]

36.1 – 40.6 (39.1)
[P = 0.929]

Caucasian (76.2), Southern-Central Asian
(4.8), Latin American, North-East Asian
(9.5 each)

38.1% (n/a 19%)
[P = 0.819]

GBS POS 24 + 36 wk
(15 women)

26 – 38 (34)
[P = 0.224]

38.1 – 40.5 (39.1)
[P = 0.866]

Caucasian (66.7), North-East Asian (6.7),
Latin American (13.3), Undefined (13.3)

46.7% (n/a 6%)
[P = 0.524]
GBS NEG, Culture negative for GBS at both timepoints; GBS POS, Culture positive for GBS at indicated time of gestation. Placenta abnormality n/a: placenta was not able to be examined to
determine if any abnormalities were present. One way ANOVA’s with Tukey’s multiple comparison post-test was performed on maternal age, baby gestational age and placenta abnormality to
compare differences between GBS positive groups and the GBS negative group (control group), with P < 0.05 set for significance.
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sequencing in the vaginal microbiota in at least one timepoint, the

median relative abundance of GBS was higher at 24 weeks’ gestation

(median = 10.5%) than was observed at 36 weeks’ (median – 0.05%),

with an average decrease in GBS relative abundance of 11% from 24 to

36 weeks’ gestation (Table 2). Interestingly, in those women persistently

colonised with GBS, the same serotype was detected in 60% of women

at both timepoints (20% serotype 1a (3/15); 13% serotype III (2/15);

20% serotype V (3/15); 7% serotype IX (1/15); 13% non-typable (i.e.

GBS growth, but no serotype confirmed; 2/15)). There were a small

number (20%; 3/15) of samples that were unable to be serotyped as

they would not successfully subculture from the chromogenic agar and

the colonies taken from the chromogenic agar would not react with the

serotyping kit, possibly due to the proprietary chromogens in the agars

affecting viability and capsular expression. One sample (7%) was only

able to be serotyped at one of the timepoints.

To identify differences in the vaginal microbial communities

associated with persistent GBS colonisation, we performed group

comparisons between GBS positive at 24- and 36-week group and
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GBS negative group’s vaginal samples with respect to phylogenetic

diversity, community structure, and differential abundance testing. We

identified no significant differences in community richness (Shannon

diversity; Kruskal-Wallis P > 0.05; Figure 2B) or structure (Unweighted

UniFrac; ANOSIM P > 0.05) between GBS culture-negative and

culture-positive groups at both single and grouped timepoints.

However, differential abundance testing identified significantly higher

abundances of L. iners (Wald P-adj < 0.05), and S. agalactiae (Wald P-

adj < 0.001), as well as significantly lower abundances of L. crispatus

(Wald P-adj < 0.001), L. gasseri (Wald P-adj < 0.05), and L. jensenii

(Wald P-adj < 0.001) in GBS positive samples compared to GBS

negative samples (Figure 2C).
Discussion

This study shows the dynamics of the vaginal microbial

community during the second and third trimesters of pregnancy,
FIGURE 1

Relative abundance of bacterial species in the vagina of women GBS culture negative and culture positive throughout pregnancy and the distribution
of vaginal community state types. (A) shows a heat-map representation of bacterial relative abundance in individual vaginal samples, grouped by GBS
culture status and gestational timepoint. (B) displays the proportional composition of vaginal community state types within each group at 24- and
36- weeks’ gestation. CST – Community state type; GBS – Group-B streptococcus (Streptococcus agalactiae). CST I-A: Higher % L. crispatus; CST I-
B: Lower % L. crispatus; CST II: L. gasseri dominant; CST III-A: Higher % L. iners; CST III-B: Lower % L. iners; CST IV-A: moderate Gardnerella
vaginalis and BV-associated bacteria-1; CST IV-B: moderate Atopobium vaginae and G. vaginalis; CST IV-C0: Diverse with Prevotella spp. present;
CST IV-C1: Streptococcus spp. present; CST IV-C2: Enterococcus spp. present; CST IV-C3: Bifidobacterium spp. dominant; CST IV-C4:
Staphylococcus spp. present; CST V: L. jensenii dominant.
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in relation to GBS colonisation. The relationship between GBS and

other bacterial taxa in the vagina is complex and poorly understood.

Here we have demonstrated that the vaginal microbial community

profile in women persistently colonised with GBS had a greater

abundance of L. iners, compared to other Lactobacillus spp. in

women not colonised with GBS. The vaginal microbial community

tended to be more diverse in women exhibiting transient vaginal

GBS colonisation, though not significant. The strength of our study

is the longitudinal nature, in relation to GBS colonisation.

The composition of the vaginal microbial community changes

throughout pregnancy, with increased abundance of Lactobacillus

species and decreased abundance of anaerobic species (Romero

et al., 2014). A longitudinal study from four timepoints during

pregnancy demonstrated a pronounced shift in the CST

composition with advancing gestational age, with those that were

originally CST IV (diverse bacteria with no Lactobacillus spp.)

becoming CST I (L. crispatus dominated) or CST III (L. iners

dominated) by the end of the pregnancy (Romero et al., 2023). In

line with previous studies, while we saw slight variations in the

abundance of L. crispatus or L. iners between the two timepoints,
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each group of women had a relatively stable L. crispatus/L. iners

dominance throughout pregnancy.

Vaginal metagenomic sequencing confirms GBS has a positive

co-occurrence with L. iners and negative co-occurrence with L.

crispatus (Pace et al., 2021). Culture of vaginal swabs has also shown

GBS presence to be inversely related to any Lactobacillus species,

with detection of L. crispatus being particularly uncommon in GBS

positive samples (Starc et al., 2022). Accordingly, we observed that

women persistently colonised with GBS had significantly decreased

representation of L. crispatus compared to women with no or

transient colonisation. Women who were GBS positive at 24

weeks only, tended to have more diverse vaginal microbial

communities compared to GBS negative women, though not

significant, and by 36 weeks, when GBS was not detected, the

vaginal microbial community had shifted and was dominated by a

combination of L. crispatus and L. iners. In contrast to our findings,

a 16S rRNA vaginal microbiome study of pregnant women in Egypt

showed that L. iners was predominant in GBS culture-negative

women (Shabayek et al., 2022). However, GBS positive women did

have a more diverse, less homogenous vaginal microbial
FIGURE 2

Taxonomic and compositional features of the vaginal microbiota in women GBS culture positive at both 24- and 36-weeks’ gestation. (A) Shows
genus-level taxonomic bar plots for all individuals in the GBS 24/36 wk group, faceted by gestational timepoint. (B) Shows difference in Shannon
diversity (alpha diversity) between GBS culture negative and the GBS positive at 24- and 36-week groups. (C) Displays taxa which significantly (Wald
P-adj < 0.05) differed in abundance between GBS culture negative samples and the samples that were culture positive at both gestational
timepoints, with degree of difference displayed on the X-axis as log2foldChange.
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communities, with a significant decrease in Lactobacillus spp.

abundance and significantly higher Ureaplasma, Gardnerella,

Streptococcus , Corynebacter ium , Staphylococcus , and

Peptostreptococcus genera (Rosen et al., 2017; Shabayek et al.,

2022), similar to what we observed in women GBS positive at 24

weeks’ only. It is also well established that ethnicity and geographic

location can influence vaginal microbiota composition, with

differences in predominant CST commonly observed between

regions (Roachford et al., 2022).

Reduced taxonomic diversity and a Lactobacillus spp.

dominance in the vaginal niche are a possible mechanism for

protection against GBS colonisation (Brokaw et al., 2021).

Reduced lactic acid producing-Lactobacillus spp. dominance

causes an increase in the vaginal pH (Ronnqvist et al., 2006;

Ravel et al., 2011). In vitro studies have demonstrated that GBS

binds to vaginal epithelial cells at a 4-fold higher rate when the pH is

elevated (Park et al., 2012). Additionally, fluctuations in pH, from

acidic to neutral, cause an upregulation of expression of numerous

GBS virulence factors, which in turn can change GBS from an

asymptomatic carriage state to a virulent invasive state (Brokaw

et al., 2021).

L. iners is commonly detected in specimens from women with

BV and is often considered a transitional species that provides less

protection against pathogens than other Lactobacillus spp (Ferris

et al., 2007; Zozaya-Hinchliffe et al., 2010).. For example, L. iners is

only able to produce L-lactic acid, compared to L. crispatus, L.

gasseri and L. jensenii which can make both L-lactic acid and D-
Frontiers in Cellular and Infection Microbiology 08
lactic acid (France et al., 2016). The production of D-lactic acid is

suggested to have greater inhibitory effect on exogenous bacteria

than L-lactic acid (Zheng et al., 2021). L. crispatus can also generate

antibacterial hydrogen peroxide, where L. iners cannot, again

highlighting that L. iners is not as effective at protecting the

vaginal environment against opportunistic pathogens such as GBS

(France et al., 2016; Zheng et al., 2021). In cases of BV, L. iners often

coexists with other potentially harmful bacteria associated with

poor pregnancy outcomes and is not easily displaced by pathogens

(Ferris et al., 2007; Zozaya-Hinchliffe et al., 2010). Co-infection with

G. vaginalis, the most abundant member of a dysbiotic microbiota,

and GBS, led to a 10-fold higher risk of GBS vaginal colonisation in

a pregnant mouse model, with 40% of co-infected mice exhibiting

ascending GBS infection of the uterus and placenta (Gilbert et al.,

2021). In our study, women who were GBS positive at any or all

timepoints examined displayed an increase in placental

abnormalities detected. GBS infection of the uterus and placenta

are associated with poor pregnancy outcomes including premature

rupture of membranes, pre-term birth, clinical chorioamnionitis

and neonatal infection (Bianchi-Jassir et al., 2017; Brokaw et al.,

2021; Mei and Silverman, 2023). This highlights the importance of

understanding how GBS can colonise a unique environmental

niche, such as the vagina, and subsequently ascend to cause

such sequalae.

In women that were persistently colonised with GBS there was an

average decrease of 11% of GBS abundance as pregnancy progressed.

It is established that the diversity of the vaginal microbial community
TABLE 2 Relative abundances of S. agalactiae and serotype in the vaginal microbiota of culture-positive samples, ordered based on their
corresponding community state type at 24- and 36-weeks gestation.

Subject ID 24 weeks gestation 36 weeks gestation

S. agalactiae
relative
abundance

CST Serotype S. agalactiae
relative
abundance

CST Serotype

N 0.03% I-A V 0.00% I-A V

G 0.00% I-A NT 0.00% I-A NT

M 15.12% I-B Ia 12.00% IV-C0 Ia

H 10.53% II Ia 5.59% II Ia

K 0.02% III-A Ia 0.00% I-A Ia

J 0.01% III-A IX 0.01% III-A IX

E 0.01% III-A ND 0.01% III-A ND

O 0.00% III-A ND 0.07% III-A ND

I 0.00% III-A NT 0.00% III-B NT

D 0.00% III-A VII 0.00% III-A ND

A 31.97% III-B V 0.00% III-A V

B 0.00% IV-B ND 0.00% IV-B ND

L 98.83% IV-C1 III 79.72% IV-C1 III

F 97.49% IV-C1 III 97.46% IV-C1 III

C 84.70% IV-C1 V 0.02% III-A V
NT, non-typable capsular serotype. ND, Not done due to issues with sub-culturing from Brilliance GBS chromogenic agar.
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decreases as pregnancy progresses (Romero et al., 2014; Romero et al.,

2023). It has been suggested that this is hormonally driven, with

increasing lactobacilli abundance associated with an increase in

oestrogen (Prince et al., 2015). However, this is a field that is also

lacking and requires far more detailed research to determine what

drives the decrease in microbial diversity or increases in lactobacilli

abundance as pregnancy progresses.

Our study has several strengths and limitations that need to be

acknowledged. The cohort that the samples used here were collected

from were a group of mostly healthy women, where extensive data

such as patient demographics, medical usage and neonatal outcomes

were collected (Borg et al., 2021). Importantly, these samples were

able to be collected in a longitudinal manner, allowing us to examine

changes in the vaginal microbial communities throughout pregnancy,

in relation to GBS colonisation. In the state of Queensland, Australia,

GBS screening is not recommended as part of the standard perinatal

care, and a risk-based approach is used instead (Guidelines QC,

2022). This means that there are no official diagnostic records for

GBS colonisation status. We did however use the diagnostic standard

agar culture to differentiate our groups. Furthermore, we completed

PCRs on the samples targeting the highly conserved sip gene (data

not shown), confirming our culture results. As with any study

involving human participants, larger sample sizes are always

preferred. We included all eligible patient samples in this study and

have examined the vaginal microbial community in relation to GBS

colonisation, longitudinally throughout pregnancy. There are

numerous V3-V4 primer sets that have been used for vaginal

microbiome determination (Graspeuntner et al., 2018; Van Der Pol

et al., 2019; Hugerth et al., 2020), with little consistency between

studies. The primers used here were chosen based on broad coverage

of diverse vaginal taxa (Graspeuntner et al., 2018; Van Der Pol et al.,

2019). The primers that we used were unfortunately not highly

specific towards clinical GBS isolates, which meant that for some

samples where GBS was cultured, the sequencing was not able to

specifically identify all isolates of GBS (Table 2). The primers were

originally selected because of their ability to identify a wide range of

bacterial species in the vaginal niche when compared to the use of

V1-V2 primers (Graspeuntner et al., 2018).
Conclusions

Very few studies have examined vaginal microbial communities

in relation to GBS colonisation during pregnancy (Shabayek et al.,

2022), and this has only been done at a single timepoint during

pregnancy, usually in the last trimester of pregnancy, preventing

temporal changes from being detected (Shabayek et al., 2022; McCoy

et al., 2023). The relationship between GBS and other bacterial taxa in

the vagina is complex and poorly understood. Here, we have shown

for the first time how the vaginal microbial communities change

throughout pregnancy with changes in GBS colonisation status, and

that GBS colonisation may be associated with a reduction in L.

crispatus, L. gasseri and L. jensenii dominance in comparison to

women who were not colonised with GBS at either timepoints. In
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women that were persistently colonised with GBS throughout

pregnancy, we demonstrated a significant increase in L. iners and

significant reduction in L. crispatus abundance. Given the lack of

understanding of how the vaginal microbial community contributes

to or prevents GBS colonisation, it is imperative to further investigate

how L. iners and GBS interact in this unique environmental niche.
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