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Gut microbiota and psoriasis:
pathogenesis, targeted therapy,
and future directions
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1College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China, 2First Clinical
Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
Background: Psoriasis is one of the most common autoimmune skin diseases.

Increasing evidence shows that alterations in the diversity and function of

microbiota can participate in the pathogenesis of psoriasis through various

pathways and mechanisms.

Objective: To review the connection between microbial changes and psoriasis,

how microbial-targeted therapy can be used to treat psoriasis, as well as the

potential of prebiotics, probiotics, synbiotics, fecal microbiota transplantation, diet,

and Traditional Chinese Medicine as supplementary and adjunctive therapies.

Methods: Literature related to the relationship between psoriasis and gut

microbiota was searched in PubMed and CNKI.

Results: Adjunct therapies such as dietary interventions, traditional Chinese

medicine, and probiotics can enhance gut microbiota abundance and diversity

in patients with psoriasis. These therapies stimulate immune mediators including

IL-23, IL-17, IL-22, and modulate gamma interferon (IFN-g) along with the NF-kB

pathway, thereby suppressing the release of pro-inflammatory cytokines and

ameliorating systemic inflammatory conditions.

Conclusion: This article discusses the direction of future research and clinical

treatment of psoriasis from the perspective of intestinal microbiota and the

mechanism of traditional Chinese medicine, so as to provide clinicians with more

comprehensive diagnosis and treatment options and bring greater hope to

patients with psoriasis.
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1 Introduction

Psoriasis is an inflammatory skin disease characterized by well-

defined red patches covered with silvery-white scales (Boehncke and

Schön, 2015). Psoriasis can manifest in various ways, often affecting

the trunk, limbs, and joints, with plaque psoriasis being the most

common type. When environmental and genetic factors activate

plasmacytoid dendritic cells, cytokines such as TNF-a, IL-6, and IL-

1b are released, leading to T cell-mediated inflammation, keratinocyte

activation, and excessive proliferation, resulting in inflamed skin

patches characteristic of psoriasis (Mahil et al., 2016). Inflammation

not only affects the skin but also different organs throughout the body.

Metabolic syndrome (Sommer et al., 2006; Gerdes et al., 2016),

cardiovascular disease (Gelfand et al., 2006; Gelfand et al., 2009;

Prodanovich et al., 2009; Ahlehoff et al., 2011), diabetes, depression,

and other conditions are all associated with the severity of psoriasis.

The human gut microbiota is complex and diverse, consisting of

bacteria, viruses, and fungi. Among them, bacteria are the most

abundant, with over 99% of bacteria belonging to the phyla

Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria,

with Firmicutes and Bacteroidetes dominating the gut microbiota

of healthy individuals (Kostic et al., 2014). They play a crucial role

in promoting nutrient absorption, preventing pathogen invasion,

and regulating the immune system (Milani et al., 2017). A reduction

in the relative abundance of microbiota and an increase in

pathogenic bacteria can disrupt the homeostasis of gut microbiota

composition and ecosystem, consequently influencing the body’s

immune function and promoting the development of chronic

inflammatory diseases (Stecher, 2015; Zhao M. et al., 2023).

Both the gut and the skin are dynamic and rich neuroendocrine

organs with diverse microbiota. They maintain host internal balance

through their respective physical, chemical barriers, and beneficial

symbiotic microbial communities (Tlaskalová-Hogenová et al., 2004;

Coates et al., 2019; Mahmud et al., 2022). Although the interaction

mechanisms between gut microbiota and skin health are not yet fully

understood, an increasing amount of research is beginning to explore

how the gut microbiota, based on the gut-skin axis, influences the

development of chronic inflammatory diseases like psoriasis and acne

(Olejniczak-Staruch et al., 2021; Wang and Chi, 2021). This article

employs the MESH thesaurus to accurately search literature on

psoriasis and gut microbiota in PubMed. Simultaneously, it applies

a keyword strategy in CNKI to delve deeper into relevant studies. The

aim is to systematically explain the connection between microbial

imbalance and psoriasis, as well as microbiome-targeted therapies for

the prevention and treatment of psoriasis.
2 Intestinal microbiota composition
and psoriasis

2.1 Intestinal bacterial dysbiosis
and psoriasis

More and more research indicates that the gut microbiota of

psoriasis patients has undergone changes in diversity and relative
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abundance of specific bacterial taxa compared to healthy individuals

(Hidalgo-Cantabrana et al., 2019; Zhang X. et al., 2021). It has been

reported that psoriasis patients show an increase in the abundance of

Firmicutes and Actinobacteria, while the abundance of Bacteroidetes

decreases (Chen et al., 2018; Shapiro et al., 2019). Furthermore, a

study using 16S rRNA sequencing analysis of fecal microbiota in

psoriasis patients found that at the genus level, Faecalibacterium

and Megamonas were increased in abundance. Among these,

Faecalibacterium prausnitzii (Zhang X. et al., 2021), whose

supernatant has anti-inflammatory effects to maintain the healthy

balance of the gut (Zhou et al., 2018). Meanwhile, genetic predictions

suggest that Prevotella, Eubacterium, Lactobacillus, Odoribacter, and

Slackia have significant causal effects on psoriasis (Mao et al., 2023).

These findings suggest a close relationship between gut microbiota

composition and psoriasis.

The ecological imbalance of the gut microbiota can promote

immune reactions in the host’s intestinal mucosa, leading to the

occurrence of systemic inflammatory diseases (Li et al., 2019).

Related studies have shown that variations in the microbiota are

associated with abnormal inflammatory markers in psoriasis patients.

Specifically, in a study of gut microbiota and cytokines in fecal samples

from patients with psoriasis, it was found that IL2R is positively

correlated with Phascolarctobacterium and negatively correlated with

Dialister (Zhang X. et al., 2021). Both Phascolarctobacterium and

Dialister are involved in predicting the occurrence of inflammatory

reactions and disease activity (Garshick et al., 2019; Zhang X. et al.,

2021). Furthermore, the metabolic products of the gut microbiota, such

as fatty acids, also influence intestinal mucosal health. Levels of

medium-chain fatty acids (MCFAs), including caprylic acid and

capric acid, were found to be significantly reduced in fecal samples

from patients with psoriatic arthritis (PsA) and psoriasis (Ps) compared

to healthy individuals. The antimicrobial properties of MCFAs are

crucial for maintaining gut microbiota homeostasis (Scher et al., 2015).

These reports emphasize the impact of the gut microbiota in the

pathogenesis and progression of psoriasis (Table 1).

Furthermore, to minimize the influence of confounding factors

such as diet and living environment on gut microbiota, rRNA

sequencing analysis of gut microbiota was conducted in 17 patients

with psoriasis and their healthy spouses (Wen et al., 2023). The

results showed that, compared to healthy spouses, there were only

differences at the species level; Alistipes finegoldii was increased and

Bacteroides eggerthii was decreased in patients with psoriasis, with no

differences observed at the phylum and genus levels. Significant

differences in gene function were also found between patients with

psoriasis and their healthy spouses. Therefore, we speculate that genes

may regulate gut microbiota to some extent, resulting in differences in

microbial abundance between patients and healthy individuals.

Currently, there is relatively limited comprehensive research on the

genetics and gut microbiota of patients with psoriasis. However, a

study was conducted to analyze the gut microbiota, target gene

pathways such as Kyoto Encyclopedia of Genes and Genomes

(KEGG)and Clusters of Orthologous Groups(COG), and microbial

metabolic functions in 30 patients with psoriasis (Xiao et al., 2021). It

is revealed significant changes in the distribution of gut microbiota in

patients with psoriasis compared to healthy controls. Additionally,

they identified significant enrichment of 15 KEGG pathways,
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TABLE 1 Summary of the most relevant research studies on the gut microbiome of patients with psoriasis.

Author Study Group

Controlling
for con-
founding
variables
(BMI,

Age,Gender)

Analysis
Sample

Method
of Analysis

Results

Yi-Ju Chen et al., 2018
(Chen et al., 2018)

Psoriasis patients
(n = 32)

Healthy controls (n = 64)
Yes

fecal
samples

16S rRNA sequencing
analyses(V3-V4

hypervariable region)

↓Bacteroidetes phylum, ↑Firmicutes phylum;
↓Bacteroidaceae family, Prevotellaceae family,

↑Ruminococcaceae family,
Lachnospiraceae family

Codoñer FM et al., 2018
(Codoñer et al., 2018)

plaque psoriasis patients
(n = 52)

Healthy controls from
Human Microbiome
Project (n = 300)

No
fecal

samples

16s rRNA sequencing
(hypervariable region

V3–V4)

↓genus Bacteroides
↑Akkermansia spp
Ruminococcus

Tan et al., 2018 (Tan
et al., 2018)

Psoriasis patients
(n = 14) Healthy controls

(n = 14)
No

fecal
samples

16s rDNA sequencing
(V4

hypervariable region)

↓Akkermansia muciniphila, Verrucomicrobia
Tenericutes phyla

Mollicutes
Verrucomicrobiae

↑Bacteroides genera, Clostridium citroniae
spp. Enterococcus genera

Hidalgo -Cantabrana
et al., 2019 (Hidalgo-

Cantabrana et al., 2019)

Psoriasis patients
(n = 19)

Healthy controls (n = 20)
No

fecal
samples

16s rRNA sequencing
(V2 -V3

hypervariable region)

↓ diversity
↑ Firmicutes

↓ Bacteroidetes
↑ F/B ratio

↑ Actinobacteria
↓ Proteobacteria phylum, Alistipes,

Bacteroides, Barnesiella, Faecalibacterium,
Parabacteroides and Paraprevotella genera

Jonathan Shapiro et al.,
2019 (Shapiro
et al., 2019)

Psoriasis patients
(n = 24)

Age-, BMI-, comorbidity-
matched non-psoriasis

controls (n = 22)

Yes
fecal

samples

16S rRNA sequencing
analyses(V4

hypervariable region)

↑Firmicutes phylum ↓Bacteroidetes phylum
↑F/B ratio

↑Blautia Genus
Faecalibacterium Genus

↓Prevotella genus ↑Ruminoccocus gnavus
Dorea formicigenerans
Collinsella aerofaciens

Yegorov S et al., 2020
(Yegorov et al., 2020)

Psoriasis patients
(n = 20)

Healthy controls (n = 20)
Yes

fecal
samples

16S rRNA
gene sequencing

↑Lachnospiraceae family
↑Faecalibacterium
↓Oscillibacter
Roseburia

Dei-Cas I et al., 2020
(Dei-Cas et al., 2020)

Psoriasis patients
(n = 55)

Healthy controls (n = 27)
Yes

fecal
samples

16S rRNA sequencing
analyses(hypervariable

region V3–V4)

↑Firmicutes
Proteobacteria

Fusobacteria ↑Faecalibacterium
Blautia

Valentini et al., 2021
(Valentini et al., 2021)

Psoriasis patients treated
with biologic therapy

(n = 10)
Psoriasis patients not
treated with biologic
therapy (n = 20)

No
fecal

samples
16s rRNA sequencing

↓ diversity of biologically treated patients vs.
untreated patients

Xinyue Zhang et al., 2021
(Zhang X. et al., 2021)

Psoriasis patients
(n = 30)

Healthy controls (n = 30)
Yes

fecal
samples

16S rRNA
sequencing analyses

↑Veillonellaceae family
Ruminococcaceae family
↓Lachnospiraceae genus

↑Faecalibacterium genus Megamonas genus
prevotella genus

Wang X et al., 2022
(Wang X. et al., 2022)

Severe Psoriasis patients
(n = 28)

Healthy controls (n = 21)
Yes

fecal
samples

16S rRNA
sequencing analyses

↓Firmicutes
Proteobacteria
↑Bacteroidetes

↓unidentified_Enterobacteriaceae
unidentified_Lachnospiraceae

Romboutsia

(Continued)
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including lipopolysaccharide (LPS) biosynthesis, WNT signaling

pathway, and apoptosis. Furthermore, five metabolites showed

significant downregulation in the psoriasis cohort. These findings

further underscore the complexity of psoriasis pathogenesis,

influenced by multiple factors including the immune system,

genetics, and gut microbiota.
2.2 The role of the gut microbiome in the
pathogenesis of psoriasis

The diversity and composition of the gut microbiota have a

significant impact on the immune system and susceptibility to

diseases, especially autoimmune diseases such as psoriasis

(Kierasińska and Donskow-Łysoniewska, 2021). Studies have shown

that in the intestines of psoriasis patients, there is a decrease in the

phylum Bacteroidetes and an increase in the phylum Firmicutes,

leading to changes in diversity (Komine, 2020). Additionally,

multiple studies have shown that alterations in the gut microbiota

composition participate in the pathophysiology of psoriasis by

activating various immune mediators such as IL-23, IL-17, IL-22,

regulating interferon-gamma (IFN-gamma), and inhibiting the

production of T regulatory cells (Tregs) (Mann et al., 2020; Kapoor

et al., 2022). Furthermore, large-scale genomic sequencing analysis

based on 16S rRNA revealed changes in the gut bacterial composition

of psoriasis patients, with an increase in Firmicutes, Akkermansia

species, and Veillonella species, and a decrease in Bacteroidetes,

leading to an imbalance in the gut microbiota that inhibits the

production of short-chain fatty acids (SCFAs) - butyrate and

propionate. This imbalance activates the NF-kB pathway, further

activating inflammatory factors, triggering inflammation reactions,

compromising barrier integrity, and participating in the pathogenesis

of Psoriasis (Zheng et al., 2017; Codoñer et al., 2018; Stoeva et al., 2021;

Valentini et al., 2021). Moreover, studies have found that the levels of

Coprobacillus, Akkermansia, Veillonella, and Paraprevotella genera are

decreased, which may exacerbate psoriasis symptoms due to the

inhibition of autoimmunity by Streptomyces, reducing intestinal
Frontiers in Cellular and Infection Microbiology 04
inflammation, and inducing Tregs. Thus, the lower the abundance of

these genera, the more severe the symptoms of psoriasis may be (Visser

et al., 2019; Sinha et al., 2021; Thye et al., 2022). It is evident that the gut

microbiota plays a crucial role in maintaining host homeostasis and

immune inflammatory responses. Furthermore, dysbiosis of gut

microbiota may lead to excessive growth or abnormal increase of

pathogens, thereby increasing the production and release of Pathogen-

Associated Molecular Patterns(PAMPs) (Campbell et al., 2023;

Kasarello et al., 2023). Despite limited reports on circulating PAMP

levels in patients with psoriasis, existing studies have indicated

that PAMPs or Damage-Associated Molecular Patterns(DAMPs) in

psoriasis patients can be recognized by Pattern Recognition Receptors

(PRRs, thereby activating immune responses in keratinocytes or

Plasmacytoid Dendritic Cells(pDCs), promoting the release of

various pro-inflammatory cytokines including IFNb, IL1b, IL36,
TNF, IL6, IL8, IL25, and CXCL10. These factors contribute to the

formation of the inflammatory T cell phenotype in psoriasis (Albanesi

et al., 2018; Xu et al., 2018; Sun et al., 2019). We speculate boldly that

dysbiosis of gut microbiota causing PAMP release and subsequent

immune activation may influence immune-mediated skin diseases

such as psoriasis. While research has shown a certain association

between the gut microbiota and psoriasis, the literature primarily

focuses on microbial composition and immune inflammation, with

limitations and a limited number of studies (Scher et al., 2015; Li et al.,

2019; Sinha et al., 2021). Therefore, future exploration should broaden

research directions to uncover other mechanisms of action between the

gut microbiota and psoriasis, aiming to expand clinical approaches to

diagnosis and treatment (Figure 1).
3 The microbial axis of gut-skin
in psoriasis

An increasing number of studies indicate a close relationship

between gut microbiota imbalance and various systemic

inflammatory skin diseases, including psoriasis. Therefore, the

concept of the gut-skin axis has been widely recognized and
TABLE 1 Continued

Author Study Group

Controlling
for con-
founding
variables
(BMI,

Age,Gender)

Analysis
Sample

Method
of Analysis

Results

Subdoligranulum,
unidentified_Erysipelotrichaceae, Dorea

↑Lactobacillus
Dialister

Wen C et al., 2023 (Wen
et al., 2023)

Psoriasis patients
(n = 32)

Healthy controls (n = 32)
Yes

fecal
samples

16S rRNA gene
amplicon

sequencing approach

↑phylum Bacteroidetes
↓Firmicutes
↓Roseburia

Eubacterium genus
↑Bacteroides

↓Roseburia hominis
↑ Escherichia spp

Bacteroides uniformis
↓, decreased; ↑, increased; rRNA, ribosomal ribonucleic acid.
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focused on in the medical community, linking skin diseases

and microbial communities through metabolites, inflammatory

mediators, and the intestinal barrier (Sikora et al., 2020). Although

the mechanisms of interaction in the gut-skin axis have not been fully

explored, gut microbiota seems to maintain skin homeostasis by

regulating the systemic immune system (O’Neill et al., 2016).

Microbial dysbiosis may trigger inflammatory reactions, leading to

tissue or skin dysfunction (Salem et al., 2018; Polkowska-Pruszyńska

et al., 2020). Numerous research results have found changes in the gut

microbial balance in psoriasis patients, with an increase in the

Bacteroides genus and a decrease in the Prevotella genus, similar

results have been observed (Scher et al., 2015; Codoñer et al., 2018;

Myers et al., 2019; Le et al., 2020). It is known that Prevotella activates

regulatory T cells by producing polysaccharide A to play an

immunomodulatory role in the intestine (Mosca et al., 2016).

Therefore, a decrease in this genus may lead to changes in the

immune response to the gut microbiota, promoting the upregulation

of inflammatory factors IL-17 and TNF-a, further exacerbating the

adverse effects related to the pathogenesis of psoriasis. Extensive

animal experiments have also confirmed the preventive effect of

Prevotella on inflammatory diseases by gavaging mice with this

bacterium (Liu et al., 2022; Wu et al., 2023).

In addition, Okada Karin and others (Okada et al., 2020)analyzed

the 16S rRNA gene of Staphylococcus aureus and Streptococcus

pyogenes-rich gut microbiota in transgenic mice with keratinocyte-

specific caspase-1 (Kcasp1Tg) inflammatory skin model. They then
Frontiers in Cellular and Infection Microbiology 05
orally administered these dominant bacteria and control bacteria to

wild-type mice treated with antibiotics, establishing a psoriasis-like

skin inflammation model induced by imiquimod. It was observed

that in the groups treated with Staphylococcus aureus and

Streptococcus pyogenes, levels of inflammatory factors TNF-a, IL-
17A, IL-17F, and IL-22 increased, exacerbating skin lesions. The

results indicate that the severity of skin inflammation is associated

with a vicious cycle between gut microbiota, where gut microbiota

may act as both the cause and consequence of inflammation.

Therefore, in addition to treating skin diseases, regulating gut

microbiota may be an innovative approach for future treatment of

inflammatory skin diseases such as psoriasis.
4 Interaction between gut microbiota
and therapeutic drugs for psoriasis
(Western medicine and traditional
Chinese medicine)

4.1 Interaction between gut microbiota
and Western medicine treatment
for psoriasis

Psoriasis is characterized by abnormal activation of the immune

system, particularly proliferation and activation of T cells and
FIGURE 1

The pathogenesis of psoriasis. IL-23, Interleukin-23; IL-17, Interleukin-17; IL-22, Interleukin-22; IFN-g, interferon-gamma; Treg, Regulatory T cells;
NF-kB, Nuclear Factor-kappa B; NF-kB, Short-Chain Fatty Acids. By Figdraw.
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dendritic cells. In psoriasis patients, the skin is infiltrated by

lymphocytes, macrophages, neutrophils, and abundant T cells,

which are hallmark features of the disease. Specifically, Th1 and

Th17 cells play crucial roles in the pathophysiology, releasing pro-

inflammatory cytokines such as IL-17 and IFN-g, accelerating
keratinocyte proliferation, and triggering skin inflammatory

responses. Furthermore, immune dysregulation may also lead to

excessive proliferation of skin cells and abnormal keratin formation,

further exacerbating the pathophysiological processes of psoriasis

(Pasquali et al., 2019; Grän et al., 2020). Currently, the application

of immunobiologics still dominates in the understanding of the

pathogenesis of psoriasis. Drug interventions have significant

impacts on the composition and function of gut microbiota.

Medications interact directly or indirectly with gut microbiota

through various pathways and cytokines, participating in bacterial

metabolism. Clinical evidence suggests that biologics can alter

microbial diversity (Bilal et al., 2018; Bai et al., 2019; Valentini

et al., 2021). According to reports, the relative abundance of

Roseburia, Lachnoclostridium, Bacteroides vulgatus, Anaerostipes,

and Escherichia-Shigella increases with the administration of the

IL-23 inhibitor (guselkumab); while the use of IL-17 inhibitors

(secukinumab or ixekizumab) significantly increases the levels of

Bacteroides stercoris and Parabacteroides merdae, and decreases

the levels of Blautia and Roseburia. These changes in microbial

diversity may modulate intestinal inflammatory responses (Shin

et al., 2015; Yeh et al., 2019; Yao Y. et al., 2022; Huang YH. et al.,

2023). Additionally, studies have shown that compared to untreated

psoriasis, psoriasis patients successfully treated with ustekinumab

exhibit increased proportions of Firmicutes, Pantoea, and

unclassified_Comamonadaceae, but decreased proportions of

Actinobacteria, Corynebacterium, Hydrogenophilaceae, and

Streptococcus (Du et al., 2023). It is known that these bacteria

can produce anti-inflammatory substances such as butyrate,

medium-chain fatty acids (MCFAs) during bacterial metabolism,

suppress intestinal oxidative stress, and regulate the balance

between Th17/Treg lymphocytes. Therefore, changes in gut

microbiota abundance are beneficial for improving symptoms of

psoriasis (Kim et al., 2017; Clements and RC, 2018; Polak et al.,

2021; Zhao et al., 2024). Apart from biologic agents, systemic

treatments such as methotrexate and cyclosporine act through

various mechanisms to modulate the immune system and reduce

inflammatory responses, potentially influencing psoriasis treatment

outcomes by directly or indirectly impacting the gut microbiota.

Studies have shown that after treatment with methotrexate, patients

who do not respond well tend to exhibit higher gut microbiota

diversity and reduced metabolic pathways among gut microbes

compared to those achieving favorable outcomes (Qiu et al., 2022).

It is inferred that patients with higher gut microbiota diversity may

develop resistance to methotrexate treatment. Given the scarcity of

studies in this domain, these findings are preliminary and

underscore the imperative for comprehensive investigations to

substantiate the impact of systemic immunosuppressive therapies

on the gut microbiota of psoriasis patients.
Frontiers in Cellular and Infection Microbiology 06
4.2 Interaction between gut microbiota
and traditional Chinese medicine in the
treatment of psoriasis

In China, traditional Chinese medicine has been widely used in

the treatment of psoriasis, showing significant efficacy in improving

the symptoms of psoriasis patients. However, the exact mechanism

of action of traditional Chinese medicine is not fully understood

and there are few reports on it. Recently, a large number of animal

experiments have reported the mechanisms of single Chinese herbal

medicine ingredients and compound formulas in improving the

inflammatory mouse model of psoriasis (Nguyen et al., 2018; Zhang

and Wei, 2020; Jin et al., 2021; Song et al., 2021; Tsiogkas et al.,

2022). For example, It is found that rosin isolated from frankincense

and administered by gavage to mice induced by imiquimod (IMQ)

can improve inflammation by inhibiting cytokines associated with

the IL-23/IL-17 immune axis, and conducted 16S rRNA sequencing

analysis showing that rosin can reshape the gut microbiota of

mice (Li XQ. et al., 2021). It has been reported that curcumin has

been proven to reduce the production of pro-inflammatory factors

such as IFN-g and IL-17 in psoriasis patients to achieve anti-

inflammatory effects (Skyvalidas et al., 2020). In addition, a study

found that curcumin can induce changes in the gut microbiota and

is closely related to inflammatory factors (Vollono et al., 2019).

Specifically, Ligilactobacillus and Anaeroplasma are positively

correlated with various psoriasis-related factors such as IL-6,

IL-17A, IL-22, and IL-23, while Rikenella, Alistipes, and

Mucispirillum are negatively correlated with them (Cai et al.,

2023). Research has found that parthenolide can increase the

abundance of gut microbiota Alloprevotella and Fournierella

genera, thereby upregulating the immunosuppressive cytokine IL-

10 in colonic tissue to alleviate systemic inflammatory responses

(Liu et al., 2020). In summary, traditional Chinese medicine can

improve the systemic inflammatory state of psoriasis patients by

altering the abundance and composition of gut microbiota.

However, since the composition of traditional Chinese medicine

decoctions is complex, exploring the mechanisms of action of major

components on gut microbiota and the interactions among them is

a breakthrough for future research (Table 2).
5 Targeted therapeutic applications of
gut microbiota

5.1 Dietary intervention

Diet plays a direct role in the composition of the gut microbiota

and the stability of the microbial ecosystem. There is evidence

confirming a close relationship between dietary patterns, gut

microbiota composition, and psoriasis. The Mediterranean diet

(MD) emphasizes the intake of fruits, vegetables rich in polyphenols,

fiber, and vitamins, as well as fish, seafood, and nuts high in
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TABLE 2 Summary of relevant research on traditional Chinese medicine treatment for psoriasis.

Author
Subject
of Study

n1/
n2
(E/
C)

Experimental
group

intervention

Control
group inter-

vention
and doses

Period
of

treatment

Outcome
measure

Gut Microbi-
ota Change

Other
Outcome

Li XQ
et al., 2021
(Li XQ.

et al., 2021)

Specific
pathogen-
free BALB/c
male mice (7
weeks old,
16–18 g)

8/8
sodium abietate (40

mg/kg/d)
Imiquimod cream
(5%) (62.5 mg/d)

7days

16S rRNA
sequencing
analyses(V3-

V4
hypervariable

region)

↑Bacteroidetes
↓Firmicutes, Tenericutes

phylum
↑Bacilli class

↑Bacillales order
↑Porphyromonadaceae

Prevotellaceae, Planococcaceae
Enterobacteriaceae family

↓Anaerotruncus Christensenella
genus

↑Kurthia, Citrobacter, and
Klebsiella genus

↓the ratio of
Th17 cells
↑Treg cell

(CD4+/CD25
+/Foxp3+)

rate
↓IL-17A, IL-
23, TNF-a,
and IL-1b

Cai Z et al.,
2023 (Cai
et al., 2023)

BALB/c mice
(8–10 weeks,
20–22 g)

4/4
curcumin (100 mg/

kg/day)
imiquimod cream

(62.5 mg/d)
6days

16S rRNA
sequencing
analyses(V3-

V4
hypervariable

region)

↑flora diversity
↑Mucispirillum,

unclassified_desulfovibrionaceae
genus

↑Deferribacters,
Desulfovibrionia class

↑clostridia, Deferribacteresw,
and Desulfovibrionia class
↑Alistipes, Desulfovibrio,

Mucispirillum, and
Rikenella genus

↑IL-6, IL-
17A, IL-22,
IL-23, TNF-
a, TGF-b1,

IL-10

Di T et al.,
2021 (Di

et al., 2021)

Babl/c male
mice, aged
6–8 weeks,

8/8
Tuhuaiyin15 g/Kg

intragastric
administration

Imiquimod cream
(5%) (62.5 mg/d)

7days
16S rRNA
sequencing
analyses

↑The diversity of intestinal
microbiota

↑ ovatus, RF32,
Christensenellaceae,Clostridium

↓IL-17A, IL-
22, GRO
↑MCP-1,
MIP-1 b

Huang
Gang et al.,

2023
(Huang
Gang.

et al., 2023)

BALB/c male
mice (6–8
weeks,
20–22 g)

6/6

rhinoceros horn
and rehmannia

decoction 320mg/
mL/d

Imiquimod cream
(5%) (42 mg/d)

14days
Fecal

bacterial
culture

↑Lactobacillus, Bifidobacterium
↓Enterococcus, Escherichia coli

↓IL-17, IL-23,
TNF-a

Huang
Gang et al.,

2022
(Huang

et al., 2022)

Blood
heat psoriasis

30/
30

rhinoceros horn
and rehmannia
decoction 200ml,

twice/d
+Jinhuang
Ointment

Acitretin Capsules
20mg/d

+Jinhuang
Ointment

8weeks
Fecal

bacterial
culture

↑Lactobacillus, Bifidobacterium
↓Enterococcus

↓Th17,Treg/
Th17
↑Treg

ZHANG
Yuting

et al., 2024
(Zhang

et al., 2024)

Spleen
dampness

syndrome of
psoriasis
vulgaris

20/
20

Spleen
detoxification soup

250ml,twice/d
+Calcipotriol
Ointment

Healthy control 4weeks
16S rRNA
sequencing
analyses

↑Gammaproteobacteria,
Actinobacteria,

↓Bacteroidota-Baacteroidia
phylum

↑Enterobacteriaceae,
Bifidobacteriacease family

↑Bifidobacterium
Escherichia-Shigella

↓Bacteroides

LUO
Saijun.2022
(Luo, 2022)

BALB/c male
mice (6

weeks, 20 g)
6/6

Zhuhuang
granules250mg/ml

Imiquimod cream
(5%) (42 mg/d)

7days
16S rRNA
sequencing
analyses

↑Alistipes,Lactobacillus,
Muribaculaceae S24-7

↓IL-1b,IL-6,
TNF-a

HU Hui-
ying et al.,
2020 (Hu
et al., 2020)

Male
SD mice

8/8
Runzao Zhiyang
capsule(RZC)/d

5%Propranolol 2weeks
Fecal

bacterial
culture

↓Enterococcus, Escherichia coli
↑Lactobacillus.
Bifidobacterium.

↓IL-6,TNF-a,
IL-17
↑IL-10
F
rontiers in Ce
llular and Infec
tion Mic
robiology
 0
7
↓, decreased; ↑, increased; rRNA, ribosomal ribonucleic acid.
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polyunsaturated fatty acids, which is recognized as a model of healthy

eating (Gantenbein and Kanaka-Gantenbein, 2021; Garcıá-Montero

et al., 2021; Kiani et al., 2022). The antioxidant and anti-inflammatory

properties of polyphenols, polyunsaturated fatty acids, dietary fiber,

and vitamins have been well established (Liu et al., 2019 2019; Liu

et al., 2021; Zhang S. et al., 2021; Harwood, 2023; Kong et al., 2023;

Tian et al., 2023). Clinical studies have shown that intervention with

the MD can help inhibit the progression of psoriasis, enrich the

diversity of gut microbiota, indicating an intervention effect of the MD

on psoriasis (Lubberts et al., 2022; Cintoni et al., 2023). A cross-

sectional observational study of psoriasis patients found that the

Mediterranean diet can improve symptoms of psoriasis and is

negatively correlated with the severity of psoriasis (Phan et al., 2018;

Zanesco et al., 2022). The MD can alter the diversity of gut

microbiota, influence inflammatory markers, participate in intestinal

inflammatory responses, and serve as a major regulator between gut

microbiota and the immune system (Fiorindi et al., 2021; Sugihara and

Kamada, 2021; Yan et al., 2022). Research indicates that the MD can

increase the levels of Bifidobacterium, Actinobacteria, and bacteria

producing short-chain fatty acids (Clostridium leptum and

Faecalibacterium), decrease levels of Helicobacter pylori, Firmicutes,

and Cyanobacteria, regulate the ratio of beneficial to harmful bacteria,

reduce inflammation and oxidative reactions, enhance intestinal

immunity, and alleviate symptoms of psoriasis (Garbicz et al., 2021;

Barber et al., 2023). An experimental study by Takahashi et al.

found that fucoidan increased the levels of Desulfovibrionaceae,

Actinobacteria, Enterococci, and Desulfobacter, decreased levels of

Lachnospiraceae and Ruminococcaceae, increased short-chain fatty

acids, and interacted with non-Toll-like pattern recognition receptors

such as dectin-1 and complement receptor-3 to activate macrophages,

neutrophils, and helper T cells to stimulate innate immunity and

improve the course of psoriasis (Sawin et al., 2015; Sun et al., 2017;

Garbicz et al., 2021). In conclusion, based on the gut microbiota,

dietary therapy as a treatment approach for psoriasis is worth further

promotion. Developing a comprehensive and stable dietary plan is

beneficial for achieving optimal therapeutic outcomes.
5.2 Bioactive dietary components

5.2.1 Omega-3 fatty acids
Dietary omega-3 polyunsaturated fatty acids can inhibit intestinal

inflammation, maintain intestinal homeostasis, alter gut microbiota

diversity, and enhance host immune function (Calder, 2017;

Bellenger et al., 2019). It has been reported that fish oil, rich in

omega-3 fatty acids, can inhibit Escherichia coli while increasing the

levels of Bifidobacteria, thereby reducing lipopolysaccharide-related

inflammatory responses (Cao et al., 2019). Furthermore, studies have

shown that administering flaxseed oil to rats can increase the

production of short-chain fatty acids (SCFAs) and gut microbiota

diversity, with a negative correlation observed between lactic acid

bacteria, Firmicutes, Bacteroidetes, and Bifidobacteria and pro-

inflammatory markers (IL-1b, IL-6, IL-10, IL-17A, and TNF-a)
(Wang T. et al., 2020). This may explain the involvement of

omega-3 fatty acids in the pathogenesis of psoriasis. Research on a

mouse model of psoriasis induced by imiquimod (IMQ) and
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intervened with Resolvin E1 (RvE1), a metabolite of omega-3

polyunsaturated fatty acids, has shown that RvE1 can terminate the

inflammatory process by inhibiting Leukotriene B4 - BLT1(LTB4-

BLT1) signaling and regulating the expression of Th17 and Tc17

cytokines, effectively inhibiting inflammatory cell infiltration and

epidermal hyperplasia in psoriatic skin, thereby improving the

severity of psoriasis (Sawada et al., 2018; Oner et al., 2021).

Additionally, clinical studies have demonstrated that sustained

intake of omega-3 fatty acids significantly increases the abundance

of Coprococcus, Bacteroides, and Bifidobacteria in the gut, while

decreasing the relative abundance of bacteria that produce SCFAs

(such as clostridia and certain types of rumen cocci) (Vijay et al.,

2021). Coprococcus has been implicated in the physiological and

pathological processes of psoriasis (Sun et al., 2021; Yu et al., 2023),

while the anti-inflammatory and immunomodulatory mechanisms of

SCFAs are well recognized (Fusco et al., 2023; Kim, 2023; Zhang et al.,

2023). Moreover, omega-3 polyunsaturated fatty acids can inhibit the

binding of Toll-like receptor-4 (TLR4), thereby suppressing the

expression of the NF-kB pathway and the secretion of pro-

inflammatory cytokines, similar to the pathogenesis of psoriasis

(Arjomand Fard et al., 2023). Therefore, the application of omega-3

fatty acids can modulate gut microbiota composition and

homeostasis, regulate inflammatory responses, participate in the

pathophysiological processes of psoriasis, and improve symptoms

in patients with psoriasis.

5.2.2 Resveratrol
Resveratrol is a natural polyphenol compound, which is widely

present in substances such as grapes, wine, and peanuts (Wang P.

et al., 2022; Shahcheraghi et al., 2023; Wang et al., 2024). It has rich

biological activities, such as anti-inflammatory, anti-oxidative stress,

and immune regulation (Brito Sampaio et al., 2022; Coutinho-

Wolino et al., 2022; Hsu et al., 2023; Eduardo Iglesias-Aguirre et

al., 2023; Yang et al., 2023). Research has shown that resveratrol can

exert anti-inflammatory effects by down-regulating toll-like receptor

4 in the intestines, reducing the gene expression of pro-inflammatory

cytokines IL-1b, IL-6, and MMPs, as well as inhibiting the activity of

innate immune markers TLR-2 and TLR-4 (Grosu et al., 2020; Pistol

et al., 2021). At the same time, numerous studies have indicated that

resveratrol can regulate the diversity of intestinal microbiota, inhibit

intestinal inflammation, and protect intestinal barrier (Zhao et al.,

2018; Chen et al., 2023). Resveratrol therapy has been shown to

increase the abundance of Actinomycetes, Atopobiaceae, and

Lactobacillus genera, while regulating the diversity of intestinal

microbiota, improving intestinal function (Yao M. et al., 2022; Gao

et al., 2023). Furthermore, an animal study demonstrated that the

application of resveratrol can reduce harmful bacteria such as

Desulfovibrio, Lachnospiraceae_NK4A316_group, and Alistipes,

and increase the abundance of bacteria producing short-chain fatty

acids (SCFA) like Allobaculum, Bacteroides, and Blautia in mice,

thereby restoring intestinal mucosal morphology and improving

intestinal barrier integrity (Li et al., 2020). As mentioned earlier,

the ratio of Firmicutes/Bacteroidetes is often lower in patients with

psoriasis (Liu et al., 2024); therefore, resveratrol can play a therapeutic

role in psoriasis patients by acting on the intestinal microbiota

(Marko and Pawliczak, 2023).
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5.2.3 Quercetin
Quercetin is a special subclass of flavonoids, which belongs to the

polyphenolic compound category (Singh et al., 2021).Quercetin can be

found in many fruits, Chinese herbs, vegetables, and plants

(Ashrafizadeh et al., 2021; Alizadeh and Ebrahimzadeh, 2022). Its

anti-inflammatory, antioxidant stress, and antibacterial properties have

been widely recognized and verified (Li et al., 2018; Hosseini et al.,

2021; Georgiou et al., 2023). In recent years, with the introduction of

the concept of gut microbiota, many research directions have begun to

converge towards this area, and quercetin also has a significant impact

on gut microbiota (Santangelo et al., 2019; Kasahara et al., 2023;

Roshanravan et al., 2023). Studies have shown that supplementing

quercetin to pigeons induced by LPS can increase the relative

abundance of some bacteria that produce short-chain fatty acids

(SCFA) or promote health, such as Phascolarctobacterium,

Negativicutes, Selenomonadales, Megamonas, Prevotellaceae, and

Bacteroides_salanitronis, enhance the diversity of the gut microbiota

to maintain intestinal health and participate in enhancing intestinal

immunity (Feng et al., 2023). Furthermore, an in vitro study showed

that quercetin can significantly increase the relative abundance of

probiotics in the gut, with the most significant increase in

Bifidobacterium, which can reduce the relative abundance of

Clostridium difficile and Escherichia coli to regulate the composition

of gut microbiota (Pan et al., 2023). In addition, quercetin increases the

relative abundance of Bacteroides, Akkermansia, Butyricicoccus,

Faecalibacterium, and Coprobacillus, while reducing the relative

abundance of Proteobacteria, increasing antioxidant capacity to

reduce intestinal damage (Xu et al., 2021). An animal experiment

studying the improvement of psoriasis symptoms by quercetin

supplementation showed that quercetin can significantly reduce the

levels of TNF-a, IL-6, and IL-17 induced by imiquimod in mouse

serum, simultaneously inhibit NF-kB signaling activation, enhance

anti-inflammatory and antioxidant properties, thereby reducing

psoriasis severity index (PASI) scores and improving symptoms

(Chen et al., 2017). In addition, intervention with quercetin [main

component of ethanolic extract (ESW)] showed less evident

hyperkeratosis and cell infiltration compared to the control group,

significantly improving symptoms such as erythema, scaling, and skin

thickness of psoriasis, which may be related to the elevated levels of

histidine, as branched-chain amino acids effectively reduce oxidative

and inflammatory responses, playing a crucial role in regulating

immune cell function (Li Y. et al., 2021; Quante et al., 2022; Sharma

et al., 2024). Although existing literature indirectly proves the certain

connection between quercetin, gut microbiota, and psoriasis, there are

relatively few corresponding experimental studies, which should be

focused on in future research, especially the regulatory effects of

quercetin on the gut microbiota of psoriasis patients (Table 3).
5.3 FMT

Fecal Microbiota Transplantation (FMT) is a method of

transferring feces from a healthy donor to the colon of a patient,

directly altering the recipient’s gut microbiota to normalize its

composition and obtain therapeutic benefits (Vindigni and

Surawicz, 2017; Wang et al., 2019). In various animal studies, it has
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been well established that transferring gut microbiota from healthy

individuals can prevent psoriasis-like skin inflammation (Chen et al.,

2021; Zhao Q. et al., 2023). Analysis of Th17 and Treg cells in the

spleen of mice revealed a significant decrease in the frequency and

count of Th17 cells, as well as a significant increase in the

transcription levels of the anti-inflammatory factor IL10 in FMT

mice from healthy individuals, which is related to the alleviation of

skin inflammation (Chen et al., 2021). Furthermore, multiple studies

have reported improvements in psoriatic arthritis patients after FMT

(Kragsnaes et al., 2018; Kragsnaes et al., 2024), with significant

changes observed in plasma levels of TNF, IFN-g, and Signaling

Lymphocytic Activation Molecule Family Member 1(SLAMF1). A

case report from China showed that after two FMT treatments, the

skin lesions of a patient with plaque psoriasis basically disappeared,

the affected body surface area (BSA) decreased to 6%, and the

concurrent irritable bowel syndrome (IBS) significantly improved,

with serum TNFa dropping to 13.7 ng/L, a decrease of 88.6%. This

provides a new potential treatment for the disease (Yin et al., 2019).

Despite studies confirming the safety of FMT in treating psoriasis

(Kragsnaes et al., 2021), there are various issues in its clinical

application, such as the risk of infections during the transplant

process, recipient immune rejection of the donor, adverse reactions

like nausea, vomiting, and diarrhea, and the impact of dietary and

lifestyle habits on the composition of gut microbiota. These are

challenges that need to be explored and addressed.
5.4 Probiotics/prebiotics/
synbiotics/postbiotics

Probiotics are living microorganisms, including bacteria and

yeasts, which have a positive impact on health by influencing the

resident gut microbiota, intestinal barrier, and systemic immune

system (Wieërs et al., 2019). Currently, the most commonly used

probiotics include certain strains of Lactobacillus, Bifidobacterium,

and Enterococcus (Sánchez et al., 2017). Numerous animal studies

have shown that introducing Bifidobacterium or Lactobacillus

strains into the gut environment of mice has a significant effect

on the composition of the gut microbiota (Arthur et al., 2013;

Turroni et al., 2016). Furthermore, the connection between

probiotics and the immune system is a recent research focus.

Probiotics can influence inflammatory responses and immune

balance by directly or indirectly affecting the signaling pathways

of the immune system. Specifically, probiotics can decrease Th17

polarization and shift T cells towards the Treg subset through

membrane receptors, resulting in high levels of IL-10 and low levels

of TNF-a, thereby reducing inflammation. On the other hand,

probiotics can promote dendritic cells (DCs) to produce cytokines

(such as IL-12 and IL-15) to stimulate the activation of natural killer

(NK) cells (Maldonado Galdeano et al., 2019; Yousefi et al., 2019;

Zhang et al., 2019; Cristofori et al., 2021; Potrykus et al., 2021). In

various clinical trials, probiotics have been shown to significantly

improve the severity of skin lesions and quality of life in psoriasis

patients, and reduce levels of inflammatory markers such as high-

sensitivity C-reactive protein(hs-CRP) and IL-6 (Moludi et al.,

2021; Moludi et al., 2022; Choy et al., 2023).
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Prebiotics are naturally present in carbohydrates in the human

diet, which not only promote the growth of beneficial probiotic

microorganisms in the human intestinal tract but also stimulate

the immune system. Common prebiotics include inulin,

oligofructose, oligogalactose, etc. (Markowiak and Śliżewska,

2017; Yadav et al., 2022) Studies have found that an important

mechanism by which prebiotics affect the immune system is by

altering the expression of cytokines. Specifically, a complex of

inulin and oligofructose can significantly reduce the expression of

the pro-inflammatory cytokine IL-1b in the cecum (Hoentjen

et al., 2005), and it has been found that elderly people consuming
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galactooligosaccharides (5.5g/day) for 10 weeks can increase the

production of the anti-inflammatory cytokine IL-10, while

reducing the production of pro-inflammatory cytokines IL-1, IL-

6, and TNF-a (Vulevic et al., 2008; Shokryazdan et al., 2017;

Peters et al., 2019; Samanta, 2022). Mihaela Cristina Buhas ̧ (Buhas ̧
et al., 2023) and colleagues observed the effectiveness of probiotics

combined with prebiotics in the treatment of psoriasis patients,

and found that after 12 weeks of intervention, inflammatory

markers TNF-a, IL-6, IFN-g in psoriasis patients significantly

decreased, and the main inhibitory factor of the immune response

IL-10 increased. In addition, a decrease in triglyceride levels was
TABLE 3 The effects of biologically active compounds on the intestinal microbiome.

Author Subject of Study
biologically

active
compounds

Intervention Outcomes

Ting Wang et al.,
2020 (Wang T.
et al., 2020)

Female SD rats (6weeks, 193
± 10g

Omega-3
fatty acids

1mg/kg/day of flaxseed oil by gavage for
8 weeks

↑Allobaculum, ↑Lactobacillus, ↑Butyrivibrio,
↑Desulfovibrio, ↑Bifidobacterium,

↑Faecalibacterium, ↑Parabacteroides
↓Actinobacteria, ↓Bacteroides, ↓Proteobacteria,

↓Streptococcus, ↓Firmicutes/
Bacteroidetes ratio

Kåre Steinar Tveit
et al., 2020 (Tveit

et al., 2020)

Psoriasis patients n = 64.
Randomized
PASI < 10

53% of subjects used local
anti-psoriatic

maintenance treatment

Omega-3
fatty acids

Herring roe oil (containing 292 mg of
polyunsaturated fatty acids omega-3),

Daily dose: 2,6 g EPA and DHA

↓PASI score
No difference in inflammatory markers

Amrita Vijay et al.,
2021 (Vijay
et al., 2021)

Healthy subjects
n = 69

Randomized
No previous treatment

Omega-3
fatty acids

Daily dose of 500 mg of omega 3 (165 mg
EPA, 110 mg DHA)

↑iso-valerate
↑iso-butyrate
↑ Coprococcus
↑ Bacteroides
↓Colinsella.

Ting-Ting Cai
et al., 2020 (Cai
et al., 2020)

Male C57BL/KsJ diabetic
db/db mice

Resveratrol
Oral administration of 10 mg/kg/day

resveratrol
for 12 weeks

↑Bacteroides, ↑Alistipes, ↑Rikenella,
↑Odoribacter,

↑Parabacteroides, ↑Alloprevotella

Pan Wang et al.,
2020 (Wang P.
et al., 2020)

High-fat diet-fed mice Resveratrol 300 mg/kg/day resveratrol for 16 weeks ↑Lachnospiraceae family

Alharris E et al.,
2022 (Alharris
et al., 2022)

Female BALB/c mice
(6-8weeks)

Resveratrol
200µl carboxymethyl cellulose (CMC)
solution containing RES (100mg/kg) for

2 weeks

↑ Bacteroidetes
↓Firmicutes

↑Bacteroidales order,Bacteroides acidifaciens
species

↑ SCFA, butyric acid,

Li Z et al., 2022 (Li
et al., 2022)

Adult Sprague Dawley
Intrahepatic cholestasis of
pregnancy (ICP) rats

Resveratrol
oral administration of resveratrol (RSV)(60
mg/(kg/d) (750 mg RSV+2 ml DMSO+98

ml NS))

↓the richness and diversity of gut
bacteria

↑Actinobacteria, Synergistetes, and Chloroflexi;
Resveratrol can reverse the increase of

Ruminiclostridium and Bilophila and the
decrease of Actinobacteria

Lijun Zhao et al.,
2021 (Zhao
et al., 2021)

Monosodium glutamate-
induced abdominal

obese mice
Quercetin

5 mg/kg quercetin dissolved in 0.15%
carboxymethylcellulose sodium,

administrated by gavage for 6 weeks

↓Firmicutes/Bacteroidetes ratio
↓Firmicutes

↓Bacteroides spp.
↓Lachnospiraceae spp., ↓Ruminicoccaceae spp.

Su L et al., 2022 (Su
et al., 2022).

C57BL/6J mice (male, four
weeks old, weight 20–22 g)

Quercetin
quercetin (95% purity)(50 mg per kg BW

per day)

improved intestinal epithelial barrier damage,
and reduced intestinal permeability;
↑Firmicutes/Bacteroidetes ratio

↑Coprococcus_1, Akkermansia, Lactococcus,
Allobaculum
↓Adlercreutzia
↓—decreased; ↑—increased;.
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observed, which is consistent with previous reports (Ooi and

Liong, 2010; Bock et al., 2021).

Synbiotics are a synergistic combination of probiotics with added

prebiotics. They can effectively alter the composition of the gut

microbiota and enhance the epithelial barrier (Li et al., 2020;

Nguyen et al., 2022). Studies have shown that continuous intake of

synbiotics for three months can significantly increase the abundance

of Bifidobacteria, Lactobacilli, as well as Cyanobacteria, Archaea,

Clostridia, and Bacilli in the intestine, all of which are beneficial for

gut health (Sergeev et al., 2020; Álvarez-Arraño and Martıń-Peláez,

2021). In addition, Ali Akbarzadeh and colleagues found that

synbiotics can significantly increase the levels of Fe, Zn, P, Mg, Ca,

and Na in the serum of patients with mild to moderate psoriasis. The

increase or decrease of certain trace elements and oxidative stress

status have an impact on the development of psoriasis (Akbarzadeh

et al., 2022). In summary, probiotics, prebiotics, and synbiotics have

significant effects on altering the gut microbiota, stimulating the

immune system, and increasing mineral absorption.

Postbiotics are biologically active compounds or metabolites

produced after probiotics undergo fermentation or interact with gut

microbiota. Among them, short-chain fatty acids and peptides are

common postbiotics (Zhou et al., 2024). Research has shown that

postbiotics can modulate the immune system by directly interacting

with immune cells in gut-associated lymphoid tissue (GALT).

Specifically, short-chain fatty acids (SCFAs) and polysaccharide

peptides can inhibit inflammatory cytokines such as IL-1b, IL-6, IL-
8, and TNF-a, induce the expression of anti-inflammatory cytokine

IL-10, and promote the formation of regulatory T cells (Tregs)

(Nakkarach et al., 2021; Yuan et al., 2023). A study involving 52

patients with psoriasis, where after 8 weeks of treatment with the E3

probiotic formula containing prebiotics, probiotics, and postbiotics

orally, significant improvements were observed in Psoriasis Area

and Severity Index (p < 0.001), as well as in Dermatology Life

Quality Index (p = 0.009), with no adverse reactions reported.

Additionally, the study found that gut microbiota in healthy

controls may be more inclined towards metabolic pathways

associated with short-chain fatty acids, whereas in the psoriasis

group, functional abundance related to short-chain fatty acids

(SCFA) was significantly reduced (Choy et al., 2023).
6 The impact of gut microbiota on
other skin disorders

The composition of human microbiota is complex. These

microbiota collectively maintain skin homeostasis by regulating

immune cells present in the gut and skin. However, overgrowth and

changes in diversity of gut microbiota can lead to the development

of skin disorders. Imbalance in gut microbiota can result in three

common skin disorders: psoriasis, atopic dermatitis, and acne.

Several studies on the role of gut microbiota in the pathogenesis

of infantile atopic dermatitis (AD) suggest that infants with limited

gut microbial diversity may develop AD later in life. It has been

found that infants with IgE-related eczema have lower diversity of

Actinobacteria and Bacteroidetes compared to healthy infants

(Abrahamsson et al., 2012). Furthermore, plasma levels of short-
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chain fatty acids (SCFAs) are significantly reduced in four-month-

old infants with atopic dermatitis (Barman et al., 2024).

Additionally, diet may also influence the occurrence of AD. For

example, a gluten-containing diet can lead to villus atrophy,

intestinal inflammation, and gluten sensitivity is closely related to

gut microbiota (de Sousa Moraes et al., 2014; Lorenzo Pisarello

et al., 2015; Marasco et al., 2020; Mahmud et al., 2022). However,

the causal relationship between gut microbiota and atopic

dermatitis has not been confirmed. The pathogenesis of atopic

dermatitis is mainly attributed to the imbalance of Th1 and Th2.

Activated dendritic cells (DCs) migrate to local lymph nodes to

induce naive T helper cells and polarize them into a Th2 phenotype.

Subsequently, Th2 cells are recruited back to the skin and, along

with the effector cytokines of Th22 cells, collectively induce skin

inflammation (Biedermann et al., 2015).

Acne is a chronic inflammation of the pilosebaceous unit, closely

related to excessive sebum production, follicular hyperkeratosis, and

proliferation of Propionibacterium acnes (Clark et al., 2017). Most

importantly, changes in the gut microbiota have been observed in

acne patients. It has been reported that in acne patients, there is a

lower abundance of Firmicutes but a higher abundance of

Actinobacteria (Deng et al., 2018). Furthermore, there are gender

differences in the gut microbiota of patients with acne vulgaris.

Specifically, in the intestinal tract of males, there is a reduction in

Cutibacterium acnes, Clostridium spp., and fecal bacteria, while in

female patients, there is an increase in Clostridium perfringens and a

decrease in Oscillibacter and Odoribacter (Huang et al., 2021). It has

been reported that the gut microbiota of patients with moderate to

severe acne shows a decrease in Actinobacteria and an increase in

Bacteroidetes (Yan et al., 2018; Siddiqui et al., 2022). According to

recent Mendelian randomization results, lactobacilli have a protective

effect on acne, primarily through inhibition of the mTOR pathway

and activation of the AMP-activated protein kinase pathway(AMPK)

pathway, acting as protective factors (Monfrecola et al., 2016; Ji

et al., 2024).
7 Summary and prospects

In recent years, regulating the gut microbiota to improve

symptoms of diseases has become a key research focus. Although

literature has confirmed a certain connection between gut

microbiota and psoriasis, this area still faces many challenging

problems and obstacles in future development. Here are some

constructive suggestions for reference:

Delve deeper into and explore the impact of changes in gut

microbiota on psoriasis from different perspectives. Current

literature shows a lack of experimental research exploring the

relationship between gut microbiota and psoriasis, often due to

insufficient sample sizes. Additionally, the studies included in this

review solely encompass adult populations. Therefore, in future

research to elucidate the causal relationship between gut

microbiota, psoriasis, and the pathogenesis, not only is a large

amount of animal experimental data needed, but human

experiments are also crucial to ensure the reliability and stability

of experimental results. Through various microbiota-targeted
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therapies, adjusting the gut microbiota diversity of psoriatic patients

to improve their symptoms could provide clinicians with broader

diagnostic and therapeutic strategies.

Many studies have discussed the importance of the gut-brain-

skin axis in neurologic diseases and gut microbiota, so investigating

how the microbiota-gut-skin axis functions in the relationship

between gut microbiota and psoriasis is essential.

As the composition of gut microbiota and the ratios of certain

bacterial species are closely related to the severity and status of

psoriasis, in the future, comprehensive evaluations of the severity of

psoriatic symptoms, nutritional indices, gut microbiota species,

and quantities are prerequisites for microbiota-targeted therapy

application. This can provide patients with more refined treatment

plans to better alleviate their suffering.

Prebiotics, probiotics, synbiotics, fecal microbiota transplantation,

dietary microbiota-targeted therapy, as well as external treatment

methods in traditional Chinese medicine (e.g. acupuncture), can

maintain dynamic balance of the gut microbiota ecosystem from a

microscopic perspective through various pathways and mechanisms,

regulate the host’s immune system, improve the symptoms of psoriasis,

and maintain overall health of the body. As these novel treatment

methods are perfected and promoted, they will inject new strength into

the clinical diagnosis and treatment of psoriasis.
8 Unresolved issues

Although current research and literature have demonstrated the

inseparable connection between psoriasis and the diversity of gut

microbiota and stability of the ecosystem, there are still many

unresolved issues in the existing literature: (1) What are the

differences in gut microbiota composition corresponding to

different severity levels of psoriasis? (2) Besides gut immune

reactions, are there other pathogenic mechanisms in the gut

microbiota ecosystem? (3) When comparing studies, improvements

are needed in the collection, transportation, storage, and DNA
Frontiers in Cellular and Infection Microbiology 12
extraction protocols in both animal and human studies. Traditional

Chinese medicine has shown significant efficacy in improving the

symptoms of psoriasis, but it is worth contemplating and exploring

how traditional Chinese medicine and gut microbiota therapy can be

combined and whether new symptoms may arise after combination,

in order to provide more choices for clinical treatment.
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Margolles, A., et al. (2019). Gut microbiota dysbiosis in a cohort of patients with
psoriasis. Br. J. Dermatol. 181, 1287–1295. doi: 10.1111/bjd.17931

Hoentjen, F., Welling, G. W., Harmsen, H. J., Zhang, X., Snart, J., Tannock, G. W.,
et al. (2005). Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated
with microflora changes and immunomodulation. Inflammation Bowel Dis. 11, 977–
985. doi: 10.1097/01.mib.0000183421.02316.d5

Hosseini, A., Razavi, B. M., Banach, M., and Hosseinzadeh, H. (2021). Quercetin and
metabolic syndrome: A review. Phytother. Res. 35, 5352–5364. doi: 10.1002/ptr.7144

Hsu, M. H., Huang, Y. C., Chen, Y. C., Sheen, J. M., and Huang, L. T. (2023).
Increased circulating ADMA in young male rats caused cognitive deficits and increased
intestinal and hippocampal NLRP3 inflammasome expression and microbiota
composition alterations: effects of resveratrol. Pharm. (Basel) 16. doi: 10.3390/
ph16060825

Hu, H.-y., Hu, Y.-x., Liu, C.-s., Su, X.-t, and Dai, H. (2020). Effects of Runzao Zhiyang
capsule on gut microbiota and inflammatory response in rats with psoriatic lesions.
Chin. J. Clin. Anat. 38, 574–577. doi: 10.13418/j.issn.1001-165x.2020.05.016

Huang, Y. H., Chang, L. C., Chang, Y. C., Chung, W. H., Yang, S. F., and Su, S. C.
(2023). Compositional alteration of gut microbiota in psoriasis treated with IL-23 and
IL-17 inhibitors. Int. J. Mol. Sci. 24. doi: 10.3390/ijms24054568

Huang, Y., Liu, L., Chen, L., Zhou, L., Xiong, X., and Deng, Y. (2021). Gender-specific
differences in gut microbiota composition associated with microbial metabolites for
patients with acne vulgaris. Ann. Dermatol. 33, 531–540. doi: 10.5021/ad.2021.33.6.531

Huang, G., Yan, X., Hu, C., Fu, Z., Shi, H., Xin, Q., et al. (2023). The effect of
rhinoceros horn and rehmannia decoction on intestinal th17/treg in psoriatic mice
based on intestinal immune skin axis. Clin. J. Traditional. Chin. Med. 35, 1569–1572.
doi: 10.16448/j.cjtcm.2023.0825

Huang, G., Yan, J., Zou, J., Hu, C., Yuan, X., Fu, J., et al. (2022). The effect of xijiao
dihuang decoction on blood heat psoriasis. Jiangxi. J. Traditional. Chin. Med. 53, 36–39.

Ji, X., Wu, S., Zhao, D., Bai, Q., Wang, Y., Gong, K., et al. (2024). Revealing the
impact of gut microbiota on acne through mendelian randomization analysis. Clin.
Cosmet. Investig. Dermatol. 17, 383–393. doi: 10.2147/ccid.S451104

Jin, X., Xu, H., Huang, C., Ma, H., Xiong, X., Cheng, L., et al. (2021). A traditional
chinese medicine formula danshen baibixiao ameliorates imiquimod-induced
psoriasis-like inflammation in mice. Front. Pharmacol. 12. doi: 10.3389/
fphar.2021.749626

Kapoor, B., Gulati, M., Rani, P., and Gupta, R. (2022). Psoriasis: Interplay between
dysbiosis and host immune system. Autoimmun. Rev. 21, 103169. doi: 10.1016/
j.autrev.2022.103169

Kasahara, K., Kerby, R. L., Cross, T. L., Everhart, J., Kay, C., Bolling, B. W., et al.
(2023). Gut microbiota and diet matrix modulate the effects of the flavonoid quercetin
on atherosclerosis. Res. Sq [Preprint]. rs.3.rs-2431147. doi: 10.21203/rs.3.rs-2431147/v1

Kasarello, K., Cudnoch-Jedrzejewska, A., and Czarzasta, K. (2023). Communication
of gut microbiota and brain via immune and neuroendocrine signaling. Front.
Microbiol. 14. doi: 10.3389/fmicb.2023.1118529

Kiani, A. K., Medori, M. C., Bonetti, G., Aquilanti, B., Velluti, V., Matera, G., et al.
(2022). Modern vision of the Mediterranean diet. J. Prev. Med. Hyg. 63, E36–e43.
doi: 10.15167/2421-4248/jpmh2022.63.2S3.2745
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