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Genome composition-based
deep learning predicts
oncogenic potential of HPVs
Lin Hao1, Yu Jiang2, Can Zhang2 and Pengfei Han2*

1Department of Pharmacy, Linfen Central Hospital, Linfen, China, 2The 4th Medical Center, People's
Liberation Army (PLA) General Hospital, Beijing, China
Human papillomaviruses (HPVs) account for more than 30% of cancer cases, with

definite identification of the oncogenic role of viral E6 and E7 genes. However,

the identification of high-risk HPV genotypes has largely relied on lagged

biological exploration and clinical observation, with types unclassified and

oncogenicity unknown for many HPVs. In the present study, we retrieved and

cleaned HPV sequence records with high quality and analyzed their genomic

compositional traits of dinucleotide (DNT) and DNT representation (DCR) to

overview the distribution difference among various types of HPVs. Then, a deep

learning model was built to predict the oncogenic potential of all HPVs based on

E6 and E7 genes. Our results showed that the main three groups of Alpha, Beta,

and Gamma HPVs were clearly separated between/among types in the DCR trait

for either E6 or E7 coding sequence (CDS) and were clustered within the same

group. Moreover, the DCR data of either E6 or E7 were learnable with a

convolutional neural network (CNN) model. Either CNN classifier predicted

accurately the oncogenicity label of high and low oncogenic HPVs. In

summary, the compositional traits of HPV oncogenicity-related genes E6 and

E7 were much different between the high and low oncogenic HPVs, and the

compositional trait of the DCR-based deep learning classifier predicted the

oncogenic phenotype accurately of HPVs. The trained predictor in this study

will facilitate the identification of HPV oncogenicity, particularly for those HPVs

without clear genotype or phenotype.
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1 Introduction

Human papillomaviruses (HPVs) are a group of double-stranded DNA (dsDNA) viruses,

specifically tropic to human cutaneous and mucosal epithelial tissues of the anogenital tract,

hands, or feet (Correa et al., 2017). There are more than 220 HPV types, which are classified

into five genera—Alpha (65 genotypes), Beta (54 genotypes), Gamma (98 genotypes), Mu

(four genotypes), and Nu (one genotype) (Muhr et al., 2018) (https://www.hpvcenter.se/)—

according to the most genomically homologous viral gene of the major capsid L1 gene.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2024.1430424/full
https://www.frontiersin.org/articles/10.3389/fcimb.2024.1430424/full
https://www.frontiersin.org/articles/10.3389/fcimb.2024.1430424/full
https://www.hpvcenter.se/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2024.1430424&domain=pdf&date_stamp=2024-07-22
mailto:hanpf_1987@163.com
https://doi.org/10.3389/fcimb.2024.1430424
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2024.1430424
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Hao et al. 10.3389/fcimb.2024.1430424
HPVs exert significant oncogenic roles in various malignant types,

unlike most commonly infected viruses, such as adenovirus (Liu

et al., 2014), herpes simplex virus (Whitley and Roizman, 2001),

influenza viruses (Sun et al., 2014; Deng et al., 2017), and

coronaviruses (Sun et al., 2014; Deng et al., 2017). Infectious

agents contribute to approximately 12% of global cancers

annually (de Martel et al., 2020, 2017). Particularly, HPVs

account for more than 30% of cases (https://gco.iarc.fr, accessed

on November 15, 2023) (de Martel et al., 2020), such as squamous

cell carcinoma (SCC) of the skin (Jablonska et al., 1972), cervical

tumors (Walboomers et al., 1999), genital malignancies (de Villiers,

1994), anogenital malignancies (Zur, 2002), and head and neck

cancers (Guo et al., 2018). Furthermore, the oncogenic roles of

HPVs were heterogenized among various genotypes. HPV16,

HPV18, HPV31, HPV33, HPV35, HPV39, HPV45, HPV51,

HPV52, HPV56, HPV58, and HPV59 account for the most

number of cancers of the cervix, anus, vulva, vagina, penis, and

head and neck (Longworth and Laimins, 2004; Galati et al., 2024).

HPV16 and HPV18, the most popular high-risk (HR) HPV strains

(Bzhalava et al., 2013), account respectively for nearly 50% and 20%

of cervical cancer cases (Li and Coffino, 1996; de Sanjose et al.,

2010). Thus, it is important to predict and evaluate how an HPV

promotes oncogenesis.

There are two main coding regions in the HPV genome

(HPV16 as an example): the early (E) region encodes regulatory

proteins of E6, E7, E1, E2, E4, and E5; the late (L) region encodes the

structural L1 and L2 capsid proteins (Gheit, 2019). Moreover, E6

and E7 are significantly carcinogenic in various types of cancers

(Barbosa, 1996; McLaughlin-Drubin and Munger, 2009) by

regulating essential cellular progress. E6 protein promotes p53

degradation and thus antagonizes apoptosis (Martinez-Zapien

et al., 2016; Shu et al., 2022). E6 also inhibits apoptosis by

activating the transcription of survivin and the apoptosis inhibitor

c-IAP2 (Bruyere et al., 2023) and regulating host antiviral responses

(Yanatatsaneejit et al., 2020). Additionally, HR-HPV E6 binds the

protein containing PDZ domains, facilitates its degradation, and

thus promotes cell survival and proliferation (Accardi et al., 2011;

Drews et al., 2019). The E7 protein also poses oncogenic roles by

variously interacting with the DREAM protein complexes

(Drosophila, RB, E2F, and Myb) (Rashid et al., 2015) and

targeting the pRB family members, which is necessary for

malignant transformation (Demers et al., 1996; Zur, 2000; Zhang

et al., 2006). Furthermore, HPV E7 proteins exhibit conserved and

virus type- and species-specific interactions with cellular proteins

(Demers et al., 1996; Zur, 2000; Zhang et al., 2006). Therefore, it is

vital to identify the exact association between the genotypes of HPV

E6/E7 and their phenotype for malignant transformation.

Prevalent identification of the association between the

genotypes of HPV E6/E7 and their malignant phenotypes has

been recognized to depend on molecular biological and

virological approaches (Li and Coffino, 1996; Accardi et al., 2011;

White et al., 2012; Martinez-Zapien et al., 2016; Songock et al., 2017;

Shu et al., 2022; Bruyere et al., 2023), implying an urgent need for

intelligent and fast method to recognize or predict the benign or

malignant phenotype of HPVs based on HPV E6/E7 genotypes.

Multiple artificial intelligence (AI) approaches have been utilized to
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represent genomic information of viruses and to predict viral

phenotypes based on such represented information. The deep and

hidden viral genotype–phenotype association has been well learned

by machine learning (ML) or deep learning (DL) methods. The

pandemic potential of influenza viruses (Li et al., 2020), the SARS-

CoV-2 adaptation (Li et al., 2020), and the host adaptation of bat

coronaviruses (Jiang et al., 2023; Li et al., 2023) have been accurately

predicted byML or DL models. Genomic information of amino acid

(Babayan et al., 2018), dinucleotide (DNT) (Li et al., 2020), and

DNT representation (DCR) (Li et al., 2022) of the viral genome is

predictable and interpretable in the case of genotype–phenotype

association. However, the oncogenic phenotype of HPVs analyzed

using AI approaches has been less frequently reported.

In this study, we retrieved and cleaned HPV sequence records

with high quality and analyzed their genomic traits such as DNT,

DCR, and codon dependency. Then, we utilized unsupervised ML

approaches to visualize the distribution difference among various

types of HPVs. Finally, we built a deep learning model to predict the

oncogenic potential of all HPVs based on E6/E7 genes. The DLmodel

trained in this study can predict the oncogenic potential of any HPV.
2 Methods

2.1 HPV genome sequence retrieval and
data cleaning and the counting of
compositional traits of HPV genes

Genome records for HPVs were retrieved using the keywords

((“Human papillomavirus”[Organism] OR Human papillomavirus

[All Fields]) AND complete [All Fields] AND genome [All Fields])

AND (biomol_genomic [PROP] AND (“6500” [SLEN]: “8500”

[SLEN])) from the National Center for Biotechnology Information

(NCBI) nucleotide database (https://www.ncbi.nlm.nih.gov/nuccore).

Records were cleaned with sequence quality by excluding the

sequence without full coding sequence (CDS) of E7, E6, E2, E1,

L2, and L1 and the sequence with a ratio of undefined or degenerate

bases of more than 2%. The oncogenic label for each sample was

manually added according to reported research (Muhr et al., 2018).

The compositional traits of DNT and DCR were counted according

to the reported tools (Li et al., 2023, 2022). The E6 and E7 CDSs

were parsed based on the “Location/Qualifiers” information for

each record and then were counted under the reported guidance

(https://github.com/Jamalijama/BatCoVadaptation). The counted

DNT and DCR features were taken as a vector with fixed

dimensions of 48 and 1,536. The DCR data were analyzed in

detail and utilized for deep learning.
2.2 Data distribution analysis with
unsupervised machine learning

HPV DCR data were analyzed for the distribution among

various HPV types. The dimension reduction was performed

using the reported python scripts by the method of t-distributed

stochastic neighbor embedding (t-SNE) and principal component
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analysis (PCA). The 1,536 features of the DCR trait for each sample

were reduced into two main components (t-SNE1 and t-SNE2, or

PCA1 and PCA2), with packages sklearn.decomposition.PCA and

sklearn.manifold.TSNE, both of which were performed according to

https://scikit-learn.org/stable/about.html#citing-scikit-learn. The

reduced data were plotted for the data distribution difference

using the Python Seaborn package of pairplot. Hierarchical

clustering was performed to overview the clustering and

separation of HPV samples with “type” annotation added into

sequence accession. The clustering was calculated using the

algorithm of Euclidean distance by the sns.clustermap package.
2.3 Building the deep learning model for
oncogenic HPV prediction

The deep learning classifier for HPV oncogenicity was built using

a model of convolutional neural network (CNN), according to

previous reports (Li et al., 2023, 2022). The 1,536-dimensional

DCR of each HPV sample (E6 or E7), with an oncogenicity label of

1 or 0, was input into the model. Three rounds of convolution and

pooling were performed to learn in-depth the hidden association of

DCR with viral oncogenicity phenotype. HPV data were randomly

split into training and validating sets using sklearn.model_selection

import train_test_split with a validation data size of 25%. The 1,536-

dimensional DCR was first reshaped into a matrix of 6 × 16 × 16 for a

3D-CNN performance. Out-channels were set as 8, 16, and 32. A

kernel size of (1, 3, 3), a rectified linear unit (ReLU) activation, and

the average pooling were utilized for each CNN layer. Two linear

transformations were performed to transform the 768-dimensional

vector first into the 192-dimensional vector and then into the two-

dimensional final predicted labels of 1 and 0. The Softmax function

was utilized to output the prediction probability. A learning rate of

0.01 and a training epoch of 50 were utilized for either model.

To evaluate the prediction performance of each classifier, micro-

average receiver operating characteristic (ROC) (Fawcett, 2005) and

confusion matrix (Fawcett, 2005) were plotted. The full-connection

data after the three rounds of convolution performance were reduced

by PCA and then were plotted for the two main components.
2.4 Statistics

Statistical analysis was performed for the significance in the

PCA1 value of the PCA-reduced full-connection data and analyzed

using an unpaired, non-parametric Mann–Whitney test using the

SciPy scripts of python.
3 Results

3.1 Pipeline of genomic trait analysis and
oncogenic potential prediction of HPVs

Full HPV genome information with genomic DNA sequences

and annotations was downloaded from the NCBI website. The 3,485
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HPV records were cleaned to obtain high-quality samples. A total of

2,782 samples were parsed to obtain the annotation set of record ID,

ORGANISM, and other information and then to obtain all CDS and

protein sequences. Data were separated according to HPV type, and

then Alpha HPVs with definite high or low oncogenicity were

randomly split into training and testing sets. All other HPVs,

particularly unclassified HPVs, were predicted using a trained

deep learning predictor (Figure 1A). Genomic compositional

traits of HPV E6 and E7 CDSs were counted according to the

reported method (Li et al., 2023, 2022) (Figure 1B). Unsupervised

ML approaches were performed to analyze the distribution

difference of HPV genomic traits among various types. Features

of DNT, codon, DCR, and others were first reduced using the

method of PCA or t-SNE and then plotted for the two main

components. Full feature data for each type of trait were clustered

using a hierarchical clustering method (Figure 1C). A deep learning

network of CNN was trained with the DCR trait data of HPV E6 or

E7 for oncogenicity prediction of HPVs (Figure 1D). Finally, each

HPV sample was predicted using a trained model, and the

temporal/spatial distribution of HPVs with predicted high or low

oncogenicity was analyzed (Figure 1E).
3.2 Data distribution of HPVs and type-
based clustering and separation of HPVs
revealed by unsupervised ML methods

The distribution of HPVs on the annotation of date, country,

genotype, and isolation host was counted based on the parsed HPV

data. Most of the recorded HPVs on BCBI were isolated post-2010

(Figure 2A). More than one-third of the samples were not

annotated for their isolation country, and most of the annotated

samples were from the USA, Luxembourg and the Netherlands (the

EU), Japan and China (East Asia), and South Africa (Figure 2B).

Approximately 1/10 HPV samples were not annotated for their

isolation hosts, and the top genotypes were HPV16, HPV35,

HPV52, HPV58, HPV18, HPV31, HPV11, HPV51, and HPV53,

which are high or low oncogenic HPVs (Figure 2C). Additionally,

the isolation annotation was also not clear for more than one-fifth

of the samples (Figure 2D). Thus, it is important to build an

intelligent predictor for identifying the oncogenicity of these

HPVs with unknown annotations.

To overview the HPV distribution among the four types (Alpha,

Beta, Gamma, and Mu) of HPVs or all genotypes, full data of

compositional DCR or other traits were reduced into two main

components with t-SNE or PCA and then plotted with type

information annotated for each sample. As indicated, the main

three groups (Alpha, Beta, Gamma, only two samples for Mu

HPVs) were clearly separated in DCR trait for E6 CDS

(Figure 3A by t-SNE and Figure 3B by PCA) or E7 CDS

(Figure 3C by t-SNE and Figure 3D by PCA). Moreover, the

Alpha HPVs were further analyzed using the same methods to

visualize the distribution variation between high and low oncogenic

HPVs. Both E6 CDS (Figure 3E by t-SNE and Figure 3F by PCA)

and E7 CDS sequence (Figure 3G by t-SNE and Figure 3H by PCA)

were clearly separated.
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The clustering of HPV samples was also performed based on the

DCR trait. The HPV clustering into the main three groups of Alpha,

Beta, and Gamma was interrupted by unclassified samples based on

either the E6 (Figure 4A) or E7 (Figure 4B) gene. Therefore, it is

necessary to identify the classification of these unannotated samples.
3.3 Deep learning model predicted the
oncogenic potential of HPVs based on viral
genomic composition of E6 or E7

Given the dominant roles of E6 and E7 on the oncogenicity of

HPVs, a deep learning predictor of the CNN model was built for the

prediction of unclassified HPVs. The network structure is illustrated

in Figure 1D. The DCR vector of 1,536 dimensions was sequentially
Frontiers in Cellular and Infection Microbiology 04
convoluted and pooled three times, and then the outputted full-

connection vector of 768 dimensions was linearly transformed into a

vector of 192 dimensions, with final two oncogenicity labels of 1

(oncogenicity positive) and 0 (oncogenicity negative). The DCR-

based CNN classification for either E6 or E7 was trained. The

predictor for E6 was highly accurate for the independent HPV test

data based on the ROC_AUC curve (Figure 5A); after a training

epoch of 50, the accuracy was indicated by the confusion matrix

(Figure 5B). The full-connection data of E6 DCR were clearly

separated based on the distribution of the two main PCA-reduced

components. The PCA1 peaks of high and low oncogenic HPVs were

significantly different (p < 0.0001, Figure 5C). The performance of the

E7 CNN predictor was also highly accurate. The ROC_AUC curve

was almost at a right angle (Figure 5D), and the accuracy was more

than 95% for low oncogenic HPVs and almost 100% for high
A B

D

E

C

FIGURE 1

Pipeline of data cleaning and deep learning analysis of human papillomavirus (HPV) genes. (A) HPV data cleaning process and the sequence number
for the HPVs with full E6 and E7 genes. (B) Illustration of counting method for the compositional traits of HPV E6 and E7 genes. (C) Illustration of
dimension reduction and unsupervised learning of HPV genes. (D) The structure of convolutional neural network (CNN) model and the detailed
dimension of dinucleotide representation (DCR) data during CNN. (E) The prediction of the oncogenicity of HPVs by the CNN classifier and the
analysis of oncogenic HPVs.
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A B
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FIGURE 2

Counting of annotation items for human papillomaviruses (HPVs) based on original recorded information. The counting of HPVs based on labels
“year” (A), “country” (B), “genotype” (C), and “host” (D) was performed based on the above-mentioned annotation for each HPV record on National
Center for Biotechnology Information (NCBI) website.
A B D

E F G H

C

FIGURE 3

Plot of dinucleotide representation (DCR) data of the human papillomaviruses (HPVs), with type label or oncogenicity label. The DCR data with 1,536
dimensions were first reduced with t-distributed stochastic neighbor embedding (t-SNE) and principal component analysis (PCA) and then were
plotted with the two main reduced components, with type or oncogenicity labeled for each sample plot. (A–D) t-SNE- and PCA-reduced DCR for
E6 (A, B) or E7 gene (C, D) of HPVs, with “type” labeled. (E–H) t-SNE- and PCA-reduced DCR for E6 (E, F) or E7 gene (G, H) of HPVs, with
“oncogenicity” labeled.
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oncogenic HPVs (Figure 5E). Similarly, the difference between the

two PCA1 peaks was very significant (p < 0.0001, Figure 5F). Taken

together, both E6 and E7 genes were greatly but vaguely different and

learnable with the deep learning method.
3.4 Deep learning prediction of
unclassified HPVs of the oncogenic
potential based on E6 or E7

The two CNN predictors based on DCR data of E6 and E7 were

utilized to predict the oncogenicity of HPVs. The 67 unclassified

HPVs with full CDS of E6 and E7were first counted for the DCR trait

and then were input into the trained CNN predictor for either E6 or

E7. The predicted label of 1 or 0, the probability for each label, and the

full annotation information are listed in Supplementary Table 1. As

indicated, 49/67 samples were predicted to be oncogenic based on the

E6 DCR trait, whereas 9/67 unclassified HPVs were predicted to be

oncogenic based on the E7 DCR trait. The distribution of data,

genotype, country, and collection site was plotted. The 49 positive
Frontiers in Cellular and Infection Microbiology 06
samples predicted by E7DCRwere mainly isolated in 2018, 2017, and

2012 (Figure 6A), mostly without annotated genotype (Figure 6B),

isolated in EU countries (Figure 6C), and mainly collected from skin

and penile swab samples (Figure 6D). Taken together, the present

deep learning predictors facilitated the oncogenicity evaluation based

on viral E6 and E7 genes.
4 Discussion

In response to the need to evaluate the oncogenic phenotype of

HPVs, particularly for the novel HPV strains, without identified

genotypes, or the HPV with its oncogenicity unclear, we utilized the

reported method to parse the genomic compositional traits of HPV

CDSs, and trained deep learning classifiers, based on HPV E6 or E7

DCR data. For most types of viruses, the genome sequences do not

have the same length and need to be aligned for sequence similarity

analysis using Multiple Sequence Alignment (MSA). However, the

high computational consumption and complexity were not

balanced with an intelligent evaluation of aligned sequences. The
A B

FIGURE 4

Clustering of human papillomavirus (HPV) samples based on full dinucleotide representation (DCR) data, with viral type visualized. HPVs were
randomly sampled and added with type labels into the accession number. The DCR data were hierarchically clustered based on the Euclidean
distance within these samples for E6 (A) and E7 (B) genes.
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compositional DNT, DCR, and other codon-dependent traits of

CDSs (Li et al., 2022, 2020) were MSA-independent and have fixed

dimensions, which make further analysis easy. More importantly,

such compositional traits were more biologically interpretable for

virus prediction (Jiang et al., 2023; Li et al., 2023, 2022). Thus, the

compositional trait of DCR with fixed dimension is more applicable

to represent the genotype difference for viral genes with various

sequence lengths, such as HPVs.

The oncogenicity of HPVs has been explored using AI

approaches. Most of these explorations focused on diagnostic

image recognition (Fu et al., 2022; La Greca et al., 2022; Klein

et al., 2023; de Sanjose et al., 2024). Rare reports implicated the

oncogenicity assessment of HPVs based on their genotype

polymorphism. However, more and more HPV genome samples

have been isolated and sequenced, and there are more novel HPV

genotypes that have been identified in recent years. However, the

biological identification and clinical observation of the oncogenicity

of these HPV strains were much more lagged. Interestingly, the

trained predictor in this study is capable of predicting the

oncogenicity of these unknown genotypes, such as HPV211–215.

Thus, the compositional trait-based deep learning classifiers have

provided alternative and intelligent tools for HPV evaluation.

The present study analyzed the compositional characteristics of

HPV E6 and E7 genes, which are most important for the virus

oncogenicity for the first time. Our results have clearly illustrated a
Frontiers in Cellular and Infection Microbiology 07
significant type- or genotype-dependent clustering or separation of

HPVs, particularly for the high oncogenic and benign HPVs. Such

marked difference in DCR distribution between the two groups was

easily learned by a CNNmodel for the classification of the two virus

groups. The high accuracy of our trained predictor on independent

test data implied that the two models were reliable for the

oncogenicity evaluation of HPVs. Interestingly, a much more

significant difference in the DCR trait between high and low

oncogenic HPVs was indicated by the PCA-reduced DCR data,

implying more significance on the viral oncogenicity. The

supervised learning of the CNN classifier predicted many more

HPVs without clear oncogenicity, and genotyping was predicted to

be oncogenic based on E7 CDS than based on E6. The dominant

promotion by HPV E6 and E7 genes to the malignant

transformation of viral targeted cells has been biologically

explored and widely clinically studied for a long time. However,

the comparable importance between E6 and E7 genes is not clear.

The significant difference in the oncogenicity prediction by E6- and

E7-based classifiers implied different importance of the two genes.

Additionally, other HPV genes like E2, E1, L2, and L1 have been

indicated to be less associated with the oncogenicity of HPVs.

However, their biological roles in the HPV–host interaction have

less been focused, compared to E6 and E7. The present study might

also be beneficial for the analysis of the phenotype–genotype

relationship for these genes. However, such analysis of prediction
A B

D E F

C

FIGURE 5

Evaluation of the convolutional neural network (CNN) predictor for human papillomavirus (HPV) oncogenicity. The trained CNN predictors were
evaluated for their classification performance with receiver operating characteristic (ROC) (A) and confusion matrix (B) for E6 gene. The distribution
difference in the full-connection dinucleotide representation (DCR) data between low and high oncogenic HPVs was plotted using a pairplot
method (C). Similar ROC, confusion matrix, and full-connection DCR data are plotted (D–F).
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for the topic of oncogenicity of HPVs should be more feasible owing

to the knowledge of the association between viral oncogenicity and

the genotypes in these genes.
5 Conclusion

In summary, the viral genomic compositional traits characterize

the oncogenicity of HPVs and facilitate the prediction of the high or

low oncogenic HPVs via a DCR-based deep learning classifier for

the oncogenicity-related genes E6 and E7. The trained predictor in

this study will facilitate the identification of HPV oncogenicity,

particularly for those HPVs without clear genotype or phenotype.
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