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Introduction: Tick-borne pathogens, such as Borreliella spp., Rickettsia spp., and

Anaplasma spp., are frequently detected in Germany. They circulate between

animals and tick vectors and can cause mild to severe diseases in humans.

Knowledge about distribution and prevalence of these pathogens over time is

important for risk assessment of human and animal health.

Methods: Ixodes ricinus nymphs were collected at different locations in 2009/

2010 and 2019 in Germany and analyzed for tick-borne pathogens by real-time

PCR and sequencing.

Results: Borreliella spp. were detected with a prevalence of 11.96% in 2009/2010

and 13.10% in 2019 with B. afzelii and B. garinii as dominant species. Borrelia

miyamotoi was detected in seven ticks and in coinfection with B. afzelii or B.

garinii. Rickettsia spp. showed a prevalence of 8.82% in 2009/2010 and 1.68% in

2019 with the exclusive detection of R. helvetica. The prevalence of Anaplasma

spp. was 1.00% in 2009/2010 and 7.01% in 2019. A. phagocytophilum was

detected in seven tick samples. None of the nymphs were positive for C. burnetii.

Discussion: Here, observed changes in prevalence were not significant after a

decade but require longitudinal observations including parameters like host

species and density, climatic factors to improve our understanding of tick-

borne diseases.
KEYWORDS
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1 Introduction

Tick-borne diseases represent a severe medical problem in

many regions. In Europe, Lyme borreliosis (LB) and tick-borne

encephalitis are of special importance with very high incidence rates

of >100/100,000 population or >15/100,000 in some European

countries (Burn et al., 2023; Van Heuverswyn et al., 2023).

Furthermore, other bacterial, viral, and protozoal pathogens can

be transmitted by ticks and cause diseases in humans and animals.

In Europe, these infections are mainly transmitted by the hard tick

Ixodes (I.) ricinus. This tick species has a wide host spectrum, and

tick activity can be observed in association with a broad range of

biotic and abiotic factors, for example, between 3°C and 28°C air

temperature and between 35% and 95% air humidity (Gethmann

et al., 2020).

Rising temperatures (climate change), land management, and

acaricide resistance are possible drivers of the spread of ticks into

new territories or increased tick populations (Nuttall, 2022;

Vanwambeke et al., 2024). These ticks may carry new pathogens

and represent a financial burden to the public health system and

veterinary public health system. Therefore, monitoring of ticks and

tick-borne pathogens is essential to understand transmission

dynamics, to raise awareness, and to adjust counter measures

(treatments, vaccines, and acaricides) (Harrington et al., 2020). It

has been estimated from available epidemiological data of some

federal states and national health insurances that LB constitutes

between 60,000 and >200,000 human infections in Germany every

year (Wilking et al., 2023). The Borrelia burgdorferi sensu lato (s.l.)

group, recently phylogenetically reclassified as Borreliella (B.) spp.,

includes at least 20 genospecies, and three further genospecies were

under discussion (Gupta, 2019; Wolcott et al., 2021). According to

present knowledge, only infections with B. burgdorferi sensu stricto

(s.s.), B. garinii, B. afzelii, B. spielmanii, and, since 2009,

B. bavariensis (former B. garinii OspA-type 4) cause clinical

symptoms in humans (Margos et al., 2009; Rauer et al., 2018).

Borrelia miyamotoi, genetically more closely related to

B. burgdorferi s.l. than to the relapsing fever (RF) spirochetal

group, was first detected in 1994 in ticks in Japan. Now, it occurs

in the northern hemisphere and co-circulates with B. burgdorferi

s.l., the causative agent of LB with overlapping vertebrate and tick

hosts. Human cases caused by Borrelia miyamotoi are rare and

mostly present as influenza-like illness, with RF in sporadic cases

(Cutler et al., 2019).

Another group of emerging tick-borne pathogens are bacteria of

the order Rickettsiales. They are widespread, obligate intracellular

and host-adapted bacteria. Among other genera of the order

Rickettsia and Anaplasma are of human public health and

agricultural interest. They are maintained between the animal

host and tick vector.

Rickettsia spp. cause febrile illness of varying severity in

humans. The bacteria are maintained in small mammals, e.g.,

rodents and the tick vector. Humans are accidental hosts where

the bacteria preferentially replicate within endothelial cells of blood

vessels causing vascular inflammation and a typical rash or eschar at

the side of inoculation. If untreated, the infection may progress to

meningoencephalitis and multiorgan failure (Helminiak et al.,
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2022). Most prevalent species in Northern Europe and Germany

belong to the spotted fever group (SFG) rickettsiae, such as

R. helvetica and R. monacensis (Scheid et al., 2016; Guccione

et al., 2023). The pathogenic potential of R. helvetica varies from

mild to severe and may progress to chronic perimyocarditis and

meningitis (Scarpulla et al., 2018). The pathogenicity of R.

monacensis is unknown, and clinical cases are rarely described

(Jado et al., 2007). Both species are transmitted by I. ricinus, and a

high prevalence has been reported for R. helvetica in ticks with up to

12% in Germany (Wolfel et al., 2006).

Anaplasma can affect animals as well as humans and replicate

within cells of the hematopoietic system. The distribution is closely

related to the tick vector with domestic and wild animals as

reservoir. Three Anaplasma species have been reported in Europe,

whereof A. phagocytophilum is the only species with a high zoonotic

potential (Hofmann-Lehmann et al., 2004; Bauer et al., 2021; Knoll

et al., 2021b). It is the etiological agent of human granulocytic

anaplasmosis (HGA), and clinical symptoms vary from mild to

severe febrile illness with headache, malaise, and myalgia

(MacQueen and Centellas, 2022). Domestic animals such as dogs,

cats, and horses may develop granulocytic anaplasmosis with

various clinical symptoms (Hofmann-Lehmann et al., 2004;

Jensen et al., 2007; Schafer et al., 2022b). In cattle and sheep, an

infection with A. phagocytophilum causes tick-borne fever indicated

by high fever, anorexia, and signs of depression. In cattle, a

decreased milk yield and abortions are observed (Woldehiwet,

2006). A. phagocytophilum is transmitted by I. ricinus, the main

vector in Europe, whereas Dermacentor spp. ticks seem to play a

lesser role. The prevalence in vertebrate hosts varies among

European countries with up to 34% (Stuen et al., 2013).

Coxiella burnetii is the etiological agent of Q (query) fever

causing acute flu-like illness in humans, which can become chronic

and life-threatening. It is endemic worldwide except New Zealand.

It has a very broad host spectrum, and domestic ruminants are

considered as the main reservoir. C. burnetii was originally isolated

from a D. andersoni tick in Montana, USA, and, since then, the role

of ticks in transmission of C. burnetii is controversially discussed.

Especially, with the discovery of Coxiella-like endosymbionts

(CLEs), the relevance of ticks in the epidemiology of Q fever is

debatable (Korner et al., 2021).

In this study, we investigated bacterial tick-borne diseases at

seven sites in Germany. Nine to 10 years later, the same sites were

re-investigated, and changes of the infection rates were discussed.
2 Materials and methods

2.1 Study area and tick collection

Tick sampling was carried out at seven different sites located in

seven German federal states from April until July in 2010 and in

2019, respectively. Only samples from Thuringia were collected

from April until July in 2009 and 2019 (Supplementary Table 1;

Figure 1). Ticks were collected by flagging with a cotton blanket of

1-m2 size in deciduous forest habitats with close proximity to hiking

trails. After transfer to the laboratory, ticks were sorted as adult
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female or adult male ticks, nymphs, or larvae by morphological

criteria. Species determination was conducted for all ticks according

to Estrada-Peña et al., (2004).
2.2 DNA extraction

From all collection sites, a total of 1,608 Ixodes ricinus nymphs

with an average of 115 nymphs per site and year were individually

processed for DNA extraction using the NucleoSpin RNA/DNA kit

(Macherey-Nagel , Düren, Germany) according to the

manufacturer ’s instructions. Briefly, ticks were ground

individually in a mixer mill (Retsch, Haan, Germany) with three

stainless steel beads in 350 of µl RA buffer for 2 min at 30 Hz. Tick

debris were removed by centrifugation (11.000 x g, 1 min) and the

lysate used for DNA extraction as indicated by the supplier’s

instructions. All samples were stored at −80°C until further analysis.
2.3 Detection of Borreliella spp.,
Borrelia spp., and species differentiation

The ticks were examined for Borreliella spp. and Borrelia spp.

DNA by real-time PCR targeting the 5S-23S intergenic spacer

as described elsewhere (Strube et al., 2010). Detection of

Borrelia miyamotoi was carried out by real-time PCR targeting

the flaB gene as previously described (Venczel et al., 2016).

Genospecies identification was carried out by ospA amplification

and sequencing as described elsewhere (Rauter et al., 2002). Briefly,

amplified ospA PCR fragments of 296 bp were separated by agarose

gel electrophoresis and extracted (QIAquick Gel Extraction Kit,

Qiagen, Hilden, Germany), and both strands were sequenced

(Eurofins, Ebersberg, Germany). Raw data were trimmed with the

Geneious Prime software (version 2021.0.1, Biomatters Ltd.,

Boston, USA), and data were analyzed using the online blastn

tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi) (Zhang et al., 2000).

Samples used for species differentiation of Borreliella spp. and

Borrelia miyamotoi could not be further investigated for other

pathogens due to limited amount of DNA.
2.4 Detection of Rickettsia spp., Anaplasma
spp., and Coxiella burnetii

Tick samples were screened by real-time quantitative PCR

(qPCR) for Rickettsia spp. (gltA), Anaplasma spp. (16S rRNA),

and A. phagocytophilum (msp2) and C. burnetii (IS1111), as

described elsewhere (Courtney et al., 2004; Panning et al., 2008;

Wolfel et al., 2008; Hurtado et al., 2015; Del Cerro et al., 2022). For

species differentiation of rickettsiae, the rrs, gltA, and ompB genes

were amplified and sequenced as described previously (Weisburg

et al., 1991; Roux and Raoult, 2000; Labruna et al., 2004). Nucleotide

sequences of single genes or concatemers were aligned to

representative sequences of rickettsial species available from

National Library of Medicine (NLM) GenBank (https://

www.ncbi.nlm.nih.gov/genbank/) using MAFFT (v7.450)
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implemented in Geneious Prime. Alignments were manually

trimmed and phylogenetic trees constructed using the neighbor-

joining method with the genetic distance model Tamura-Nei and

bootstrap tests with 1,000 replicates. Ehrlichia chaffeensis was set as

outgroup for rrs and gltA and R. bellii for ompB. Phylogenetic trees

were visualized using FigTree v1.4.3 (http://tree.bio.ed.ac.uk/

software/figtree/).
2.5 Statistical analysis

To evaluate if there is a difference in the number of positive ticks

between the Federal States (collection sites) and the two time points,

we used the Fisher exact test (Fisher, 1922). All tests were carried

out using the Statistical software R (R Core Team, 2021).
3 Results

3.1 Overall prevalence of tick-
borne pathogens

The spatial and temporal distribution of tick-borne bacterial

pathogens in Germany was examined. A total of 1,608 questing

I. ricinus nymphs were collected from seven different locations

representing seven federal states in 2009/2010 (n = 807) or 2019 (n

= 801) (Figure 1). All nymphs were individually processed and

screened by qPCR for bacterial pathogens.

From all collected nymphs, 88/736 (11.96%) were positive for

Borreliella spp., including Borrelia miyamotoi, 62/703 (8.82%) for

Rickettsia spp., 7/703 (1%) for Anaplasma spp., and 0/424 (0%)

for Coxiella burnetii in 2009 and 2010. No significant differences

were observed for ticks collected in 2019 with 93/710 (13.10%)

nymphs positive for Borreliella spp. including Borrelia miyamotoi,

50/708 (7.01%) for Rickettsia spp., 12/713 (1.68%) for

Anaplasma spp., and 0/176 (0%) for C. burnetii (Supplementary

Table 1). The overall results are summarized in Figure 2.
3.2 Detection of Borreliella spp. and
Borrelia miyamotoi

For Borreliella spp., on average, 100 nymphs per collection site

and year were screened (n = 1,446). The overall prevalence for

Borreliella spp. including Borrelia miyamotoi in nymphs increased

slightly from 11.96% (88/736) in 2009/2010 to 13.10% (93/710) in

2019 (Figure 2). However, there are some remarkable differences

between the seven sites: In North Rhine-Westphalia (NW),

Borreliella spp. including Borrelia miyamotoi prevalence in

I. ricinus nymphs increased from 6.00% (6/100) in 2009/2010 to

17.00% (17/100) in 2019 and, in Saarland (SL), from 14.85% (15/

101) to 22.00% (22/100). In Baden-Wurttemberg (BW), the

prevalence decreased from 23.33% (28/120) in 2009/2010 to 14%

(14/100) in 2019. At all other sites, the prevalence of Borreliella spp.

including Borrelia miyamotoi remained nearly the same in 2009/

2010 and 2019 (Table 1; Figure 2). Observed differences were
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statistically significant (Fisher test) in NW between 2009/2010 and

2019 only (Table 2).

Positive samples (n = 181) were subjected to species

differentiation, whereof 57 resulted in no detectable PCR product

and 38 were not further analyzed due to screening for other

pathogens or poor DNA quality. In 79 samples, B. garinii,

B. afzelii, B. bavariensis, B. valaisiana, B. burgdorferi s.s., and

Borrelia miyamotoi were detected. The most frequently detected

species were B. afzelii and B. garinii with 15.47% (n = 28) and

17.68% (n = 32), respectively. The other four species were detected

remarkably less frequently in all Borreliella spp.–positive samples

(Figure 3). Mixed infections of Borrelia miyamotoi and B. afzelii or

Borrelia miyamotoi and B. garinii were detected in three ticks. For

one tick, sample differentiation between B. garinii and B. bavariensis

was not possible (Figure 3). Detailed information is presented in

Supplementary Figure 1; Supplementary Table 1.
3.3 Detection of Rickettsia spp.

On average, 100 I. ricinus nymphs were tested for Rickettsia spp.

per location and time point (n = 1,411), except for BW, 60 nymphs

were tested in 2009/2010 only (Table 2; Supplementary Table 1).

The overall prevalence in 2009/2010 was 8.82% (62/703) with a

slight but statistically insignificant decrease to 7.06% (50/708) in
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2019. Rickettsiae were most frequently detected in SL with 18.97%

(22/116), in Mecklenburg-West Pomerania (MV) with 15.84% (16/

101) and Lower Saxony (NI) with 11.32% (12/106) in 2009/2010.

Similar results were obtained for samples taken in 2019 with 12.87%

(13/101) positive ticks in SL, 14.15% (15/106) in MV, and 8.91% (9/

101) in NI. In all other locations, none or ≤ 5 samples tested positive

for Rickettsia spp. (Table 1).

For species differentiation, all 112 Rickettsia spp.–positive

samples were subjected to PCR amplification and sequencing of

rrs, gltA, and ompB gene fragments. Overall, from 100, 88, and 103

samples, a rrs gene fragment, a gltA gene fragment, and an ompB

gene fragment were generated, respectively. All three gene

fragments were obtained from 79 samples. All retrieved sequences

from the rrs and gltA gene fragments were identical (Figures 4A, B).

Four sequence types of ompB (Figure 4C) were observed and six

sequence types when all three gene fragments were aligned as

concatemers (Figure 4D). All positive (108/112) samples clustered

together with spotted fever (SFG) group rickettsiae and were

identified as R. helvetica.
3.4 Detection of Anaplasma spp.

Anaplasma were detected in 19 out of 1,416 tested I. ricinus

nymphs (Table 3). There was no statistically significant difference
FIGURE 1

Geographical location of tick collection sites. Büren, North Rhine-Westphalia (NW); Groß Quassow, Mecklenburg-West Pomerania (MV); Hausch,
Baden-Wuerttemberg (BW); Holtum-Geest, Lower Saxony (NI); Jena, Thuringia (TH); Loderhof/Tittling, Bavaria (BY); and St. Ingberg, Saarland (SL).
Figure created with Maps © Mapbox (www.mapbox.com/about/maps) and © OpenStreetMap (www.openstreetmap.org/about).
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FIGURE 2

Prevalence of tick-borne pathogens in 2009/2010 (upper panel) and 2019 (lower panel) according to sampling site. Prevalence of Anaplasma spp.
and Borreliella spp. including B. miyamotoi, C. burnetii, and Rickettsia spp. is indicated as bars with lower and higher confidence intervals. DE,
Germany; BW, Baden-Wuerttemberg; BY, Bavaria; NI, Lower Saxony; MV, Mecklenburg-West Pomerania; NW, North Rhine-Westphalia; SL, Saarland;
TH, Thuringia.
TABLE 1 Prevalence of Borreliella spp. and B. miyamotoi in Ixodes ricinus nymphs in Germany in 2009/2010 compared to 2019.

2009/2010 2019 Prevalence
Comparison 2009/
2010 and 2019

Federal
state

Number of
ticks analyzed

Positive
ticks

Number of
ticks analyzed

Positive
ticks

2009/
2010 (CI)

2019
(CI)

P-value OR (CI)

BW 120 28 100 14 23.33
(16.10, 31.93)

14.00
(7.87, 22.37)

0.18 0,60
(0.28, 1.26)

BY 110 14 100 16 12.73
(7.14, 20.43)

16.00
(9.43, 24,68)

0.57 1,26
(0.54, 2.93)

NI 103 10 110 8 9.71
(4.76, 17.13)

7.27
(3.19, 13.83)

0.63 0,75
(0.25, 2,20)

MV 102 5 100 5 4.90
(1.61, 11.07)

5.00
(1.64, 11.28)

1.00 1,02
(0.23, 4.58)

NW 100 6 100 17 6.00
(2.23, 12.60)

17.00
(10.23,
25.82)

0.05 2,82
(1.01, 9.11)

SL 101 15 100 22 14.85
(8.56, 23.31)

22.00
(14.33,
31.39)

0.29 1,48
(0.69, 3.26)

TH 100 10 100 11 10.00
(4.90, 17.62)

11.00
(5.62, 18.83)

1.00 1,10
(0.40, 3.03)
F
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CI, confidence interval; OR, odds ratio; BW, Baden-Wuerttemberg; BY, Bavaria; NI, Lower Saxony; MV, Mecklenburg-West Pomerania; NW, North Rhine-Westphalia; SL, Saarland;
TH, Thuringia.
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between sampling sites and time with 1.00% (7/703) in 2009/2010

and 1.68% (12/713) in 2019. Most Anaplasma positive ticks were

found in SL and NI with a slight increase in prevalence from 3.45%

(4/116) to 4.95% (5/101) or 1.89% (2/106) to 4.95% (5/101). Of

these, seven [0.469% (0.200, 1.021)] tested positive for

A. phagocytophilum collected in MV in 2010 (n = 1), in NI in

2019 (n = 1), in SL in 2010 (n = 3), and 2019 (n = 2).
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3.5 Detection of Coxiella burnetii

Nearly 600 I. ricinus nymphs collected in 2009/2010 (n = 424)

from five different locations and in 2019 (n = 176) from two

different locations were analyzed for C. burnetii. All samples

tested negative for the IS1111 element. Because of the overall

negative results, further testing of samples was neglected.
FIGURE 3

Relative frequency of Borreliella spp. and Borrelia miyamotoi in infected I. ricinus nymphs by real-time PCR detection in Germany in 2009/2010
and 2019.
TABLE 2 Prevalence of Rickettsia spp. in Ixodes ricinus nymphs in Germany in 2009/2010 compared to 2019.

2009/2010 2019 Prevalence
Comparison 2009/
2010 and 2019

Federal
state

Number of
ticks analyzed

Positive
ticks

Number of
ticks analyzed

Positive
ticks

2009/
2010 (CI)

2019
(CI)

P-value OR (CI)

BW 60 0 100 5 0
(0, 5.96)

4.76
(1.56 10.76)

0.16

BY 110 3 101 0 2.73
(0.57, 7,76)

0
(0.00, 3,59)

0.25 0
(0.00, 2.70

NI 106 12 101 9 11.32
(5.99, 18.94)

8.91
(4.16, 16.24)

0.65 0.79
(0.28, 2.14)

MV 101 16 106 15 15.84
(9.33, 24.45)

14.15
(8.14, 22.26)

0.85 0.89
(0.39, 2.04)

NW 107 7 100 5 6.54
(2.67, 13.02)

5.00
(1.64, 11.28)

0.77 0.77
(0.19, 2.90)

SL 116 22 101 13 18.97
(12.28, 27.29)

12.87
(7.04, 21.00)

0.36 0.68
(0.30, 1.49)

TH 103 2 99 3 1.94
(0.24, 6.84)

3.03
(0.63, 8.60)

0.68 1.56
(0.17, 19.01)
fr
CI, confidence interval; OR, odds ratio; BW, Baden-Wuerttemberg; BY, Bavaria; NI, Lower Saxony; MV, Mecklenburg-West Pomerania; NW, North Rhine-Westphalia; SL, Saarland;
TH, Thuringia.
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TABLE 3 Prevalence of Anaplasma spp. in Ixodes ricinus nymphs in Germany in 2009/2010 compared to 2019.

2009/2010 2019 Prevalence
Comparison 2009/
2010 and 2019

Federal
state

Number of
ticks analyzed

Positive
ticks

Number of
ticks analyzed

Positive
ticks

2009/
2010 (CI)

2019
(CI)

P-value OR (CI)

BW 60 0 105 0 0
(0.00, 5.96)

0
(0.00, 3.45)

1.00

BY 110 0 101 0 0
(0.00, 3.30)

0
(0.00, 3.59)

1.00

NI 106 2 101 5 1.89
(0.23, 6.65)

4.95
(1.63, 11.18)

0.28 2.61
(0.42, 28.03)

MV 101 1 106 0 0.99
(0.03, 5.39)

0
(0.00, 3.42)

0.49 0
(0.00, 37.53)

NW 107 0 100 1 0
(0.00, 3.39)

1.00
(0.03, 5.45)

0.49

SL 116 4 101 5 3.45
(0.95, 8.59)

4.95
(1.63, 11.18)

0.74 1.43
(0.30, 7.43)

TH 103 0 99 1 0
(0.00, 3.52)

1.01
(0.03, 5.50)

0.49
F
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CI, confidence interval; OR, odds ratio; BW, Baden-Wuerttemberg; BY, Bavaria; NI, Lower Saxony; MV, Mecklenburg-West Pomerania; NW, North Rhine-Westphalia; SL, Saarland;
TH, Thuringia.
A B

DC

FIGURE 4

Phylogenetic tree based on (A) rrs, (B) gltA, and (C) ompB partial fragments or (D) rrs-gltA-ompB-concatemers from Rickettsia spp. reference strains
and representative samples per sampling location and time. Trees were built using the neighbor-joining method with the genetic distance model
Tamura-Nei and bootstrap tests with 1,000 replicates. Bar indicates nucleotide distance. Nucleotide accession numbers of Rickettsia spp. reference
genes are listed in Supplementary Table 2; BW, Baden-Wuerttemberg; BY, Bavaria; NI, Lower Saxony; MV, Mecklenburg-West Pomerania; NW, North
Rhine-Westphalia; SL, Saarland; TH, Thuringia.
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4 Discussion

Tick-borne diseases are of high interest in human and

veterinary medicine. Observations about their spread in space and

time can help to assess the epidemiological situation in a given area.

The vector I. ricinus has a broad range of host species including

mammals, birds, and reptiles. The compilation of a high-resolution

density map of unfed nymphal I. ricinus allows an insight into the

broad distribution of this important disease vector in Germany

depending on bioclimatic variables and land cover (Brugger et al.,

2016). In our study, the prevalence for Borreliella spp. including

Borrelia miyamotoi in nymphal I. ricinus was 11.96% in 2009/2010

and 13.10% 10 years later (Table 1). This is in accordance with

many other studies, e.g., with prevalence of 10%, between 5% and

12% or 12.9% in nymphs (Wilske et al., 1987; Kampen et al., 2004;

Fingerle et al., 2008). A higher prevalence in nymphs was found in

South Germany (15%) by Raileanu et al. (2021), in Hanover in

Northwest Germany (19.8%) by Blazejak et al. (2018) and in North

Germany (28.6%) by Knoll et al. (2021a) with prevalence between

18.6% and 45.7% in nymphs at different places and habitats.

Prevalence for B. burgdorferi s.l. in Europe was reported between

2% and 43% for nymphs, with a mean average of 10.8% (Hubalek

and Halouzka, 1998). A meta-analysis of studies in Europe between

2010 and 2016 showed an average Borreliella prevalence of 15.6%

(Strnad et al., 2017).

Comparable results were shown by Kampen et al. (2004) at

three sites in the region Siebengebirge in West Germany. They

found a higher prevalence of 5.5%, 15.8%, and 21.8% at these

locations in 2001 compared to 1987–1989 with 1.1% to 15.4%

(Kurtenbach et al., 1995; Kampen et al., 2004). This change might

be caused by presently unknown changes, e.g., in ecological

conditions or wildlife management. Schwarz et al. (2012) detected

an increasing B. burgdorferi s.l. prevalence in the same region over

the last two decades (Schwarz et al., 2012). In our study, only at one

site, a significant higher prevalence was observed (NW) after

10 years.

The detected differences may be caused by changes in ecological

conditions or wildlife management, like it was assumed by Kampen

et al. (2004) for three sites in the Siebengebirge inWest Germany. In

Hanover in Northwest Germany, it was assumed that the reason for

decreased B. afzelii detection over 10 years could be caused by

changed reservoir host population (Blazejak et al., 2018). It is

suggested that the bird population could be responsible for local

changes of Borreliella spp. prevalence like in the here presented

study (Klaus et al., 2016). Birds, especially blackbirds

(Turdus merula) and song thrushes (Turdus philomelos), play an

important role in the distribution of Borreliella spp (Humair et al.,

1993; Olsen et al., 1995; Taragel’ova et al., 2008; Klaus et al., 2016).

They can also serve as reservoir hosts (Lommano et al., 2014), but

there are no data available about bird populations at the sampling

sites visited in the here presented study. The population size of

abundant and common bird species increased generally from 2009

until 2018, but trends are different according to habitat and nest

sides (Kamp et al., 2021). The observed increase of overall

prevalence of Borreliella spp. might reflect the general increase of

birds as tick hosts, but this is only speculative.
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In our study, in 2009/2010, the dominant species was rodent-

associated B. afzelii with up to 40% in SL and TH whose prevalence

declined to 27.27% or 9.09% in 2019 (Supplementary Figure S1).

The same high percentage (43.1%) for B. afzelii was found in

Bavaria in 2010 (Vogerl et al., 2012). In 2019, the bird-associated

species B. garinii increased at all sampling sites except BW and

became the dominant species (Supplementary Figure S1). The

reason is not quite clear. It is possible that such changes can be

introduced by birds as transportation tool for ticks and reservoir

hosts for B. burgdorferi s.l. species. A shift in B. burgdorferi s.l.

species over a time span was observed not only by Blazejak et al.

(2018) in Hanover, Germany, but also by Okeyo et al. (2020) during

a longitudinal study between 1999 and 2010 in Latvia in one of three

investigated habitats. In a former study, in Germany, it became

evident that not only sedentary birds like blackbirds

(Turdus merula) were the most frequently tick infested species,

but also short- and long-distance bird species were more suitable to

transfer Borreliella spp. strains to new sites (Klaus et al., 2016).

However, the rodent-associated species B. afzelii can be harbored in

ticks infesting birds and can be transported in this way as well

(Olsen et al., 1995; Geller et al., 2013; Klaus et al., 2016). A study of

Norte et al. (2020) in 11 European countries showed that 28 bird

species transported three tick species. Among the ticks, 37% were

infected with various B. burgdorferi s.l. species, especially bird-

associated B. garinii (61%), but, among the species, also rodent-

associated B. afzelii (9%). In our study, other B. burgdorferi s.l.

species were found very rarely, i.e., B. bavariensis (4.42%), B.

valaisiana (0.55%), and B. burgdorferi s.s. (2.76%) (Figure 3).

Other studies showed higher prevalence for Borreliella spp., e.g.,

9.7% for B. valaisiana and 9.9% B. burgdorferi s.s. in I. ricinus

collected in northern Germany or 14.7% for B. valaisiana and 6.3%

for B. burgdorferi s.s. in I. ricinus collected in southern Germany,

respectively (Vögerl et al., 2012; Tappe et al., 2014). These studies

analyzed all tick developmental stages, and the overall prevalence

was reported. This might reflect that tick developmental stages

differ in Borreliella spp. prevalence and might explain the here

observed lower prevalence in nymphs.

A special remark should be made about Borrelia miyamotoi

(2.21%) that was found in NW and SL in 2009/2010 and in Lower

Saxony and Thuringia in 2019. Reports show that this species is

established in Germany although at a very low level of 1.2% to 3.5%

prevalence in I. ricinus ticks (Richter et al., 2003; Sinski et al., 2016;

Szekeres et al., 2017). The clinical relevance of this Borrelia species

should not be underestimated (Cutler et al., 2019; Kubiak

et al., 2021). Clinical reports are rare but severe with central

nervous system infections as chronic manifestations in

immunocompromised persons (Gugliotta et al., 2013; Hovius

et al., 2013; Boden et al., 2016). An association between the

history of non-Hodgkin lymphoma and rituximab treatment,

which causes conditional immunosuppression, was made in these

patients. However, serological assays for lyme disease fail to detect

B. miyamotoi infections and clinicians should rely on patient’s

history, clinical examination, and routine cerebrospinal fluid (CSF)

analysis. Classical dark-field microscopy or acrinidine orange

staining and 16S RNA sequencing of CSF supports detection of

spirochetes and B. miyamotoi (Boden et al., 2016).
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Rickettsiae are distributed worldwide and cause mild to severe,

sometimes life-threatening diseases in humans. Several

Rickettsia spp. have been reported in Germany, but there is

limited information available on their distribution and genetic

diversity. Almost all Rickettsia spp. positive tick samples could be

identified as R. helvetica (108/112 samples) in the here reported

study. This species was discovered in 1979 in Switzerland and has

since been reported in Germany in I. ricinus ticks with a prevalence

up to 13.4% and in small rodents with up to 33.3% (Burgdorfer

et al., 1979; Silaghi et al., 2011; Obiegala et al., 2016). The highest

prevalence of Rickettsia spp. in I. ricinus ticks was recorded for the

area of Hamburg in North Germany with 52.5%. Of all positive

samples 25.6% were subjected to species differentiation with

R. helvetica as the only occurring species (May and Strube, 2014).

Other studies demonstrated a prevalence of 12% for Rickettsia spp.

in I. ricinus and exclusively detected R. helvetica in South Germany

(Wolfel et al., 2006). Monitoring of ticks for Rickettsia spp. over a

15-year period in Northern Germany in the region of Hannover

showed significant fluctuations between sampling years, with a

general increase from 2005 with 33.3% until 2020 with 36.0% and

a peak of 50.8% in 2015 (Glass et al., 2022). This demonstrates, that

the here reported prevalence from approximately 2% to 19% for

some federal states and an overall prevalence of 8.82% for 2009/

2010 or 7.01% for 2019 for Rickettsia spp. and the exclusively

detected species R. helvetica in I. ricinus is comparable with

former studies.

Albeit I. ricinus is considered as the main vector for R. helvetica,

other rickettsiae, e.g., the highly pathogenic R. conorii have been

detected in this vector (Sprong et al., 2009). Interestingly, R. helvetica

was also detected in a botfly larvae from a roe deer questioning the

animal reservoir (Scheidet al., 2016). It is assumed that smallmammals

functionasanimal reservoir forR.helvetica. Several studies showahigh

positivity of wild and companion animals by DNA detection or

serological examination. Particulary, rodents and shrews carry

R. helvetica as dominant occurring species and less frequent R. felis

and R raoultii. The prevalence ranged from 6.8% inMV, 7.0% inNW,

and8.0% inTH(Fischer et al., 2018).Dogsas companionanimals show

a high seroprevalence of 93.9% for Rickettsia spp. antibodies using a

micro-immunofluorescence assay. These dogs were not imported or

have left Germany. Of all serological positive samples, 66.0% could be

determined as specific forR. helvetica, 2.8% forR. raoulti, and 1.6% for

R. slovaca (Wachter et al., 2015). Companion animals are in close

contact with their owners and living area. Therefore, the pathogenic

potential of R. helvetica and other Rickettsia spp. present in Germany

and neighboring countries should not be underestimated. New tick

species have been reported in Germany, such as Hyalomma spp.

carrying the human pathogenic species R. slovaca and

R. aeschlimanii (Chitimia-Dobler et al., 2019, 2024). Also, migrating

birds carry ticks and their pathogenic cargo. One study discovered in

addition to R. helvetica another species Candidatus R. vini in

I. arboricola and I. lividus ticks for the first time in Germany. This

species is closely related to the highly human pathogenic species

R. japonica and R. heilongjiangensis (Wimbauer et al., 2022).

The prevalence of Rickettsia spp. and Anaplasma spp. is often

analyzed and reported together. The here detected prevalence for
Frontiers in Cellular and Infection Microbiology 09
Anaplasma spp. from approximately 2% to 5% for some federal

states or 1.00 and 1.68% for 2009/2010 and 2019, respectively, is

comparable to previously reported prevalence in I. ricinus ticks of

1.9% to 6.4% in different parts of Germany (Hartelt et al., 2004;

Hildebrandt et al., 2010; Tappe and Strube, 2013; Knoll et al.,

2021b). Differences in prevalence may be caused by variable

geographical host densities, e.g., for wild ruminants and rodents

(De la Fuente et al., 2005; Stuen et al., 2013).

No significant changes were observed between 2009/2010 and

2019. Of all Anaplasma positive ticks seven nymphs were positive

for the zoonotic pathogen A. phagocytophilum. Reported co-

infection rates of A. phagocytophilum and Rickettsia spp. are low

with approximately 1% (Hildebrandt et al., 2010; Tappe and Strube,

2013). Co-infection was detected in two I. ricinus nymphs from

2010 or 2019 in NI only. However, A. phagocytophilum is an

important pathogen affecting humans as well as companion

animals like horses, cats, and dogs (Kohn et al., 2011;

Langenwalder et al., 2020; Schafer et al., 2022a, b, 2023).

Only a few studies compare prevalence of tick-borne pathogens

over time with contradictory results. Reports from the region of

Hannover in northern Germany detected statistically significant

increase for A. phagocytophilum and Rickettsia spp. positive ticks in

2010 compared to 2005 (Tappe and Strube, 2013). In contrast, a

significant decrease in prevalence was detected in north-west

Germany in 2019 compared to 2018 (Knoll et al., 2021b).

Another study reported a stagnat ing prevalence for

A. phagocytophilum but a significant increase for Rickettsia spp.

in I. ricinus over a 10-year monitoring period (Blazejak et al., 2017).

These data are comparable with the here reported prevalence for

these pathogens with no significant changes after a decade.

Comprehensive studies on the prevalence of rickettsial diseases

or HGA in Germany are missing. There are a few reports available

showing a high seroprevalence for Rickettsia spp. in forestry

workers or homeless people, which are more likely to be exposed

to arthropods. Among homeless people 7% (10/147) tested

serological positive for R. conorii, whereof only two originated not

from Germany or neighboring countries (Heinrich et al., 2023).

Further forestry workers show a high seroprevalence for SFG

rickettsiae of 27.5% with 9.7% for R. helvetica, 5% R. raoultii,

2.7% R. felis, 0.5% R. monacensis, and 0.5% R. slovaca (Wolfel

et al., 2017). Similar, the seroprevalence for A. phagocytophilum in

forestry workers with previous tick exposure was reported as 4.51%

and 1.20% in the control group (Kowalski et al., 2006). Reports on

clinical cases are rare. This suggests that rickettsial diseases and

HGA might be rare events in Germany or underdiagnosed.

Historically, Q fever in humans and Coxiellosis in ruminants was

associated with a high abundance of the sheep tick D. marginatus in

southern Germany. It was assumed that C. burnetii is either

transmitted by the tick bite or excreted and spread by tick feces

(Liebisch, 1977). Vector competence for two in Germany most

abundant tick species in Germany, I. ricinus and D. marginatus, was

shown recently. Both tick species can take up the bacteria with the

blood meal and excrete them with feces. Transstadial transmission

from nymphs to adult ticks was demonstrated but transovarial

transmission seems unlikely (Korner et al., 2020; Bauer et al., 2023).
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However, several studies reporting an overall negative or very low

prevalence for C. burnetii in ticks in Germany. A few reports are

available targetingDermacentor spp. ticks and small rodents inQ fever

outbreak areas in southern Germany, but none of the tested samples

wereCoxiella-positive byPCR (Hartelt et al., 2008; Pluta et al., 2010).A

small-scale study carried out in western Germany detected no C.

burnetii–positive I. ricinus ticks (n = 52) (Henning et al., 2006). Only

one study reported a small portion of C. burnetii–positive I. ricinus

(1.9%) for a region in East Germany (Hildebrandt et al., 2011).

Therefore, the prevalence of C. burnetii in I. ricinus and

Dermacentor spp. ticks is generally assumed to be very low or

negative inGermany and is in accordance with the here reported data.

The prevalence of C. burnetii in ticks increases in eastern and

southern European countries, e.g., high prevalence for C. burnetii in

D. marginatus from Serbia (22%) (Tomanovic et al., 2013) or

France (2% to 13%) (Bonnet et al., 2013; Michelet et al., 2014)

was reported. Prevalence of C. burnetii in I. ricinus varies with

approximately 16% in Poland (Szymańska-Czerwińska et al., 2013)

and negative results for Spain (Astobiza et al., 2011) or France

(Michelet et al., 2014). This implies that foci in which ticks may play

a role in transmission of C. burnetii do exist. However, all results

need to be evaluated with care, because most studies do not employ

methods for differentiation between C. burnetii and CLEs. The

abundance of certain tick species seems to play a role in the spread

of pathogens. High prevalence of C. burnetii in species of the genera

Hyalomma spp. and Rhipicephalus spp. with up to 54% in Spain or

22% in Italy was reported (Mancini et al., 2014; Gonzalez et al.,

2020), and vector competence was shown for H. aegypticum (Široký

et al., 2010). Climate change might influence the distribution of tick

species and Hyalomma spp. was already detected and shown to

develop from nymphs to adult ticks in Germany (Chitimia-Dobler

et al., 2019, 2024). However, Hyalomma ticks (n = 18) collected in

Germany and examined for tick-borne pathogen were negative for

C. burnetii, but the number of ticks examined was very low and may

not be representative (Chitimia-Dobler et al., 2019).
5 Conclusions

Considering the high importance of bacterial tick-borne

infections for human health, it is recommended to examine

changes of pathogens in ticks as vector in space and time.

Especially, longitudinal studies at the same places are rare because

of high costs and technical problems. Here, we gave an insight at

seven sites in Germany 9 to 10 years after the first examination with

very different aspects at the single sites but no general increase of

tick-borne pathogens during this time span. This may be caused by

the multifactorial conditions at the sites, e.g., climate conditions and

especially host population. These factors were not monitored in the

here presented study but are necessary to understand which factors

influence the prevalence of tick-borne pathogens, tick density, and

transmission dynamics. Longitudinal observations are recommended

by including such parameters like host species and density to improve

our understanding of tick-borne diseases.
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Tortoise tick Hyalomma aEgyptium as long term carrier of Q fever agent Coxiella
burnetii—evidence from experimental infection. Parasitol. Res. 107, 1515–1520.
doi: 10.1007/s00436-010-2037-1

Sprong, H., Wielinga, P. R., Fonville, M., Reusken, C., Brandenburg, A. H.,
Borgsteede, F., et al. (2009). Ixodes ricinus ticks are reservoir hosts for Rickettsia
helvetica and potentially carry flea-borne Rickettsia species. Parasit Vectors 2, 41.
doi: 10.1186/1756-3305-2-41
frontiersin.org

https://doi.org/10.1007/s004360050378
https://doi.org/10.1016/j.ttbdis.2014.09.001
https://doi.org/10.3201/eid1309.060186
https://doi.org/10.1111/j.1863-2378.2007.01028.x
https://doi.org/10.1007/s10336-020-01830-4
https://doi.org/10.1128/AEM.70.3.1576-1582.2004
https://doi.org/10.1128/AEM.70.3.1576-1582.2004
https://doi.org/10.1007/s00436-016-5022-5
https://doi.org/10.1111/mve.12537
https://doi.org/10.1016/j.ttbdis.2021.101657
https://doi.org/10.1016/j.rvsc.2010.08.008
https://doi.org/10.1016/j.rvsc.2010.08.008
https://doi.org/10.1186/s13071-020-3956-z
https://doi.org/10.3389/fvets.2021.655715
https://doi.org/10.1111/j.1469-0691.2006.01490.x
https://doi.org/10.3390/microorganisms9010154
https://doi.org/10.1093/jmedent/32.6.807
https://doi.org/10.1128/JCM.42.1.90-98.2004
https://doi.org/10.1186/s13071-020-04116-z
https://doi.org/10.1186/s13071-020-04116-z
https://doi.org/10.1016/j.ttbdis.2014.07.001
https://doi.org/10.1016/j.idc.2022.02.008
https://doi.org/10.5604/12321966.1129922
https://doi.org/10.1128/AEM.00116-09
https://doi.org/10.1007/s00436-014-3869-x
https://doi.org/10.3389/fcimb.2014.00103
https://doi.org/10.1111/mec.15336
https://doi.org/10.1007/s11756-021-00927-2
https://doi.org/10.1016/j.vprsr.2016.08.008
https://doi.org/10.1111/1462-2920.15100
https://doi.org/10.1128/aem.61.8.3082-3087.1995
https://doi.org/10.1186/1471-2180-8-77
https://doi.org/10.1016/j.ttbdis.2010.04.001
https://doi.org/10.3390/microorganisms9061266
https://doi.org/10.3390/microorganisms9061266
http://www.dgn.org/leitlinien
https://doi.org/10.1128/JCM.40.1.36-43.2002
https://doi.org/10.3201/eid0906.020459
https://doi.org/10.1099/00207713-50-4-1449
https://doi.org/10.1089/vbz.2017.2235
https://doi.org/10.1177/1098612X211017459
https://doi.org/10.3390/ani13040720
https://doi.org/10.1016/j.vetpar.2022.109840
https://doi.org/10.1016/j.ttbdis.2016.07.002
https://doi.org/10.1186/1756-3305-5-268
https://doi.org/10.3201/eid1705.101445
https://doi.org/10.3201/eid1705.101445
https://doi.org/10.1016/j.advms.2016.03.001
https://doi.org/10.1007/s00436-010-2037-1
https://doi.org/10.1186/1756-3305-2-41
https://doi.org/10.3389/fcimb.2024.1429667
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Mertens-Scholz et al. 10.3389/fcimb.2024.1429667
Strnad, M., Honig, V., Ruzek, D., Grubhoffer, L., and Rego, R. O. M. (2017). Europe-
Wide Meta-Analysis of Borrelia burgdorferi Sensu Lato Prevalence in Questing Ixodes
ricinus Ticks. Appl. Environ. Microbiol. 83, 16. doi: 10.1128/AEM.00609-17

Strube, C., Montenegro, V. M., Epe, C., Eckelt, E., and Schnieder, T. (2010).
Establishment of a minor groove binder-probe based quantitative real time PCR to
detect Borrelia burgdorferi sensu lato and differentiation of Borrelia spielmanii by ospA-
specific conventional PCR. Parasit Vectors 3, 69. doi: 10.1186/1756-3305-3-69

Stuen, S., Granquist, E. G., and Silaghi, C. (2013). Anaplasma phagocytophilum–a
widespread multi-host pathogen with highly adaptive strategies. Front. Cell Infect.
Microbiol. 3. doi: 10.3389/fcimb.2013.00031

Szekeres, S., Lugner, J., Fingerle, V., Margos, G., and Foldvari, G. (2017). Prevalence
of Borrelia miyamotoi and Borrelia burgdorferi sensu lato in questing ticks from a
recreational coniferous forest of East Saxony, Germany. Ticks Tick Borne Dis. 8, 922–
927. doi: 10.1016/j.ttbdis.2017.08.002
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