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Bacterial biofilms are organized heterogeneous assemblages of microbial cells

encased within a self-produced matrix of exopolysaccharides, extracellular DNA

and proteins. Over the last decade, more and more biofilm-associated proteins

have been discovered and investigated. Furthermore, omics techniques such as

transcriptomes, proteomes also play important roles in identifying new biofilm-

associated genes or proteins. However, those important data have been

uploaded separately to various databases, which creates obstacles for biofilm

researchers to have a comprehensive access to these data. In this work, we

constructed BBSdb, a state-of-the-art open resource of bacterial biofilm-

associated protein. It includes 48 different bacteria species, 105 transcriptome

datasets, 21 proteome datasets, 1205 experimental samples, 57,823 differentially

expressed genes (DEGs), 13,605 differentially expressed proteins (DEPs), 1,930

‘Top 5% differentially expressed genes’, 444 ‘Threshold-based DEGs’ and a

predictor for prediction of biofilm-associated protein. In addition, 1,781

biofilm-associated proteins, including annotation and sequences, were

extracted from 942 articles and public databases via text-mining analysis. We

used E. coli as an example to represent how to explore potential biofilm-

associated proteins in bacteria. We believe that this study will be of broad

interest to researchers in field of bacteria, especially biofilms, which are

involved in bacterial growth, pathogenicity, and drug resistance.

Availability and implementation: The BBSdb is freely available at http://

124.222.145.44/#!/.
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1 Introduction

Bacterial biofilms are adhesion structure formed by single or

multiple bacteria and their metabolites. In clinical practice, biofilms

can greatly improve the ability of pathogenic bacteria to resist

antibiotics, thus increasing the risk of infection (Jamal et al., 2018;

Schwarzer et al., 2020). Biofilm-associated proteins are defined as a type

of protein molecules closely related to bacterial biofilm formation,

which include constitutive proteins located downstream of the biofilm

regulatory network and upstream transcriptional regulators. The

understanding and discovery of biofilm-associated genes and

proteins can help us to better understand the molecular mechanisms

of bacterial biofilm formation. Over the last decade, more and more

biofilm-associated genes and proteins have been discovered and

investigated with the development of omics techniques including

transcriptomes and proteomes (Lasaro et al., 2009; Hay and Zhu,

2015; Wang et al., 2017; Jia et al., 2022). During the development and

formation of biofilm, the transcription profile of bacteria changes, and

some genes with obviously variable expression levels, which are proved

by previous experiments, often play an important role in biofilm

formation. Therefore, it is important for researchers to obtain these

data and analyze gene and protein expression profile in the background

of biofilms. However, those important transcriptome and proteome

data have been uploaded separately to various databases, which make

biofilm researchers pain to have a comprehensive access to these data.

Although several resources provide biofilm data, such as Quorumpeps

(Wynendaele et al., 2013) for QS-derived signaling peptides, BiofOmics

(Lourenço et al., 2012) for biofilm experimental information, BaAMPs

(Di Luca et al., 2015), aBiofilm (Rajput et al., 2018), dpABB (Sharma

et al., 2016) for antibiofilm Agents, BSD8 (Urbance et al., 2020) for

structural information. There is an urgent need to combine multi-

omics data for the prediction and analysis of biofilm-

associated proteins.

Here, we developed BBSdb, an online database focusing on

experimentally validated biofilm-associated proteins. In addition,

BBSdb provided a predictor for prediction of biofilm-associated

protein, in which users could upload their interested protein

sequence to predict candidate biofilm-associated proteins and

browse corresponding entries of DEG. BBSdb can serve as a useful

resource to make researchers pain-free to obtain transcriptomes,

proteomes in biofilm research, query information of experimentally

validated biofilm-associated proteins, and utilize developed predictor

for protein prediction.
2 Materials and methods

2.1 Data collection, pre-processing
and analysis

To give users a clear study design of the data collection, pre-

processing, analysis and integration in BBSdb, the overview of study

design is illustrated in Figure 1.

For data collection, we collected and curated transcriptome

datasets from biofilm research, including 105 RNA-seq projects

(1205 samples) from 16 different bacteria species, from the European
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Nucleotide Archive (EBI ENA, https://www.ebi.ac.uk/ena/browser/

home) (Amid et al., 2020) and Sequence Read Archive (SRA,

https://www.ncbi.nlm.nih.gov/sra/) (Kodama et al., 2012). As the

related meta-data of corresponding experiments, projects and

literature were obtained from NCBI PubMed and GEO databases

(Barrett et al., 2013). For the processing of raw sequencing reads,

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/) was used to evaluate the overall quality of the raw

sequencing reads, followed by the Trim_galore to remove

sequencing vectors and low-quality bases (Utturkar et al., 2020)

and performed transcript quantification using Salmon (Patro et al.,

2017), which adopted TPM (Transcript Per Million) for

normalization (Figure 1B), a better unit for RNA abundance than

RPKM and FPKM since it respects the invariance property and is

proportional to the average relative RNA molar concentration

(Mortazavi et al., 2008; Zhao et al., 2020). It is essential to

emphasize that the “mapping” step is based on salmon, which

maps the reads obtained by next-generation sequencing onto the

transcript of bacteria to achieve the estimation of gene expression.

The batch effect correction between different experimental

conditions is mainly performed by the ComBat function of sva

package in R. In addition, all the transcriptomics are from Illumina

sequencing, including single-end reads and pair-end reads. For

pair-end reads, the use of FastQC and Trim_Galore requires the

inspection and pruning of reads at both ends respectively, and the

use of mapping tool (Salmon.) need to compare read1 and read2 at

the same time to ensure that the reads are positioned correctly. For

proteome datasets, we directly collected them from supplementary

data of articles. We analyzed cleaned transcriptome and proteome

data using differential expressed analysis, and obtaining 57,385

DEGs and 13,605 DEPs, in which we used a cutoff of |log2

FC| > 1.5 (FC, fold change) and p-value <0.05 to define

differentially expressed genes and proteins between experiments

(Zhang et al., 2019). Please note, In order to make the definition of

log2FC clear, we took the case of biofilm vs planktonic as an

example, is FC planktonic/biofilm, and it is always the second/the

first as shown in the experimental conditions. In addition, we

proposed ‘Threshold-based DEGs’, which are required to

differential express in more than 80% experiment conditions and

will be helpful to obtain universal biofilm associated genes, and

calculated ‘Top 5% differentially expressed genes’ of 16 different

bacteria species, which was proposed by our previous research

(Zhang et al., 2022).
2.2 Text-mining analysis

To obtain experimentally validated biofilm-associated proteins,

we performed text-mining analysis. The main steps included: 1)

obtaining literature, which must focus on bacterial biofilm at the

gene or protein level; 2) obtaining sentences as supported evidence,

which must describe gene or protein and contain the following

keyword: biofilm; 3) extracting information of potential biofilm-

associated gene or protein. The retrieved information was further

verified by three rounds of manual inspection (Figure 1C). In
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addition, Text-mining analysis only search titles and abstracts of

literature. We obtained 1,781 experimentally validated biofilm-

associated proteins, which were validated by 2,514 entries of

supported evidence from 942 articles and public databases. We

selected above-mentioned protein sequences with sequence

similarity < 50% (CD-HIT) as positive datasets for effectively

training a machine learning model with strong robustness and

wide adaptability. And reviewed non biofilm-associated proteins

from Uniprot database (https://www.uniprot.org/) (UniProt,

Consortium, 2021) were extracted as negative datasets (http://

124.222.145.44/#!/terms).
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2.3 Predictor development

The work used a feature representation learning scheme that

integrated different types of sequence-based feature descriptors to

develop predictive model (Figure 2A). For protein sequence-based

feature descriptors, we utilized different feature extraction methods

(Rajput et al., 2015; Wei et al., 2020) for feature representation

and obtained 46 feature descriptors in total (Supplementary S1).

We compared all 46 feature descriptors using RF (Random Forest)

classifier, and the top 3 best feature descriptors CKSAAP

(Tung, 2013), TPC (Duan et al., 2008), and AAC_DPC with the
A

B
D

E

C

FIGURE 1

Overview of BBSdb. (A) The data source. All data including the raw sequencing data, information of genome annotation, literature, and experimental
validated biofilm-associated proteins were collected from public databases, such as NCBI GEO, ENA, Uniprot, PubMed and so on. (B) The data pre-
processing. The RNA-seq raw data perform quality control, mapping, transcript quantification and normalization to obtain high-quality data for
further analysis. (C) Text mining analysis. A customized Python pipeline was used by searching for biofilm-associated proteins (genes) in the titles or
abstracts of literature from the NCBI PubMed database. (D) Construction of predictive model. Firstly, the targeted protein sequences are subjected
to the feature representation learning scheme, and as a result, a 46-dimensional feature vector will be generated. Secondly, the feature vector
generated at the previous step is optimized to a 3-dimensional optimal feature vector. Ultimately, the proteins are predicted and scored by the well-
trained RF model. (E) The data integration. BBSdb integrated polytype data with a biofilm-associated proteins predictor, which placed in “Bacteria”,
“Genes(Proteins)”, “Diff. Expr.” and “Prediction” modules.
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FIGURE 2

Introduction of predictor for biofilm-associated protein. (A) Pipeline of the feature representation learning scheme. Firstly, a feature pool with 46
feature descriptors is constructed by nine feature-encoding algorithms. Afterwards, each descriptor is trained and evaluated using the RF classifier
on the biofilm-associated protein sequence datasets. Finally, the predicted class label for each trained RF model is regarded as an attribute to form a
new feature vector. (B) Comparative analysis of single feature descriptor with combined feature (feature subsets). (C) ROC curves of the best-
performing feature descriptors using RF classifier. (D) Feature dimension of the optimal feature (combined feature) and The original three feature
descriptors. (E) The introduction of “Prediction” module. Users can enter their protein sequences of interest (in fasta format) into the input box on
the module page, and then click the ‘Predict’ button on the right. At this point, the entered protein sequence is fed into the prediction model for
function prediction, while the protein name is used to search for corresponding gene expression information in BBSdb database.
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RF classifier obtained 0.7 0.72, 0.75 AUC scores, respectively

(Figure 2B). Then we use the feature selection strategy to select

the features with the greatest contribution from the 46-dimensional

features. The results show that the performance of the model built

based on 3-dimension combined feature is similar to that of the

model based on 46-dimensional features, but the dimension is

lower. We constructed predictive model based on a 3-dimensional

feature vector, which consisted of prediction result of CKSAAP,

TPC, and AAC_DPC descriptors on datasets, and obtained an AUC

score 0.80 (Figures 2C, D). BBSdb provided ‘Prediction’ module to

make users free for biofilm-associated protein prediction.
2.4 Database design and implementation

BBSdb, which integrated data and a predictor, was designed as a

relational database. All data were loaded into a MySQL database.

The frontend of the website was coded using JavaScript and HTML,

while the backend was coded using Python with a Flask framework

to support queries to the MySQL database and provide

representational state transfer (REST) application programming

interfaces (APIs) for programmable access to our data. The

AngularJS framework was used to bride the front and back-ends.

Echarts.js and plotly.js were used for visualizations at the front end.
3 Results

3.1 Summary of BBSdb

The BBSdb database provides a user-friendly, open access web

interface for searching, browsing and downloading data, which

includes 105 transcriptome projects from 16 different bacteria

species and 21 proteome projects from 5 different bacteria species

and 1,781 entries of experimentally validated biofilm-associated

protein via text-mining analysis, which were validated by 2,514

entries of supported evidence from 942 articles and public

databases. We analyzed RNA-seq and proteome datasets and

performed differentially expressed analysis, in total obtaining

33,180 DEGs, 13,605 DEPs. We calculated ‘Threshold-based

DEGs’ and ‘Top 5% DEGs’ of 16 different bacteria species, and

obtaining 1,930 ‘Top 5% DEGs’ and 444 ‘Threshold-based DEGs’.

All data shown in Table 1.
3.2 Effective online predictor

‘Prediction’ module aims to provide an online predictor for

identification of potential biofilm-associated protein. Users can

input protein sequence in a fasta format, in which the first line

enter gene name, and BBSdb will extract gene expression

information and DEGs according to inputted gene name, which

have been collected and processed in BBSdb (Figure 2E); And if this

gene name is wrong or don’t include in BBSdb, gene expression data

will not be able to be provided. For protein sequence of the second

line, it will be fed into the prediction model for function prediction
Frontiers in Cellular and Infection Microbiology 05
(biofilm-associated protein or not). And please note that the

function prediction relies only on protein sequence information

and does not involve in gene expression data.
3.3 Functional modules

The BBSdb database mainly includes four functional modules,

‘Bacteria’, ‘Genes (Proteins)’, ‘Diff. Expr.’, and ‘Proteome’. The

‘Bacteria’ module consists of two tables (Figures 3A, E), with the

first table displaying biofilm-associated protein information from 48

bacteria species, as reported in the literature or recorded in public

databases. The second table summarizes transcriptomic information

from 16 bacteria species, including the number of experimental

samples, the number of DEGs, and links providing more detailed

information. Users can obtain transcriptomic experimental

information of bacteria, DEGs, and experimentally validated

biofilm-associated proteins by clicking on the link. The ‘Genes

(Proteins)’ module aims to provide researchers with experimentally

validated biofilm-associated proteins and corresponding evidence

obtained through data-mining analysis, allowing users to select the

bacteria and genes of interest to retrieve information (Figures 3B, F).

In addition, we provided a user-feedback mechanism, allowing users

to vote on each text mining entry. Users can use the thumb-up and

thumb-down buttons to vote on the creditability of the entry, the
TABLE 1 Summary in BBSdb database.

Types Entries BBSdb

Data summary

Bacteria 48

Transcriptome projects 105

Referring bacteria
in transcriptomes

16

Transcriptome
samples

1,205

DEGs 57,823

Proteome projects 21

Referring bacteria
in proteomes

5

DEPs 13,605

Experimentally
validated proteins

1,003

Literature 1,781

Supported sentences 2,514

Top 5% differentially
expressed genes

1,930

Threshold-based DEGs 444

Analysis summary

Text-mining analysis Yes

Data visualization Yes

Online predictor Yes

Differentially expressed
gene analysis

Yes
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FIGURE 3

Introduction of four main functional module of BBSdb database. (A) ‘Bacteria’ module of BBSdb database. This module summarized experimentally
validated biofilm-associated protein information from 48 different bacteria species and transcriptomic information from 16 different bacteria species.
(B) ‘Genes (Proteins)’ module of BBSdb database. This module provided researchers with experimentally validated biofilm-associated proteins and
evidence obtained through data-mining analysis. (C) ‘Diff. Expr.’ module of BBSdb database. This module provided transcriptomic data and DEGs
from 16 different bacteria species, and visualized these data to facilitate users’ querying and mining of DEGs. (D) ‘Proteome’ module of BBSdb
database. This module provided proteomic data and DEPs from 5 different bacteria species. In addition, BBSdb performed multi-omics combined
analysis, obtained overlapping genes and proteins between transcriptomics and proteomics were integrated in this module. (E) The bacteria detail
page. Users can obtain detailed transcriptomic experimental information of bacteria, DEGs, and experimentally validated biofilm-related proteins.
(F) The Genes (Proteins) detail page. (G) The Diff. Expr. detail page.
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background color of the table cell will be changed automatically

according to the voting results. In ‘Diff. Expr.’ module, we provided

DEGs and specific information on transcriptomic experiments and

visualized these data to facilitate users’ querying and mining

(Figures 3C, G). The ‘Proteome’ module collected proteomic data

from 5 bacteria species and provided the analyzed differentially

expressed proteins. We placed the results of the combined analysis

of bacterial transcriptomics and proteomics in this module, and

provided their overlapping genes or proteins (Figure 3D), which

help us to find new regulatory factors under the bacterial biofilm

phenotype through data mining.
3.4 Multi-omics data mining

We classified 16 bacteria species into two groups: (1) Human

microbial pathogens, in total 15: E.coli, Burkholderia cenocepacia,

Streptococcus pneumoniae, Streptococcus mutans, Staphylococcus

epidermidis , Staphylococcus aureus , Salmonella enterica ,

Pseudomonas aeruginosa, Porphyromonas gingivalis, Listeria

monocytogenes, Klebsiella pneumoniae, Acinetobacter baumannii,

Mycobacterium Tuberculosis, Vibrio cholerae, and Listeria

monocytogenes; (2) others: Bacillus subtilis. For human pathogenic

bacteria, we analyzed the gene expression of different bacteria

species, and found that in the background of biofilm, the number

of DEGs of different bacteria species are quite different, which may

be due to the number of genes in the bacterial genome itself is

different. The proportion of DEGs to the number of genes in the

bacterial genome range from 0.3% to 53% (Figure 4A). We also

analyzed gene expression in single type of bacteria under different

conditions. According to differential expression analysis, the shared

genes that were differentially expressed under different

experimental conditions and ‘Threshold-based DEGs’, ‘Top 5%

DEGs’ were obtained, which might play important role in biofilm

phenotype. Due to there being only one transcriptome dataset for

Vibrio cholerae and Mycobacterium Tuberculosis, their ‘Threshold-

based DEGs’ and ‘Top 5% DEGs’ could not be obtained. For the 13

different bacteria species Klebsiella pneumoniae, Pseudomonas

aeruginosa, E.coli, Bacillus subtilis, Acinetobacter baumannii,

Enterococcus faecalis, Staphylococcus aureus, Porphyromonas

gingivalis, Burkholderia cenocepacia, Staphylococcus epidermidis,

Streptococcus mutans, Streptococcus pneumoniae, Salmonella

enterica, the number of ‘Top 5% DEGs’ are 297, 283, 230, 221,

190, 171, 152, 148, 73, 73, 52, 28, 12, separately, and the number of

‘Threshold-based DEGs’ are 8, 0, 5, 112, 7, 34, 3, 196, 0, 4, 72, 3, 0,

separately (Figure 4B), which are likely involved in the regulatory

development of the biofilm as genes encoding biofilm-associated

proteins. Subsequently, we performed a multi-omics analysis based

on transcriptomic and proteomic data, and identified 95, 418, 367,

1958 shared proteins (genes) in E.coli, Staphylococcus aureus,

Pseudomonas aeruginosa, and Bacillus subtilis, respectively

(Figure 4C); By enriching these shared genes (proteins) in the

‘Top 5% differentially expressed genes’ datasets of the bacteria, we

obtained 26, 47, 34, 128 entries respectively (Figure 4D); STRING

(Szklarczyk et al., 2023), GO (Gene Ontology, Consortium, 2015),

and KEGG (Kanehisa et al., 2017) analysis revealed that for
Frontiers in Cellular and Infection Microbiology 07
Pseudomonas aeruginosa, the 34 genes are enriched in biofilm

formation and the type VI secretion system pathways (Figure 4E),

suggesting their involvement in the regulatory development of

biofi lms, providing researchers with clues for a more

comprehensive understanding of the biofilm developmental

mechanism. Staphylococcus aureus and Bacillus subtilis were not

enriched to related pathways.
3.5 Case study

Users could use BBSdb to obtain existing biofilm-associated

protein information and also to systematically explore potential

biofilm-associated proteins utilizing collected data and developed

tool (Supplementary Figure S1). We used E. coli as an example to

represent how to screen out biofilm-associated proteins using

transcriptome data and developed predictor. Firstly, we calculated

DEGs of 3 RNA-seq experiments for E. coli (Experiment_1: aerobic

biofilm cultures versus aerobic planktonic cultures, Experiment_2:

anaerobic biofilm cultures versus anaerobic planktonic cultures, and

Experiment_3: biofilm versus planktonic cultures), in which the

expression abundances were normalized as TPM values, using a

cutoff of |log2 FC| > 1.5 (FC, fold change) and p-value <0.05 to

define DEGs between experiments. We found that the number of

DEGs in Experiment_1, Experiment_2, and Experiment_3 were

604, 1475, and 2217, respectively. Among these experiments, the

number of shared genes of Experiment_1 with Experiment_2,

Experiment_2 with Experiment_3, and Experiment_1 with

Experiment_3 were 188, 1329, and 279, respectively (Figure 5A).

In total, 168 shared genes were obtained from the 3 RNA-seq

experiments. Meanwhile, we constructed protein-protein

interaction (PPI) networks for 168 shared genes using STRING

(Figure 5B), a current collection of known and predicted direct

physical binding and indirect functionally related interactions

between proteins/genes. The results indicated that these genes

were involved in propanoate, butanoate and pyruvate metabolism.

When exploring the top expression genes for the three experiments,

we found that they shared 23 genes in the top 500 DEGs, including

one commonly down-regulated gene garP (Figure 5C), which was

associated with the plasma membrane, and 22 commonly

upregulated genes (b1551, infA, tyrU, cspI, groS, csrA, exbD, argQ,

greA, sraF, metU, b4140, yifE, rplU, yheL, secG, zapA, wzzB, ydfK,

cspB, cspG, and yjcB) in three experiments (Figure 5D), which are

mainly were involved in RNA-binding activity. Subsequently, we

filtered out 4 tRNA genes (tyrU, sraF, metU, argQ) and then used

the constructed classifier to predict 19 remaining DEGs, in total, 10

genes (garP, yjcB, yifE, yheL, secG, b1551, csrA, zapA, ydfK, b4140)

were predicted to be biofilm-associated proteins (Figure 5E). For

gene zapA, we noted that it is described in the literature as “Biofilm

production was significantly associated with the expression of zapA

(P < 0.05)”, which indicated zapA may be involved in biofilm

formation, although its experimental subject was Proteus mirabilis

(Sun et al., 2020). SecG belongs to the accessory Sec system

(Bandara et al., 2016), and deleting member secA2 of the Sec

system caused a substantial reduction in biofilm formation.

According to research, Asp5, which is necessary for early stage
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biofilm formation in Streptococcus gordonii, is homologous to SecG

which indicated a similar SecG function (Takamatsu et al., 2005;

Bandara et al., 2016). In addition, gene csrA plays an important role

in biofilm formation by E. coli (Jackson et al., 2002) and yifE is

involved in biofilm formation (https://www.uniprot.org/uniprotkb/

P0ADN2/entry).
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4 Discussion

In this work, we provided a comprehensive database for biofilm

research, which could be an infrastructure for the biofilm research

community. In addition, we developed a predictor assisting

researchers to explore potential biofilm-associated proteins.
A B
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C

FIGURE 4

Multi-omics Data mining. (A) The number of DEGs of 15 Human microbial pathogens, and the proportion of DEGs to the number of genes in the
bacterial genome. (B) Summary of ‘Top 5% differentially expressed genes’ from 14 different bacteria species. BBSdb calculates the numbers of the
experimental condition of each gene when differentially expressed in experiments, and ranks the corresponding gene by the calculated number of
experimental conditions. The first number represents “Top 5% differentially expressed genes”, the second number represents the number of experiments
associated with the biofilm phenotype and the third number represents “Threshold-based DEGs”. (C) A multi-omics combined analysis between
transcriptomics and proteomics to obtained shared genes (proteins) from 4 different bacteria species, including E.coli, Staphylococcus aureus,
Pseudomonas aeruginosa and Bacillus subtilis. (D) The overlapping analysis between above-mentioned shared genes. (E) STRING, GO, KEGG analysis.
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However, several questions remain to be addressed. For example,

the BBSdb database only collected bacterial proteomes through

Supplementary Materials in literature without collecting,

processing, and analyzing the original bacterial proteome data in

public databases such as PRIDE (Perez-Riverol et al., 2022).

Regarding the existence of multiple post-transcriptional

regulation, proteomes will provide useful information for
Frontiers in Cellular and Infection Microbiology 09
researchers, therefore more proteomes should also be integrated

in the BBSdb.

Biofilm-associated proteins are participating in the biofilm

formation process of their respective bacteria referring to previous

research (Lasa and Penadés, 2006). In this study, we defined

biofilm-associated protein as those that have been reported in the

literature and validated experimentally as components of the
A B

D

E

C

FIGURE 5

Case study. (A) The number of DEGs in Experiments 1, 2, and 3 of 3 RNA-seq experiments for E. coli were 604, 1475, and 2217, respectively (B) The
shared and specific DEGs of 3 RNA-seq experiments for E. coli. (C) The analysis of protein-protein interaction (PPI) interaction networks for 173 shared
genes obtained from 3 RNA-seq experiments. (D) Top 500 DEGs were obtained by differentially expressed analysis for each RNA-seq experiment, then,
up-regulated genes were retained to screen out overlapped up-regulated genes of three experiments. (E) Same as above, the down-regulated genes
were retained to screen out overlapped down-regulated genes of three experiments.
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biofilm structure or involved in the regulation of biofilm

development. In practical applications, we need to take into

account the differences between different biofilm model systems

and many other factors, such as the duration of the experiment and

the specific strain, in order to obtain condition-dependent biofilm-

associated proteins (Edel et al., 2019; Flemming et al., 2023). These

proteins can effectively explain the diversity of mechanisms in

bacterial biofilm development. In addition, homologous genes

and proteins of different bacteria species can perform different

functions, it is necessary to develop a bacteria-specific predictive

model for better guiding practice in the next release.

In the future, other questions also remain to be addressed,

including the long-term maintenance and update of BBSdb and

improvement of predictive ability upon big data accumulation.
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