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with men: a review
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2School of Medicine, Southern University of Science and Technology, Shenzhen, China
Co-infection with human immunodeficiency virus (HIV) significantly increases

the incidence of human papillomavirus (HPV) infection and HPV-related cancers

among men who have sex with men (MSM). Conversely, HPV infection can also

influence HIV acquisition rates. HIV-induced immune suppression may affect

chromosomal stability, gene expression, protein function and other molecular

components in MSM with HPV-related cancers. Additionally, HIV infection also

alters cellular mechanisms by compromising immune responses and epithelial

integrity. In this review, we reviewed the influence of HIV on specific HPV-related

cancers in MSM, including oropharyngeal squamous cell carcinoma, penile

cancer, and anal cancer. We integrated epidemiological data from the past five

years and discussed diagnosis and treatment strategies. Overall, our review offers

crucial insights into the underlying molecular and cellular mechanisms of these

co-infection MSM patients. Our review aims to assist future research in

developing effective treatment strategies for MSM with HIV/HPV co-infection.
KEYWORDS
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1 Introduction

Human papillomavirus (HPV) is a widespread DNA virus with considerable public

health consequences, accounting for nearly all cases of cervical cancer and a significant

portion of other anogenital and oropharyngeal cancers (Ranjit et al., 2020). HPV has a

prevalence of over 20% in men and accounts for 2% of male cancer cases (Ventimiglia et al.,

2016). It is transmitted through sexual contact, skin-to-skin contact, and by infecting

infants during delivery. Among them, sexual transmission is the most common way of

transmission, primarily through vaginal and anal mucosa (Burchell et al., 2006),

highlighting the significant cancer risk associated with men who have sex with men (MSM).

HPV can be classified into low-risk HPV (LR-HPV) and high-risk HPV (HR-HPV)

according to its oncogenic potential (Handisurya et al., 2009). LR-HPV, including subtypes

6, 11, 42, and 43, is mainly associated with the formation of genital warts and may also
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cause warts in the oral cavity and throat area. HR-HPV subtypes,

encompassing HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, and 59,

can lead to intraepithelial lesions and a range of HPV-related

cancers, including cervical, oropharyngeal, penile, and anal

cancers. Among these, HPV 16 and HPV 18 are the most

carcinogenic (de Sanjose et al., 2018).

The HPV genome consists of three major regions. The long

control region (LCR) is a non-coding region that regulates viral

replication and transcription. The other two regions encode eight

open reading frames (ORFs), including six early ORFs and two late

ORFs. Early ORFs produce E1, E2, E4, E5, E6, and E7, which are

involved in viral replication and tumorigenesis. The late ORFs are

L1 and L2, which encode viral capsid proteins (Molina et al., 2024).

HPV can invade the damaged epithelium, replicates extensively

within it. Along with the amplification of HPV and cell division,

resulting in a large number of cells becoming infected with HPV

(Graham, 2017).

Persistent HR-HPV infection may lead to the development of

cancer (Brickman and Palefsky, 2015). Due to the special

physiological structure of the foreskin, men are more susceptible

to HPV infection. In a study of 379 adult males, HPV infection rates

varied by anatomical site and circumcision status. Uncircumcised

men have higher rates of HPV in the glans or corona, as well as

increased risk of oncogenic HPV and multiple HPV type infections

(Hernandez et al., 2008). The excessive foreskin or phimosis, the

inner foreskin and glans penis create a warm, humid, and anaerobic

environment. This condition facilitates the proliferation of various

anaerobic bacteria and viruses, including HPV (Mehta et al., 2021).

Human immunodeficiency virus (HIV) mainly invades CD4+T

lymphocytes and destroys the host immune system, causing

acquired immune deficiency syndrome (AIDS) (Deeks et al.,

2015). HIV-1 and HIV-2 share similarities in genetic

arrangement, transmission, replication, and clinical outcomes,

both leading to AIDS. Although HIV-2 is less contagious and less

likely to progress to AIDS, with its prevalence primarily confined to

West Africa (Nyamweya et al., 2013), both HIV-1 and HIV-2

significantly influence HPV infection. Specifically, the incidence

of HR-HPV is nearly doubled in HIV-positive individuals, with a

pooled RR of 2.20 and a 95% confidence interval (CI) of 1.90 to 2.54,

while the clearance rate of HPV is approximately halved, with a

pooled RR of 0.53 (95% CI: 0.42 to 0.67) (Looker et al., 2018). HIV-
Abbreviations: HPV, Human papillomavirus; HIV, Human immunodeficiency

virus; MSM, Men who have sex with men; OPSCC, Oropharyngeal squamous cell

carcinoma; LR-HPV, Low-risk HPV; HR-HPV, High-risk HPV; AIDS, Acquired

immune deficiency syndrome; LOH, Chromosomal heterozygous deletion; MSI,

Microsatellite instability; HAART, Highly active antiretroviral therapy; CMI,

Cell-mediated immune; Trm, Resident memory T; MHC-1, Major

Histocompatibility Complex I; DCs, Dendritic cells; LC, Langerhans cells; CRT,

Chemoradiotherapy; HC, Hybrid capture; NAC, neoadjuvant chemotherapy;

ILND, Inguinal lymph node dissection; PLND, Pelvic lymph node dissection;

NCCN, National Comprehensive Cancer Network; EAU, European Association

of Urology; 5-FU, 5-fluorouracil; ICB, Immune checkpoint blockade; TIL, Tumor

infiltrating lymphocytes; CAR-T, Chimeric antigen receptor T cell; TCR, T cell

receptor; SCCA, Squamous cell carcinoma of the anus; HGAIN, High-grade anal

intraepithelial neoplasia; PrEP, Pre-exposure.
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positive MSM face a higher risk of HPV infections. An analysis

enrolled 1,559 participants, including 300 HIV-positive MSM, 600

HIV-negative MSM, and 659 MSW (men who have sex with

women), with HPV prevalence rates of 62.0%, 53.7%, and 8.3%,

respectively (p < 0.001) (Bai et al., 2024).The incidence of HPV-

related lesions and malignant cancers in individuals infected with

HIV is significantly higher than in individuals not infected with

HIV. A meta-analysis of 34 studies among Chinese MSM found

high rates of multiple HPV infections in anogenital warts: 75.9% in

HIV-positive and 41.7% in HIV-negative individuals (Zhou et al.,

2021). A study identified 502 HPV-related cancers in HIV-positive

Hispanics across 864,067 person-years. Excluding oropharyngeal

cancer, the risk of HPV-related cancers was higher in HIV-infected

patients than in the general population, with SIRs ranging from 3.59

for cervical cancer to 18.7 for anal cancer in men (Ortiz et al., 2018).

HPV infection occurring before HIV can also impact HIV

acquisition rates. A meta‐analytic systematic review of 14

publications showed HIV incidence was almost doubled (pooled

RR = 1.91, 95% CI 1.38 to 2.65) in the presence of prevalent HPV

infection (Looker et al., 2018). Understanding the bidirectional

relationship between HIV and HPV is essential for effective

prevention and treatment strategies for both infections.

In this review, we summarized the molecular mechanism of

HIV affecting HPV carcinogenesis from chromosome, gene

expression and protein levels (Figures 1, 2). We further elaborate

on the mechanisms of immune cell heterogeneity in the

immunological microenvironment where HIV infection is prone

to be complicated by HPV infection (Figures 3, 4). Additionally, we

collected epidemiological data from the past 3-5 years including

anal cancer, penile cancer, and head and neck cancer. This data was

scrutinized to identify the connections between HIV-positive MSM,

HPV infection, and the associated cancers. We also categorized the

diagnosis and treatment, and HPV vaccines for HPV-related

cancers , offer ing insights for future prevent ion and

intervention strategies.
2 Manuscript formatting

2.1 Alterations at the molecular level of
HPV-related cancers by HIV Infection

2.1.1 HIV/HPV co-infection enhances
chromosomal instability

Loss of heterozygosity (LOH) of chromosomes and microsatellite

instability (MSI) are important mechanisms leading to the

inactivation of tumor suppressor genes (Edelmann et al., 2004). In

cervical cancer, HPV can induce LOH/MSI at the DNA HLA-I locus,

which is exacerbated when co-infected with HIV-1. A study revealed

a significantly higher frequency of LOH/MSI at the HLA-I locus on

chromosome 6p21.21 in HIV-1/HPV co-infected tumor DNA

compared to HIV-1 seronegative patients (Chambuso et al., 2019).

In addition, the integration of HPV genes in the host leads to

chromosomal genetic changes, including chromatin reorganization

and chromosome rearrangement (Li et al., 2019; Singh et al., 2024).

The E6 and E7 proteins encoded by the HPV genome have been
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shown to lead to host chromosomal instability (Duensing and

Münger, 2002). HIV infection can increase the expression of HPV

E6 and E7 proteins (Tornesello et al., 2008), thus leading to host

chromosomal instability. This mechanism will be further discussed in

section 3.1.2. On the other hand, the current mainstay of treatment

for HIV is highly active antiretroviral therapy (HAART), which

includes some drugs, such as AZT, that have properties that may

lead to DNA damage (Palefsky, 2006). Therefore, HIV/HPV-co-

infected individuals treated with HAART may be at increased risk of

chromosomal instability and, thus, more susceptible to cancer. In

conclusion, HIV/HPV co-infection leads to chromosomal instability

and increase the risk of HPV-related cancers.
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2.1.2 Interactions between HIV and HPV genes
The integration of HPV DNA into the host cell genome is a key

event leading to abnormal proliferation and malignant progression

in HPV-mediated carcinogenesis (McBride and Warburton, 2017).

E6 and E7, two viral oncogenes that interfere with the pathways

regulated by p53 and other members of the pRB family, are the

primary cancer suppressor genes that cause neoplastic conversion

(Chow, 2015). E6 inactivates p53, which is a transcription factor

regulating the expression of genes encoding cell cycle, DNA repair

mechanisms, metabolism, and apoptosis (Hafner et al., 2019). E7

inactivates pRb, keeping infected cells in a proliferative state. As a

result, the continued activity of the E6 and E7 proteins leads to
FIGURE 2

Diagram of Alterations at the molecular level of HPV-related cancers by HIV Infection (HIV infection can affect HPV-related tumor progression at the
chromosomal, gene expression, and protein levels, and vice versa. LOH, Chromosomal heterozygous deletion; MSI, Microsatellite instability; HAART,
Highly active antiretroviral therapy).
FIGURE 1

The carcinogenic progression of HPV-associated tumors resulting from HIV/HPV co-infection, including molecular and cellular mechanisms.
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abnormal cell proliferation, the accumulation of oncogene

mutations, and eventually HPV-related cancers (Faraji et al., 2017).

HIV proteins Tat, Vpr and Rev participate in HPV-related

pathogenesis and increase the risk of HPV-associated cancers by

affecting HPV gene expression (Nyagol et al., 2006). Tat encodes a

transcription activator protein that can activate the HPV LCR and

increase the expression of HPV E6, E7, E1, and L1 (Nyagol et al.,

2006; Kim et al., 2008; Tornesello et al., 2008). Studies have shown

that HIV-1 Tat1 protein can significantly upregulate HPV 16 gene

expression by enhancing the activity of HPV 16 upstream
Frontiers in Cellular and Infection Microbiology 04
regulatory region and its associated promoter (P97) (Vernon

et al., 1993). Rev protein can increase HPV L1 gene expression by

overcoming post-transcriptional inhibition. HPV-16 L1 gene

expression is inhibited by specific sequences on mRNA. Rev

protein can bind to the Rev-responsive element (RRE) on mRNA

and effectively increase the expression of HPV L1 (Zheng and

Baker, 2006). Vpr and E6 are linked in cell cycle signaling pathways.

Cervical cancer cells are susceptible to HIV-1 vpr-induced cell cycle

arrest, while coexpression of HPV-16 E6 exacerbates this effect (Toy

et al., 2000). Currently there are no other studies on possible
FIGURE 4

Diagram of Alterations at the cellular level of HPV-related cancers by HIV Infection (HIV-related immunosuppression, involving immune cells such as
T cells, DCs/LCs, NK cells and Macrophages, can delay HPV clearance and increase cancer risk by reactivating or sustaining HPV infection. HIV
damages epithelial tight junctions, facilitating HPV penetration and promoting HPV-related cancers).
FIGURE 3

HIV infection promotes HPV infection. (HIV infection can disrupt epithelial tight junctions, thereby facilitating initial HPV infection. HPV enters
epithelial basal cells with the help of surface proteins that bind to cellular receptors. The incorporation of HPV DNA into the host cell genome
promotes abnormal cellular proliferation and differentiation).
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interactions between HPV and other HIV genes and the proteins

they encode. While data are limited, studies suggested that the

weakened immune response caused by HIV allows HPV-related

diseases such as high-grade intraepithelial neoplasia to persist,

providing time for genetic changes that lead to cancer progression

(Palefsky, 2006).

HPV infection can also affect HIV gene expression: some

studies reported that extracellular vesicles secreted by HPV-

infected cervical cancer cells can enhance HIV-1 replication

through oxidative stress pathways, suggesting that HPV infection

could make cervical cancer cells more susceptible to HIV and

facilitating a potential vicious cycle of synergistic expression

between HIV and HPV (Ranjit et al., 2020).

2.1.3 HIV infection affects protein activity in HPV
infection pathways

p53 is a pro-apoptotic tumor suppressor factor, controlling cell

proliferation, senescence, DNA repair, and cell death in cancer

(Mao and Jiang, 2023). In cervical cancers induced by HR-HPV,

p53 is degraded by HPV protein E6 (Martinez-Zapien et al., 2016).

Current research indicates that extracellular HIV-1 Tat protein can

be taken up by human cervical cancer cells, followed by an increase

in the expression of HPV E6 protein and a decrease in the levels of

the cellular suppressor protein p53 (Barillari et al., 2016). The

impact of HIV on p53 may due to the activation of cellular

pathways that are different from those in HIV-negative lesions;

however, no studies currently exist, and more research and further

validation is needed. HIV/HPV co-infection significantly increases

VEGF and p27 expression (Nicol et al., 2008). VEGF serves as an

early indicator of cervical cancer development (Branca et al., 2006),

while p27, a cyclin-dependent kinase (CDK) inhibitor, is crucial for

cancer prognosis in various cancer types (Tjalma et al., 2005).

ADAR1, an adenosine deaminase, regulates RNA editing and its

dysregulation may contribute to cancer. A genetic study in HPV/

HIV co-infected individuals found ADAR1 variants linked to HPV

relapse (Pujantell et al., 2019).

It is known that HPV-infected patients have increased

expression of IL-6 and TNF-a, and HIV infection may further

enhance the carcinogenicity of HPV through the expression of pro-

inflammatory cytokines such as IL-6 and TNF-a (Nicol et al.,

2005a). Another study found that HIV/HPV co-infection was

more predictive of a predominance of type 2 cytokines (IL-4, IL-

10 and IL-6) compared to HPV-monoinfection (Behbahani et al.,

2007). This shift of cytokines weakens the immune response to

HPV-related cancers. Type 1 cytokines (IL-2, IFN-g) enhance

cellular and humoral immunity, leading to better clinical

outcomes in HPV-related cancers. In contrast, Type 2 cytokines

(IL-4, IL-10, IL-6), more prominent locally or peripherally, are often

associated with humoral immune responses and suppress cell-

mediated immune responses, which may promote the

development of cervical squamous intraepithelial neoplasia (SIL)

and change cancers (Nicol et al., 2005a). Cyclooxygenase-2 (COX-

2) is an enzyme that plays a crucial role in inflammation and pain

by catalyzing the conversion of arachidonic acid into
Frontiers in Cellular and Infection Microbiology 05
prostaglandins. HPV proteins E6 and E7 can trigger the

transcription of COX-2 (Subbaramaiah and Dannenberg, 2007).

In cervical intraepithelial neoplasia (CIN) and cervical cancer,

COX-2 is overexpressed and associated with poor prognosis

(Sales et al., 2001). The combination of HIV infection may

increase the carcinogenic risk of HPV-related lesions and tumors

by inducing COX-2 levels. Research shows patients with HIV/HPV

co-infection and squamous intraepithelial neoplasia have higher

levels of COX-2 in their cervical cells than those infected only with

HIV (Fitzgerald et al., 2012).

In addition, HIV infection activates signaling pathways

associated with epithelial-mesenchymal transition (EMT), which

increases the proliferative and metastatic capabilities of epithelial

cancer cells, thus promoting the development and metastasis of

cancer in the context of HIV/HPV coinfection (Tugizov, 2016).

Research demonstrated that exposure to HIV-1 gp120 and tat or

cell-free virions in HPV-immortalized epithelial cells results in the

disruption of epithelial junctions, which initiates the EMT. This

transition is a significant contributor to tumorigenesis. The

transforming growth factor-beta (TGF-b) signaling pathway

serves as the principal canonical network governing EMT in

cancer contexts, which is predominantly regulated by the

transcription factor in response to mitogen-activated protein

kinase (MAPK) signaling. Inhibition of the MAPK and TGF-b
pathways has been found to prevent EMT triggered by HIV-1 in

oral epithelial cells, potentially leading to new treatment methods

for cancers linked to HIV/HPV coinfection (Tugizov, 2016).
2.2 Alterations at the cellular level of HPV-
related cancers by HIV infection

2.2.1 Immune cells
HIV-infected patients may reactivate or sustain an HPV

infection due to immune system suppression, which delays HPV

clearance and raises the probability of cancer (Frisch et al., 2000;

Mooij et al., 2016). HIV-related immunosuppression primarily

involves a variety of immune cells, CD4+ T cells, CD8+ T cells,

dendritic cells (DCs), natural killer (NK) cells and macrophages.

HIV infection causes a decrease in CD4+ T cells, which

subsequently reduces the amount of immune cells in the body

and exacerbates immunosuppression (Petry et al., 1994). Low CD4+

cell counts impair the immune system’s ability to clear HR-HPV

infections, due to the lack of effective signaling for a robust cytotoxic

response and increase the incidence of HPV-related cancers

(Chaturvedi et al., 2009; Hewavisenti et al., 2023). Consequently,

HIV-infected individuals experience reduced host clearance of HPV

and relatively undisturbed epithelial growth, contributing to the

progression of HPV-related cancers (Frisch et al., 2000). Several

studies have also shown that failure to develop an effective cell-

mediated immune (CMI) response leaves HPV-positive individuals

vulnerable to persistent infection and increases the probability of

progression to invasive carcinoma. HPV-infected keratinocytes

downregulate their innate immune signaling pathways, leading to
frontiersin.org
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a failure in the release of proinflammatory cytokine, particularly

type I interferons. Moreover, there are insufficient or absent signals

for the activation and migration of langerhans cells (LCs), as well as

for the recruitment of macrophages and stromal dendritic cells

(DCs) (Stanley, 2012). The loss of CMI response control over HPV-

infected keratinocytes began when CD4+ levels were significantly

higher than 200/mL (Frisch et al., 2000). Additionally, the helper T

cell function may be compromised by the functional deficit with

reduced expression of IL-2, IFN-g, and IL-4 in HIV-infected

patients (Nicol et al., 2005b; Dhasmana et al., 2008). Th2

phenotype may predominate in the immune response. This shift

may result in an inadequate cellular immune response necessary for

clearing HPV infections, making co-infected individuals more

susceptible to persistent HPV (Mahnke et al., 2012). In addition

to supporting tissue homeostasis and immune defense, resident

memory T (Trm) cells exert antimicrobial and anticancer properties

(Gebhardt et al., 2018). Studies have revealed that CXCR3+ CD4+ T

cells were critical in preventing persistent HPV infection and cancer

progression (Bodily and Laimins, 2011; Hickman et al., 2015), while

CXCR3+ CD4+ Trm cells were irreversibly depleted in patients with

advanced HIV disease (Saluzzo et al., 2021). The irreversibly

depleted cells may impede HPV control, which in turn increased

cancer risk. Although HIV may accelerate the growth of HPV-

related cancers by reducing CD4+ T cells, this mechanism is still up

for debate. Several studies have shown that high CD4+ T cell counts

did not significantly reduce HPV incidence. Reactivation of a latent

infection and recent sexual encounter were two possible causes of

incident infections (Critchlow et al., 1998). Poor immune

management of precancerous lesions may also encourage the

development of cancer (Palefsky and Holly, 2003), while HIV-

mediated immunosuppression may not always result in late

progression to invasive cancer. The progression of anogenital

carcinoma in situ may be depend on the accumulation of extra

genetic damage which occurs more quickly in rapidly proliferating

epithelial cells with defective cell cycle regulation (Critchlow et al.,

1995). These findings emphasized the complex immunologic

relat ionship between HIV infection and HPV-related

cancer development.

The removal of HPV-infected epithelial cells and the regression

of lesions caused by infection may be aided by T lymphocytes,

especially cytotoxic T lymphocyte activation (Chihu-Amparan

et al., 2023). HPV oncoproteins E6 and E7 are presented by

major histocompatibility complex I (MHC-1), rendering infected

cells vulnerable to assault by CD8+ T lymphocytes (Scott et al.,

2001). HIV-induced chronic inflammation depletes CD8+ T cells by

up-regulating PD-1 expression, weakening the anti-cancer response

(Bushara et al., 2022). Cervical biopsies from HIV-positive women

show an increase in CD8+ T cells, however, most of these cells are

CD45RO+ and lack CD57 markers, which reduces their capacity for

cytolysis (Olaitan et al., 1996). High levels of type 2 cytokines

induced by HIV infection also diminish CD8+ T cell function (Kim

et al., 2008). CD8+ Trm is highest in the epidermis, but patients with

advanced HIV develop irreversible CD8 Trm cell dysregulation,
Frontiers in Cellular and Infection Microbiology 06
which may be one of the important reasons for the cancer

susceptibility environment (Saluzzo et al., 2021).

Dendritic cells, particularly langerhans cells capture antigens

and stimulate T cells to initiate an immune response. HIV affects

their ability to stimulate T cells by inhibiting the release of cytokines

like IL-12, lowering DC density, attenuating DC maturation, and

deducing MHC molecule expression (Pachiadakis et al., 2005;

Guimarães et al., 2011). In addition, disturbances in the

measurement and/or characterization of LCs could potentially

impede the immunological monitoring of HPV-related cervical

lesions (Hubert et al., 2001), hence contributing to the local and

systemic immune responses to HPV-induced cancers (Wright-

Browne et al., 1997; Hachisuga et al., 2001).

In HIV-positive individuals, NK cell function is impaired, with

a shift towards dysfunctional CD56- NK cells. The cells exhibit

diminished cytotoxic capabilities and impaired cytokine production

(Mavilio et al., 2005). This dysfunction correlates with the plasma

HIV load (Bere et al., 2014), and weakens the immune system’s

overall antiviral response, facilitating persistent HPV infections.

Additionally, DCs functioning is impaired during acute HIV

infection, producing fewer IL-12, 15 and -18, and lowers IFN-g
produced by NK cells, which retrospectively results in poor DC

maturation. Poor crosstalk between DCs and NK cells, leads to

weakened, non-specific and abnormal immunity, resulting in poor

control of opportunistic infections like HPV (Hens et al., 2016).

Macrophages, like CD4+ T cells, serve as the primary target cells

for HIV and facilitate in the virus’s dissemination throughout the

body. HIV infection significantly alters the body’s immune response

to HPV infection, as evidenced by a decrease in the local CD68

population, and by affecting the expression of IL-6, IFN-g, and
TNF-a by macrophages. These changes collectively contribute to

the cancer progression (Nicol et al., 2005c).

2.2.2 Epithelial cells
A stratified squamous epithelium covers the mucous

membranes of the oral cavity, cervix, and genital tract. It forms

tight junctions, maintains morphology and physiological function,

and acts as a physical barrier against infection (Sufiawati and

Tugizov, 2014). HIV can damage epithelial tight junctions by

interacting with mucosal epithelial cells through its envelope

proteins gp120 and Tat (Tugizov, 2016). Following this

interaction, HPV reaches the basal cell layer, where the life cycle

of HPV infection begins. This mechanism not only enhances the

penetration of HPV pseudoviral particles into the epithelium and

causes an initial HPV infection, but it also facilitates the entry of

HPV into the mucosal epithelium and promotes the development of

HPV-related cancers. It may have been due to inflammatory factors

such as tumor necrosis factor-a and TGF-b, as well as calcium

mucus proteins and tightly linked proteins, which have been

adjusted to the upper membrane cells after HIV infection

(Hewavisenti et al., 2023). In addition, it was discovered that in

approximately 60% of HIV-infected patients, epithelial junctions in

the oral and anal mucosa epithelial tissues were disrupted, thereby
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confirming the role of HIV in amplifying the oncogenic potential of

HPV (Tugizov et al., 2013).
2.3 Epidemiology, diagnosis and treatment
of HIV and HPV co-infection

2.3.1 Oropharyngeal squamous cell carcinoma
HPV is thought to be responsible for approximately 70% of

oropharyngeal squamous cell carcinoma (OPSCCs) (Brickman et al.,

2019). According to the global statistics reported in 2021, the

percentage of HPV-positive OPSCCs was 33%, with significant

regional variations in prevalence, ranging from 0% to 85%

(Carlander et al., 2021), and men were far more likely than women

to develop HPV-positive OPSCCs due to sexual behavior and number

of sexual partners (Lechner et al., 2022).Furthermore, HIV-positive

MSM patient are 1.5 to 2 times more likely to be infected with HR-

HPV types or even have OPSCCs than HIV-negativeMSM. The global

prevalence of oral/oropharyngeal HPV infection in men was about 5%.

Additionally, the overall prevalence of oral HPV infection was found to

be 17.3% (95% CI: 13.6%-21.7%) in 9619 MSM from 14 different

countries in the world, with a larger prevalence range of 3.8%-81.9% (p

< 0.01). Furthermore, HIV-positive MSM had a greater pooled

prevalence of oral HPV than HIV-negative MSM (22.5% vs. 14.5%;

p = 0.1) (Farahmand et al., 2021). HPV 16, the most common HPV

genotype in OPSCCs (Lechner et al., 2022), and the prevalence of HPV

16 was higher among HIV-positive MSM (4.7%; 95%CI 2.1–7.3) vs.

3.0%; 95%CI 0.5–5.5) in HIV-negative MSM. Furthermore, the

analysis of 26 publications focusing on MSM concluded that HIV-

positive MSM patients were susceptible to all types of HPV (28.9% vs.

17.1%), especially HR-HPV (16.5% vs. 9.1%) (King et al., 2016;

Rossotti et al., 2024).

According to the UK National Multidisciplinary Guidelines,

clinical examination includes direct flexible endoscopy of the upper

aerodigestive tract and imageological examination, especially PET-

CT and MRI. The former is used to assess the size and respectability

of the primary tumor, while the latter is employed to assess the extent

of lymph node disease and bone invasion and to detect distant

metastases of the lung and liver (Mehanna et al., 2016). Confirmation

of the diagnosis requires routine histopathologic examination, and

immunohistochemistry may be added if necessary. PCR, DNA in situ

hybridization and other methods can be utilized to evaluate the HPV

status (Umudum et al., 2005; Bishop et al., 2012; Holzinger et al.,

2012; Guo et al., 2014; Johnson et al., 2020). The combination of

immunohistochemical staining of p16 and in situ hybridization of

HR-HPV showed acceptable levels of sensitivity (97%) and specificity

(94%) and could be performed using formalin fixed paraffin-

embedded tissue (Lechner et al., 2022). Positive cases can also be

identified by immunocytochemical p16INK4a/Ki67 double staining

(Linxweiler et al., 2015). Treatment options for HPV-related OPSCC

include surgery, radiotherapy, and chemoradiotherapy (CRT) (Lee

et al., 2018; Gillison et al., 2019; Mehanna et al., 2019). Surgery

includes open surgery and minimally invasive surgery, the latter

mainly including transoral laser microsurgery and transoral robotic

surgery (Lechner et al., 2022). Early (T1-T2, N0) OPSCCs can be

treated with primary surgery or radiation therapy alone. Locally
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advanced (T3-T4, N0 and T1-T4, N1-N3) OPSCCs require

multimodal treatment, including pre-operative surgery followed by

RT or CRT, or eventual CRT, depending on pathological findings

(surgical margin, extratodular extension) (Bozec et al., 2021). Three-

weekly (100 mg/m²) cisplatin-based concurrent CRT should be the

standard of care for patients with locally advanced HPV-related

OPSCC (Gillison et al., 2019; Mehanna et al., 2019). Additionally,

immunotherapy (Vermorken et al., 2008; Fakhry et al., 2014; Ferris

et al., 2016) and HPV vaccination (Berenson et al., 2022) are also

therapeutic and preventive tools. In two prospective studies, the anti-

EGFR monoclonal antibody cetuximab has been investigated as an

alternative to cisplatin to reduce the risk of treatment-related toxicity

and morbidity. The anti-PD-1 antibodies nivolumab and

pembrolizumab were first approved by the FDA in 2016 for

patients with metastatic platinum-resistant OPSCC. Several

therapeutic vaccines targeting the E6 and/or E7 have entered

clinical trials in HPV OPSCC patients (Lechner et al., 2022). The

prognosis for HPV-positive OPSCC is good, but 10-25% of patients

will relapse. The National Comprehensive Cancer Network

recommends screening every 1 to 3 months during the first year,

every 2 to 6 months in the second year, every 4 to 8 months until the

fifth year, and then annually thereafter. HPV DNA has proven to be a

useful biomarker for monitoring disease status after treatment (Ellis

et al., 2021).

2.3.2 Penile cancer
Based on the statistics, the incidence of penile cancer worldwide

was expected to be 0.8/100,000 in 2020, with Asia accounting for

56.3% of total cases (Sung et al., 2021). Furthermore, HPV is

responsible for more than 75% of penile intraepithelial neoplasia

and over 50% of penile cancers. According to the results of a recent

meta-analysis, the overall pooled prevalence of penile HPV infection

in MSM was 36.2% (95% CI:29.1%-44.0%), and the most frequent

HR-HPV types in the penis were HPV 16 (4.9%, 95% CI: 3.6%–6.7%)

and HPV 18 (3.2%, 95% CI: 2.4%–4.0%). Furthermore, HIV status

increases the risk of penile HPV infection. According to the statistics,

the pooled prevalence of penile HPVwas substantially higher in HIV-

positive MSM than it was in HIV-negative MSM (45.4%, 95% CI:

35.2%–56.0% vs. 28.6%, 95% CI: 19.4%–39.9%, respectively; p = 0.02)

(Farahmand et al., 2020). HIV infection, as an independent risk

factor, had a higher risk of penile cancer (RR = 3.7-5.8, three studies;

SIR = 3.8-11.1, four studies) and had a four-fold increased risk of

death. Additionally, progression from intra-epithelial neoplasia to

cancer occurs 6 years earlier in HIV-positive men compared to HIV-

negative men (Amini et al., 2023).

Penile cancer can be diagnosed by detecting HPVDNAusing PCR,

hybrid capture (HC) and 5% acetic acid. The first two methods

demonstrate good sensitivity and correlation, while penoscopy has

good specificity but low sensitivity (Figliuolo et al., 2012). The key to

confirming the diagnosis is biopsy, and prognostic factors such as tissue

subtype, grading, and cancer staging affect the outcome. Lymph node

evaluation has important prognostic value and is closely related to the

selection of adjuvant chemotherapy (Hakenberg et al., 2018).

Treatment of penile cancer includes surgery, radiotherapy,

chemotherapy, and immunotherapy. Local immunotherapy,

chemotherapy, and laser ablation for in situ penile cancer
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(Manjunath et al., 2017). For patients with locally advanced penile

cancer, and for those with fixed inguinal lymph nodes confirmed by

biopsy, large >4 cm, bilateral and/or positive pelvic lymph nodes,

neoadjuvant chemotherapy (NAC) is recommended, followed by

surgical lymph node treatment, including inguinal lymph node

dissection (ILND)/pelvic lymph node dissection (PLND). The

preferred NAC standard schemes are four cycles of paclitaxel,

ifosfamide, and cisplatin. These have been recommended by the

National Comprehensive Cancer Network (NCCN) and European

Association of Urology (EAU) guidelines (Chadha et al., 2022). In

the case of locally advanced cancer, current NCCN guidelines

recommend adjuvant chemotherapy in the form of TIP or 5-

fluorouracil (5-FU) for patients who do not receive first-line NAC

and exhibit ≥2 positive lymph nodes or extratodular expansion at

ILND. For penile cancer patients with distant metastatic disease, the

NCCN recommends chemotherapy as first-line treatment, using either

the TIP or 5-FU plus cisplatin, followed by surgery or salvage systemic

therapy for responders (Joshi et al., 2022a). Immunotherapy includes

immune checkpoint blockade (ICB), HPV vaccines, adoptive T-cell

therapies and engineered T-cell therapies, as well as tyrosine kinase

inhibitors and other targeted therapies (Joshi et al., 2022b). In penile

cancer, ICB is performed with anti-PD-L1, anti-PD-1, or anti-CTLA4

drugs. However, ICB approval is limited to second-line therapy for

patients with relapsed or metastatic disease. Adoptive T-cell therapies

to enhance T-cell-mediated tumor destruction, such as tumor

infiltrating lymphocytes (TIL) therapy, chimeric antigen receptor T

cell (CAR-T) therapy and engineered T cell receptor T cell (TCR)

therapy. At present, the application of these therapies in the treatment

of penile cancer remains in the research and exploratory stages.

Current Phase I trials demonstrate the safety and efficacy of HPV

targeting E6 or E7 cancer proteins. In terms of targeted therapy, anti-

EGFR, and pan-HER TKI agents may be viable options for patients

who are not candidates for standard of care combination

chemotherapy or for those who have undergone platinum

chemotherapy (Chadha et al., 2022).

2.3.3 Anal cancer
Anal cancer accounts for approximately 2% of all intestinal

mucosal malignant tumors. HPV infection and immunosuppression

are the main risk factors for anal cancer.HPV-16 accounts for 85% of

total squamous cell carcinoma of the anus (SCCA) (Muresu et al.,

2020). The incidence of SCCA has increased annually over the past few

decades by 2% to 6%, according to studies from high- and middle-

income nations (Deshmukh et al., 2023). Anal cancer is rare in the

general population, but its incidence has increased significantly among

people living with HIV. A ten-year retrospective study conducted in

Rome showed that HIV-positive men were about 1.4 times more likely

to be HPV positive than HIV-negative men (Fracella et al). And Anal

cancer is 19 times more common in HIV-positive patients than in the

general population (Eng et al., 2022). HIV infection reduces the body’s

clearance of HPV. HPV-16 clearance is about 1.6 times higher in HIV-

negative MSM compared to HIV-positive MSM (Wei et al., 2023).

Diagnosing anal cancer involves history-taking, clinical recognition,

biopsy, and MRI/CT. Recommended tests include HIV, p16, and HPV
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testing, along with PET-CT scans (Glynne-Jones et al., 2010). Screening

methods for HIV patients include fingerprinting, anal Pap smear, HPV

genotyping, and high-resolution anoscopy (Santorelli et al., 2018).

Standard therapy involves chemoradiotherapy based on mitomycin C/

cisplatin and 5-fluorouracil (Glynne-Jones et al., 2010). However, current

treatments for anal cancer still have limitations. standard anal cancer

treatments, especially in HIV-positive patients with low CD4 counts,

require adjustments due to their toxicity and efficacy (Kauh et al., 2005).

Many new treatment methods, such as targeted therapy, vaccination,

immunotherapy, and photodynamic therapy, are undergoing clinical

trials for the treatment of anal cancer (AC), and promising results have

been achieved in certain indications.

2.3.4 HPV vaccine
HPV vaccines, including bivalent (HPV2), quadrivalent (qHPV),

and nine-valent (9vHPV) offer crucial protection against HPV infection.

While HPV2 targets HPV 16 and 18, qHPV extends coverage to include

HPV 6, 11, 16, and 18. The latest vaccine, 9vHPV, provides protection

against five additional HR-HPV types: 31, 33, 45, 52, and 58.

The Advisory Committee on Immunization Practices (ACIP) has

provided corresponding HPV vaccination recommendations for

different age groups and genders. MSM and individuals with

compromised immune systems, including those infected with HIV,

should receive the vaccine up to the age of 26 (Markowitz et al., 2014).

The Merck Manual emphasizes immunocompromised individuals,

including those with HIV infection, can receive the three-dose series

regardless of their age at the time of the initial vaccination (Savoy, 2024).

Clinical trials have demonstrated that the quadrivalent HPV

vaccine shows good efficacy in males aged 16 to 26. In the early

vaccination group, the incidence of various HPV-related diseases was

significantly reduced, with an incidence rate of 0.0 per 10,000 person-

years for HPV-6 or 11-related external genital warts, which is lower

than the control group’s rate of 137.3. The incidence of external genital

lesions related to HPV-6, 11, 16, or 18 types were also significantly

reduced, with an incidence rate of 0.0 per 10,000 person-years. In high-

risk MSM, the incidence of anal intraepithelial neoplasia or anal cancer

caused byHPV-6, 11, 16, or 18 types decreased from 906.2 to 20.5 cases

per 10,000 person-years (Goldstone et al., 2022).

Vaccination-induced antibody levels are comparable in HIV-

infected patients to the general population, with HIV patients who

have preserved CD4+ T cell counts showing higher HPV antibody titers

(Mugo et al., 2018). Furthermore, the safety of HPV vaccination is better

in HIV-positive MSM, with studies finding that the highest dose of

therapeutic HPV type 16 vaccine administered was demonstrated to be

safe and immunogenic (Gosens et al., 2023). Adding the qHPV vaccine

to a regimen for the treatment of high-grade anal intraepithelial neoplasia

(HGAIN), particularly for HIV-positive MSM aged ≥27 years,

significantly reduces life-cycle costs and increases quality-adjusted life

years (Deshmukh et al., 2015). In addition, dual vaccination targeted at

both HPV and HIV proved to be a highly cost-effective strategy and

being more cost-effective compared to any other pre-exposure (PrEP)

strategy (Moodley et al., 2016). These findings provide helpful scientific

support for the feasibility, efficacy, and application of HPV vaccines in

the context of HIV-positive patients.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1428491
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fcimb.2024.1428491
2.4 Summary and outlook

The impact of HIV on HPV-related cancers in males has been

comprehensively examined in this study. This study elucidates

molecular interactions, cellular regulatory mechanisms, and

epidemiological correlations between HIV and HPV, underscoring

their synergistic roles in cancer progression. It offers insights for

precision therapies and comprehensive control strategies, including

HPV vaccine efficacy assessments for future prevention and treatment.

However, several questions remain to be resolved in the future.

Firstly, research on the interactions between HIV-2 and HPV and

the impact of this co-infection on cancer development is minimal.

Additionally, the long-term effects of HAART therapy on

chromosomal stability in individuals co-infected with HIV/HPV

need further exploration. The molecular pathways by which other

HIV proteins are involved in HPV infection and the development of

related cancers have not been fully elucidated, and the potential

roles of other HIV proteins in the formation of HPV-related cancers

also require investigation. Finally, while HPV vaccines have shown

promising efficacy and safety in HIV-infected individuals, more

long-term studies are needed to confirm these findings and

optimize vaccination strategies, especially the potential benefits of

dual vaccination targeting both HPV and HIV.
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Oswaldo Cruz 100. doi: 10.1590/S0074-02762005000100001

Nicol, A. F., Fernandes, A. T., and Bonecini-Almeida Mda, G. (2005b). Immune
response in cervical dysplasia induced by human papillomavirus: the influence of
human immunodeficiency virus-1 co-infection – review. Mem Inst Oswaldo Cruz. 100,
1–12. doi: 10.1590/S0074-02762005000100001

Nicol, A. F., Fernandes, A. T. G., Grinsztejn, B. G. J., Russomano, F. B., E Silva, J. R.
L., Tristão, A., et al. (2005c). Distribution of immune cell subsets and cytokine-
producing cells in the uterine cervix of human papillomavirus (HPV)-infected women:
influence of HIV-1 coinfection. Diagn. Mol. Pathol. 14, 39–47. doi: 10.1097/
01.pas.0000143309.81183.6c

Nicol, A. F., Pires, A. R. C., de Souza, S. R., Nuovo, G. J., Grinsztejn, B., Tristão, A.,
et al. (2008). Cell-cycle and suppressor proteins expression in uterine cervix in HIV/
HPV co-infection: comparative study by tissue micro-array (TMA). BMC Cancer. 8 (1),
289. doi: 10.1186/1471-2407-8-289

Nyagol, J., Leucci, E., Omnis, A., De Falco, G., Tigli, C., Sanseverino, F., et al. (2006).
The effects of HIV-1 Tat protein on cell cycle during cervical carcinogenesis. Cancer
Biol. Ther. 5, 684–690. doi: 10.4161/cbt.5.6.2907

Nyamweya, S., Hegedus, A., Jaye, A., Rowland-Jones, S., Flanagan, K. L., and
Macallan, D. C. (2013). Comparing HIV-1 and HIV-2 infection: Lessons for viral
immunopathogenesis. Rev. Med. Virol. 23, 221–240. doi: 10.1002/rmv.v23.4

Olaitan, A., Johnson, M. A., MacLean, A., and Poulter, L. W. (1996). The distribution
of immunocompetent cells in the genital tract of HIV-positive women. Aids 10, 759–
764. doi: 10.1097/00002030-199606001-00010

Ortiz, A. P., Engels, E. A., Nogueras-González, G. M., Colón-López, V., Soto-Salgado,
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Pujantell, M., Badia, R., Galván-Femenıá, I., Garcia-Vidal, E., de Cid, R., Alcalde, C.,
et al. (2019). ADAR1 function affects HPV replication and is associated to recurrent
human papillomavirus-induced dysplasia in HIV coinfected individuals. Sci. Rep. 9,
19848. doi: 10.1038/s41598-019-56422-x

Ranjit, S., Kodidela, S., Sinha, N., Chauhan, S., and Kumar, S. (2020). Extracellular
vesicles from human papilloma virus-infected cervical cancer cells enhance HIV-1
replication in differentiated U1 cell line. Viruses 12 (2), 239. doi: 10.3390/v12020239

Rossotti, R., Nava, A., Baiguera, C., Baldassari, L., Moioli, M. C., Fanti, D., et al.
(2024). Oral HPV infection clearance and acquisition after nonavalent vaccination in
men who have sex with men and transgender women: a prospective analysis. Eur. J.
Clin. Microbiol. Infect. Dis. 43, 1847–1854. doi: 10.1007/s10096-024-04887-8

Sales, K. J., Katz, A. A., Davis, M., Hinz, S., Soeters, R. P., Hofmeyr, M. D., et al.
(2001). Cyclooxygenase-2 expression and prostaglandin E(2) synthesis are up-
regulated in carcinomas of the cervix: a possible autocrine/paracrine regulation of
neoplastic cell function via EP2/EP4 receptors. J. Clin. Endocrinol. Metab. 86, 2243–
2249. doi: 10.1210/jcem.86.5.7442

Saluzzo, S., Pandey, R. V., Gail, L. M., Dingelmaier-Hovorka, R., Kleissl, L., Shaw, L.,
et al. (2021). Delayed antiretroviral therapy in HIV-infected individuals leads to
irreversible depletion of skin- and mucosa-resident memory T cells. Immunity 54,
2842–58.e5. doi: 10.1016/j.immuni.2021.10.021

Santorelli, C., Leo, C. A., Hodgkinson, J. D., Baldelli, F., Cantarella, F., and Cavazzoni,
E. (2018). Screening for squamous cell anal cancer in HIV positive patients: A five-year
experience. J. Invest. Surg. 31, 378–384. doi: 10.1080/08941939.2017.1334845

Savoy, M. L. (2024). Human Papillomavirus (HPV) Vaccine Merck Manual
Professional Edition: Merck Manual. Available online at: https://www.merckmanuals.
com/professional/infectious-diseases/immunization/human-papillomavirus-hpv-
vaccine (Accessed October 10, 2024).

Scott, M., Nakagawa, M., and Moscicki, A. B. (2001). Cell-mediated immune
response to human papillomavirus infection. Clin. Diagn. Lab. Immunol. 8, 209–220.
doi: 10.1128/CDLI.8.2.209-220.2001
frontiersin.org

https://doi.org/10.1016/j.ajur.2022.03.006
https://doi.org/10.1038/s41585-022-00617-x
https://doi.org/10.1038/s41585-022-00617-x
https://doi.org/10.3892/ijo_00000064
https://doi.org/10.1371/journal.pone.0157976
https://doi.org/10.1038/s41571-022-00603-7
https://doi.org/10.1016/j.oraloncology.2018.08.001
https://doi.org/10.7150/jca.31450
https://doi.org/10.1002/cncy.v123.4
https://doi.org/10.1002/jia2.2018.21.issue-6
https://doi.org/10.1182/blood-2011-09-380840
https://doi.org/10.21037/tau.2017.06.24
https://doi.org/10.3724/abbs.2023109
https://doi.org/10.1038/nature16481
https://doi.org/10.1073/pnas.0409872102
https://doi.org/10.1371/journal.ppat.1006211
https://doi.org/10.1371/journal.ppat.1006211
https://doi.org/10.1017/S0022215116000505
https://doi.org/10.1016/S0140-6736(18)32752-1
https://doi.org/10.4103/ijstd.ijstd_20_21
https://doi.org/10.1016/j.molmed.2024.05.009
https://doi.org/10.1097/QAD.0000000000000909
https://doi.org/10.1016/j.vaccine.2018.09.059
https://doi.org/10.3390/ijerph17124516
https://doi.org/10.1590/S0074-02762005000100001
https://doi.org/10.1590/S0074-02762005000100001
https://doi.org/10.1097/01.pas.0000143309.81183.6c
https://doi.org/10.1097/01.pas.0000143309.81183.6c
https://doi.org/10.1186/1471-2407-8-289
https://doi.org/10.4161/cbt.5.6.2907
https://doi.org/10.1002/rmv.v23.4
https://doi.org/10.1097/00002030-199606001-00010
https://doi.org/10.1002/cncr.31702
https://doi.org/10.1016/s1473-3099(05)70114-6
https://doi.org/10.1177/154407370601900120
https://doi.org/10.1093/oxfordjournals.jncimonographs.a003481
https://doi.org/10.1093/oxfordjournals.jncimonographs.a003481
https://doi.org/10.1002/ijc.2910570612
https://doi.org/10.1038/s41598-019-56422-x
https://doi.org/10.3390/v12020239
https://doi.org/10.1007/s10096-024-04887-8
https://doi.org/10.1210/jcem.86.5.7442
https://doi.org/10.1016/j.immuni.2021.10.021
https://doi.org/10.1080/08941939.2017.1334845
https://www.merckmanuals.com/professional/infectious-diseases/immunization/human-papillomavirus-hpv-vaccine
https://www.merckmanuals.com/professional/infectious-diseases/immunization/human-papillomavirus-hpv-vaccine
https://www.merckmanuals.com/professional/infectious-diseases/immunization/human-papillomavirus-hpv-vaccine
https://doi.org/10.1128/CDLI.8.2.209-220.2001
https://doi.org/10.3389/fcimb.2024.1428491
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fcimb.2024.1428491
Singh, A. K., Walavalkar, K., Tavernari, D., Ciriello, G., Notani, D., and Sabarinathan,
R. (2024). Cis-regulatory effect of HPV integration is constrained by host chromatin
architecture in cervical cancers. Mol Oncol. (2024) 18 (5), 1189–1208. doi: 10.1002/
1878-0261.13559

Stanley, M. A. (2012). Epithelial cell responses to infection with human
papillomavirus. Clin. Microbiol. Rev. 25, 215–222. doi: 10.1128/CMR.05028-11

Subbaramaiah, K., and Dannenberg, A. J. (2007). Cyclooxygenase-2 transcription is
regulated by human papillomavirus 16 E6 and E7 oncoproteins: evidence of a corepressor/
coactivator exchange. Cancer Res. 67, 3976–3985. doi: 10.1158/0008-5472.CAN-06-4273

Sufiawati, I., and Tugizov, S. M. (2014). HIV-associated disruption of tight and
adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread. PloS
One 9, e88803. doi: 10.1371/journal.pone.0088803

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021).
Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249. doi: 10.3322/caac.21660

Tjalma, W. A. A., Van Waes, T. R., Van den Eeden, L. E. M., and Bogers, J. J. P. M.
(2005). Role of human papillomavirus in the carcinogenesis of squamous cell
carcinoma and adenocarcinoma of the cervix. Best Pract. Res. Clin. Obstet. Gynaecol.
19, 469–483. doi: 10.1016/j.bpobgyn.2005.02.002

Tornesello, M. L., Buonaguro, F. M., Beth-Giraldo, E., and Giraldo, G. (2008).
Human immunodeficiency virus type 1 tat gene enhances human papillomavirus early
gene expression. Intervirology 36, 57–64. doi: 10.1159/000150322
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