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Porcine reproductive and respiratory syndrome (PRRS) is one of the most

economically devastating infectious diseases of pigs globally. The pathogen,

porcine reproductive and respiratory syndrome virus (PRRSV), is an enveloped

positive-stranded RNA virus, which is considered to be the key triggers for the

activation of effective innate immunity through pattern recognition receptor

(PRR)-dependent signaling pathways. Toll-like receptors (TLRs), RIG-I-like

receptors (RLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs)

and Cytoplasmic DNA receptors (CDRs) are used as PRRs to identify distinct

but overlapping microbial components. The innate immune system has evolved

to recognize RNA or DNA molecules frommicrobes through pattern recognition

receptors (PRRs) and to induce defense response against infections, including

the production of type I interferon (IFN-I) and inflammatory cytokines. However,

PRRSV is capable of continuous evolution through gene mutation and

recombination to evade host immune defenses and exploit host cell

mechanisms to synthesize and transport its components, thereby facilitating

successful infection and replication. This review presents the research progress

made in recent years in the study of these PRRs and their associated adapters

during PRRSV infection.
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Introduction

PRRS is a viral infectious disease that causes reproductive

failure in pregnant sows and severe respiratory diseases in pigs of

all ages. It is one of the most significant diseases affecting the global

pig industry (Butler et al., 2014). The first documented cases of

PRRS were reported in the Netherlands in 1991 and in the United

States in 1992 (Wensvoort et al., 1991; Collins et al., 1992). PRRSV

exhibits a number of unique characteristics, such as mutation and

recombination, persistent infection, immunosuppression, and

antibody-dependent enhancement of replication (Liu et al., 2017;

Chen N. et al., 2018). The rapid evolution and mutation lead to the

constant emergence of mutant strains and new strains (Guo et al.,

2019). Furthermore, the humoral and cellular immune responses to

PRRSV infection are delayed and low. Vaccination represents the

primary strategy for the prevention and control of PRRS. However,

the vaccines currently in use exhibit suboptimal immune effects and

low immune protection rates, which preclude the achievement of

complete control of the disease (Han et al., 2017). Therefore, the

development of safe and effective vaccines has become a significant

challenge in this field. In recent years, the search for host proteins

that inhibit PRRSV replication has become the primary focus of

anti-PRRSV research.

The innate immune system plays an important role in the

process of host antiviral infection, acting as the host’s first line of

defense against pathogen invasion. Pathogen associated molecular

patterns (PAMPs) are recognized by host germline-encoded

pattern recognition receptors, including Toll-like receptors

(TLRs), RIG-I-like receptors (RLRs), NOD-like receptors

(NLRs), C-type lectin receptors (CLRs), and cytosolic DNA

receptors (CDRs) (Beutler, 2004; Mair et al., 2014; Chen et al.,

2017). Upon activation, these receptors transmit to the signal

adaptor protein, which then activates the expression of the

transcription factors interferon regulatory factor 3/7 (IRF3/

IRF7) and nuclear factor kB (NF-kB) through a series of

signaling pathways. This induces the production of antiviral

IFN-I and pro-inflammatory cytokines, collectively serving to

resist infection by the pathogen (Liu et al., [[NoYear]]a;

Liu et al., [[NoYear]]b).
Toll-like receptors

TLRs are widely expressed in myeloid cells, including

monocytes, macrophages, granulocytes, and dendritic cells (DCs).

As host PRRs, they play an important role in the recognition of

microbial PAMPs and the subsequent activation of specific

signaling pathways that induce the transcription of inflammatory

and/or anti-inflammatory cytokines (Zhou and Zhang, 2012;

Schlaepfer et al., 2014). TLRs bind as homo- or heterodimers to

the corresponding ligands on the plasma or organelle membrane

and are mainly involved in downstream signaling via two adaptor

proteins, Myeloid differentiation primary response protein 88

(MyD88) and Toll-interleukin-1 receptor (TIR)-domain-

containing adaptor-inducing IFN-b(TRIF) (Gebremeskel et al.,

2021; Liu et al., 2024). The signaling pathway of TLRs can be
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divided into two categories: the MyD88-dependent signaling

pathway and the MyD88 non-dependent signaling pathway,

which is based on the identified adaptor proteins. Upon

stimulation by an external signal, the TIR domain at the C-

terminal of the adaptor protein binds to the TIR domain of TLRs

to form a complex. This complex is then recruited by the death

domain (DD) at the N-terminal of MyD88, which binds to the

signaling protein of the IL-1R-related kinase (IRAKs) family to

activate NF-kB transported into the nucleus and induce the

expression of pro-inflammatory cytokines (Tapping, [[NoYear]];

Yang and Seki, [[NoYear]]).

There have been several reports on the correlation between TLR

and PRRSV infection. Infection with PRRSV in vivo tended to up-

regulate the mRNA expression of TLR2, 3, 4, 7, and 8 in at least one

of the lymphoid tissues, suggesting that TLR-mediated innate

immunity likely plays a critical role in the pathogenesis of PRRSV

infection in pigs (Liu et al., 2009). In contrast, the downregulation

of TLR7 and 8 by poly(I:C) stimulation and PRRSV infection was

observed in both PAMs and immature DCs (Chaung et al., 2010).

However, when the TLR3 signaling pathway was activated by poly

(I:C), the viral load of PRRSV was significantly reduced, while the

expression of TLR3 was inhibited, resulting in enhenced infectivity

of PRRSV (Sang et al., 2008; Kuzemtseva et al., 2014). The TLR7

ligand (SZU101) can prevent the replication of PRRSV (Huang

et al., 2022). Therefore, TLR3 and TLR7/8 ligands are promising

adjuvant candidates for the development of novel vaccines against

PRRSV (Zhang et al., 2013a). In a separate study, it was observed

that highly pathogenic PRRSV infection induced higher expression

levels of TLR3, 7, and 8 mRNA in PAMs and cerebral medullar

tissues than low pathogenic PRRSV, indicating that the TLR

expression levels were correlated with PRRSV virulence (Zhang

et al., 2013b). Another report indicated that the PRRSV 3’ UTR

pseudoknot region could act as PAMPs recognized by RIG-I and

TLR3 to induce IFN-I production to suppress PRRSV infection

(Xie et al., 2018). TLR4 has long been thought to be involved in

innate immunity, mediating inflammatory responses by

recognizing lipopolysaccharide (LPS) or bacterial endotoxins

(Zhang Y. et al., 2022). However, the study found that LPS

inhibits PRRSV infection by down-regulating the expression of

CD163 through the TLR4-NF-kB pathway (Zhu et al., 2020).

PRRSV infection can also induce IL-1bmaturation by activating the

Nucleotide-binding oligomerization domain (NOD)- leucine-rich

repeat (LRR)-and pyrin domain-containing protein 3 (NLRP3)

inflammasome through the TLR4-MyD88-NF-kB pathways and

then inhibit the proliferation of classical swine fever virus (Chen

et al., 2023). In addition, the adaptor protein MyD88 was found to

be involved in PRRSV-induced IL-1b production in microglia

(Chen XX. et al., 2018) and to play an important role in IL-10

induction during PRRSV infection (Song et al., 2013).
RIG-like receptors

RLRs including retinoic acid-induced gene I (RIG-I), melanoma

differentiation associated gene 5 (MDA5) and laboratory of genetics

and physiology 2 (LGP2), recognize viral or other xenogeneic
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nucleic acid in the cytoplasm (Loo and Gale, 2011). RIG-I and

MDA5 consist of caspase activation and recruitment domains

(CARD), the DExD/H-box helicase domain and a C-terminal

domain (CTD) (Yoneyama et al., 2004; Yoneyama et al., 2005).

Activation of RIG-I or MDA5 interacts via CARD-CARD

interactions with mitochondrial antiviral signaling (MAVS)

protein (Seth et al., 2005). These interactions facilitate the

relocation of RLRs to mitochondria membranes and the

formation of MAVS signalosome with the downstream signaling

molecules TANK-binding kinase 1 (TBK1) and IkB kinase-e (IKK-
e). This complex phosphorylates and activates IRF3 and IRF7

(Moore and Ting, 2008), which in turn initiate the transcription

of a variety of cytokines to resist virus infection. MAVS also recruits

the Fas-associated death domain protein (FADD), which activates

caspase-10 and caspase-8, driving NF-kB activation (Kawai and

Akira, 2007). Upon activation, IRF3/7 and NF-kB translocate to the

nucleus to trigger the transcription of a variety of cytokines, which

are responsible for resisting virus infection. In comparison to RIG-I

and MDA5, LGP2 has helicase and regulatory domains, but lacks

the N-terminal CARDs, which are essential for antiviral signal

transduction (Zhu et al., 2014). Consequently, LGP2 is unable to

initiate the downstream signaling pathway independently and

requires binding to RIG-I or MDA5 for signal transduction.

Furthermore, there are associations between PRRSV and

members of RLR family. It has been reported that the

overexpression of LGP2 can inhibit PRRSV replication. PRRSV

Nsp1 and Nsp2 interacted with LGP2 and promoted K63-linked

ubiquitination of LGP2, which ultimately led to the degradation of

LGP2 (Zhu et al., 2023). The endoribonuclease activity of PRRSV

Nsp11 is critical for both viral replication and the inhibition of IFN-

I production. Of note, Nsp11 suppresses both MAVS and RIG-I

expression to antagonize IFN-I production (Sun et al., 2016). In

addition, studies have shown that endogenous expression of the

porcine 2’, 5’-oligoadenylate synthetase (OAS2) gene can be

enhanced by interferon IFN-b or PRRSV infection in porcine

alveolar macrophages (PAMs). Additionally, the porcine OAS2

has been shown to suppress the replication of PRRSV in a RIG-I-

dependent manner (Zhao et al., 2017). And the N protein of

PRRSV interferes with TRIM25-mediated RIG-I ubiquitination to

suppress the host innate immune response (Zhao K. et al.,

2019).The study indicated that MAVS is involved in the

interaction between PRRSV and the host immune response and

that MAVS mediates a powerful anti-PRRSV process (Zhao Y.

et al., 2019). However, Nsp4 of HP-PRRSV has been demonstrated

to cleave MAVS to impair antiviral responses mediated by RIG-I-

like receptors (Huang et al., 2016). And PRRSV infection promotes

glycolysis to produce lactate, which targets MAVS to inhibit RLR

signaling and thus promote viral replication (Zhang et al., 2023).
NOD-like receptors

The NLR pathway is also instrumental in the detection of

cytosolic DNA and the initiation of inflammation-dependent

innate immune signals (Petrilli et al., 2007). Some NLRs are

sensitive to many PAMPs and release the inflammatory cytokines
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of the IL-1 family via caspase-1, including IL-1b, IL-18 and IL-33

(Meylan et al., 2006; Yu and Finlay, 2008). The inflammatory bodies

of NLR protein can be divided into three main types: the NALP3

inflammasome (also known as the NLRP3 inflammasome), the

NALP1 (NLRP1) inflammasome and the IPAF (NLRC4)

inflammasome (Kawai and Akira, 2009). These inflammasomes

involve an adaptor—apoptosis-associated speck-like protein

containing a CARD (ASC), which links these NLRs to caspase-1

(Kawai and Akira, 2009). Furthermore, all NLRs except NOD1 and

NOD2 activate inflammasome formation independently of gene

transcription through oligomerization of the adaptor ASC, which

induces maturation of IL-1b and IL-18 (Hoss et al., 2017). In

contrast to other NLRs, the activation of NOD1 and NOD2

recruits a common downstream signaling adapter, RIPK2, which

in turn activates downstream NF-kB and the production of pro-

inflammatory cytokines (He and Wang, 2018). Studies have shown

that RIPK2 is involved in the activation of NF-kB and MAPK

(McCarthy et al., 1998), while porcine RIPK2 does not activate IRF3

(ISRE) activity (Ao et al., 2020). It has been demonstrated that ASC

functions as a dual regulator of NF-kB, whereas ectopic ASC is only

a weak activator of NF-kB (Stehlik et al., 2002).

DDX19A, a member of the DEAD/H-box protein family, was

identified as a novel component of NLRP3 inflammasome. The

research found that DDX19A interacted with PRRSV RNA and

NLRP3. Knockdown of DDX19A expression efficiently inhibited

procaspase-1 cleavage and IL-1b secretion in PRRSV-infected or

PRRSV RNA-stimulated PAMs (Li et al., 2015). NLRP3

inflammasome is activated by PRRSV in microglia, which is

required for IL-1b secretion (Chen XX. et al., 2018), but the virus

protein Nsp11 can inhibit this effect (Wang et al., 2015). PRRSV

infection increased the expression of NOD2, NLRP3 and RIP2 and

enhances phosphorylation of RIP2 (Jing et al., 2014). NLRX1, a

member of the NLR family proteins, is initially identified as key

mediators of immune defense and inflammation (Tattoli et al.,

2016).The LRR domain of NLRX1 could interacted with the RNA-

dependent RNA polymerase (RdRp) domain of Nsp9 to inhibit

PRRSV replication (Jing et al., 2019).
CLR like receptor

CLR is comprised of over 1,000 receptors, including soluble or

membrane-bound receptors, which are distinguished by the

presence of at least one carbohydrate recognition domain (CRD)

or C-type lectin-like domain (CTLD) (Zelensky and Gready, 2005).

It is well established that CLRs, including Dectin-1, Dectin-2,

Dectin-3 and Mincle, play an important role in the host defense

against fungal infections by using their CRD to recognize the cell

wall component from the infected microorganisms (Shiokawa

et al., 2017; Tang et al., 2018). Upon recognition of their

carbohydrate agonists , they induce act ivation of the

immunoreceptor tyrosine activating motif (ITAM)-like motif

(Hem ITAM) in Dectin-1 or ITAM in the interaction adapter

FCRg of Dectin-2, Dectin-3 and Mincle via Src family kinases.

The splenic tyrosine kinase (Syk) was recruited and phosphorylated

by activated Hem-TAM/ITAM, and the phosphorylated Syk then
frontiersin.org
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triggered the formation of the caspase recruitment domain

complex, which included caspase recruitment domain 9

(CARD9), B-cell lymphoma/leukemia 10 (BCL10) and mucosa-

associated lymphoid tissue 1 (MALT1). The CARD9-BCL10-

MALT1 (CBM) adaptor complex or signalosome subsequently

activates the NF-kB pathway through various mechanisms

(Ruland and Hartjes, 2019), and produces the cytokines IL-1b,
IL-6, and IL-23 (Tang et al., 2018).

The CBM signaling components are highly conserved in

evolution and have been extensively studied in humans and mice,

and identified in ray-finned fishes (Staal et al., 2018; Ruland and

Hartjes, 2019). CARD9, one of the receptors of CLRs, is expressed

exclusively in myeloid cells (Gross et al., 2006; Hara et al., 2007).

BCL10 is the central adaptor protein whose amino-terminal CARD

mediates homologous interaction with CARD9, CARD10, CARD11

or CARD14 (Bertin et al., 2001; Wang et al., 2001; Ruland and

Hartjes, 2019). In our previous study, CARD9 was found to be

essential for CBM maximal signaling, although it is not

constitutively active. Furthermore, BCL10 and MALT1 exhibited

optimal synergism when present in moderate amounts of BCL10

and low amounts of MALT1 (Jiang et al., 2020). Among these,

MALT1 is rapidly induced upon PRRSV infection and mediates the

degradation of two anti-PRRSV RNases, MCPIP1 and N4BP1,

relying on its proteolytic activity to facilitate PRRSV replication.

Several PRRSV Nsps, including Nsp11, Nsp7b, and Nsp4, has been

shown to contribute to MALT1 induction. Finally, PRRSV Nsp6

was found to mediate significant MALT1 degradation via the

ubiquitination-proteasome pathway (Gu et al., 2022).
CDR like receptors

CDRs, such as cGAS and IFI16, utilize the adaptor protein

STING to activate the expression of transcription factors IRF3/IRF7

and NF-kB, subsequently inducing the downstream production of
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antiviral IFN-I and proinflammatory cytokines. The innate DNA

receptor cGAS is capable of recognizing both self and non-self

double-stranded DNA. It is a cyclic GMP-AMP(cGAMP) synthase,

and catalyzes the synthesis of 2’3’-cGAMP from ATP and GTP.

Subsequently, 2’3’-cGAMP, as a second message, binds STING on

endoplasmic reticulum (ER) and triggers the STING translocation

from ER. Next, the STING recruits TBK1 which activates IRF3 and

NF-kB transcriptions (Sun et al., 2013; Hopfner and Hornung,

2020). The gene transcriptions result in the generation of

downstream IFNs, IFN-st imulated genes (ISGs) , and

proinflammatory cytokines, which play an important antiviral role

in virus infections (Sun et al., 2013; Hopfner and Hornung, 2020).

STING was initially identified as an IFN-stimulating factor and is

widely expressed in a variety of tissues and cells, suggesting that it may

have a function in immune regulation (Bo et al., [[NoYear]]; Ishikawa

and Barber, [[NoYear]]). Furthermore, STING plays a crucial role in

mediating the innate immune response toviruses, intracellularbacteria

andeven intracellularparasites.Additionally, it is involved in the IFN-I

signal pathway which is initiated by pathogenic RNA viruses, through

its interaction with the adaptor protein MAVS. It has been

demonstrated that the host cGAS-STING signaling pathway plays an

importantantiviral role inPRRSVinfection (Xuet al., 2021). cGAScan

restrict PRRSV replication by sensing themtDNA in the cytoplasm by

increasing cGAMP activity (Liu et al., 2022). Recent research has

shown that astragaloside IV has the capacity to mitigate the adverse

effects of PRRSV infection on innate immune function, reactive the

inhibited cGAS-STING signaling pathway, and enhance the

expression of IFN-I, ultimately exerting antiviral effects (Song et al.,

2023). Inaddition,PRRSVNsp2retains STINGin theERby increasing

Ca2+ sensor stromal interactionmolecule 1 (STIM1) protein level and

deubiquitinates STIM1 through its papain-like protease 2 (PLP2)

deubiquitination activity to limit PRRSV replication (Diao et al., 2023).

IFI16, a member of the PYHIN protein family containing a

pyrin domain and two DNA-binding HIN domains, displays

diverse activity due to its ability to bind to various target proteins
FIGURE 1

Schematic diagram of regulation of the pattern recognition receptors in PRRSV infection. (A) NOD-like receptors. (B) CDR like receptors. (C) RIG-like
receptors. (D) CLR like receptor.
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and modulate various functions including direct actions in

regulation of transcription, proliferation, differentiation,

apoptosis, antiviral restriction, and inflammation (Gariano et al.,

2012; Orzalli et al., 2012; Jakobsen and Paludan, 2014). IFI16 has

been reported to play a broader role in the regulation of interferon-

stimulated gene expression, leading to responses not only to DNA

viruses, but also to RNA viruses such as Sendai virus (Unterholzner

et al., 2010; Thompson et al., 2014). Overexpression of IFI16 could

significantly suppress PRRSV-2 replication, and silencing of

endogenous IFI16 expression by small interfering RNAs resulted

in the promotion of PRRSV-2 replication in MARC-145 cells.

Toosendanin inhibits PRRSV-2 via an IFI16-dependent pathway

(Zhang M. et al., 2022). In addition, IFI16 could promote MAVS-

mediated IFN-I production and interact with MAVS. More

importantly, IFI16 exerted anti-PRRSV effects in a MAVS-

dependent manner (Chang et al., 2019).
Perspectives and conclusion

The discovery of transmembrane TLRs and cytoplasmic sensing

systems (such as RLRs, NLRs and CDRs) shows that the innate

immune system has many recognition mechanisms in different

cellular compartments (such as plasma membrane, endosome,

lysosome, cytoplasm) and different cell types (such as TLR7 and

TLR9 in pDCs and RLR in cDCs) (Kawai and Akira, 2009). Indeed,

the relationship between signal adaptors is complex. For example,

STING enhanced the activity of MAVS and NF-kB, while MyD88

enhanced the activity of STING ISRE. TIRAP-MyD88 (TLR2 and

TLR4 signaling) and TRAM-TRIF (TLR4 signaling) induce

inflammatory responses by recruiting TRAF6 (a member of the

TRAF protein family) (Kawai and Akira, 2009). MyD88 recruits

TRAF3 through TLR7 or TLR9 signaling and TRIF3 recruits

TRAF3 in TLR3 signaling, all of which induce IFN-I (Hacker

et al., 2006; Oganesyan et al., 2006). TRAF3 is also involved in

RLR-mediated IFN-I induction (Saha et al., 2006). In addition, the

RLR RIG-I directly interacts and cross-interferes with NOD2

(Morosky et al., 2011). ASC has been shown to interact with

MAVS and inhibit MAVS-induced IFN-b production (Han et al.,

2018). NLRC3, a member of the NLR protein family, has been

shown to be a negative regulator of innate immune signals induced

by the DNA sensor STING (Zhang et al., 2014). CARD9 is also

involved in TLR, NOD1 and NOD2 mediated MAPK activation

(Kawai and Akira, 2009). It appears that each PRR signaling

pathway plays an essential role in pathogen elimination or

tolerance maintenance (Figure 1).

Over the past decade, although scientists from around the world

have conducted more research on PRRS and its related signaling

pathways, people’s understanding of the pig innate immune

signaling pathway is not clear enough. In particular, there are

many innate immune signal adaptors and their signaling

pathways, making it difficult to have a comprehensive

understanding. Therefore, we still need to better understand the
Frontiers in Cellular and Infection Microbiology 05
dynamics and breadth of innate immunity in tissues-, species- and

host-specific manners. Although more adaptor proteins have been

found in PRRS viruses, their role in the pathogenesis of PRRS has

not been clearly elucidated. Therefore, there is a lack of research and

understanding of the effect of swine innate immunity on PRRSV

replication and its mechanism. Filling these gaps will provide new

ideas for the in-depth study of the molecular mechanisms by which

the host recognizes and clears PRRSV infection and by which

PRRSV evades the host immune system. In summary, we have

reviewed and described the roles of PPRs in host defense against

PRRSV infection and proposed areas of research that require

further investigation. With the development and application of

new immunological approaches available in swine, new insights

into the PPRs against PRRSV after infection will be discovered. This

will facilitate the development of vaccines against PRRSV and

improve our understanding of antiviral immunity in swine.
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