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exposure to copper plate
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Peng Sun1* and Haojie Hu3*

1School of Marine Sciences, Ningbo University, Ningbo, China, 2College of Animal Science, Zhejiang
University, Hangzhou, China, 3School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
Cryptocaryon irritans is a highly detrimental parasite in mariculture, causing

significant economic losses to the aquaculture industry of Larimichthys crocea. In

recent years, copper and copper alloy materials have been used to kill parasites. In

this study, the effect of copper plates on the tomont period of C. irritans was

explored. The findings indicated that copper plates effectively eradicated tomonts,

resulting in a hatching rate of 0. The metabolomic analysis revealed that a total of

2,663 differentially expressed metabolites (1,032 up-regulated and 1,631 down-

regulated) were screened in the positive ion mode, and 2,199 differentially

expressed metabolites (840 up-regulated and 1,359 down-regulated) were

screened in the negative ion mode. L-arginine and L-aspartic acid could be used

as potential biomarkers. Copper plate treatment affected 25 metabolic pathways in

the tomont, most notably influencing histidine metabolism, retinol metabolism, the

biosynthesis of phenylalanine, tyrosine, and tryptophan, as well as arginine and

proline metabolism. It was shown that high concentrations of copper ions caused a

certain degree of disruption to the metabolome of tomonts in C. irritans, thereby

impacting their metabolic processes. Consequently, this disturbance ultimately leads

to the rapid demise of tomonts upon exposure to copper plates. The metabolomic

changes observed in this study elucidate the lethal impact of copper on C. irritans

tomonts, providing valuable reference data for the prevention and control of C.

irritans in aquaculture.
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1 Introduction

Cryptocaryon irritans is a marine parasitic ciliate which is significantly harmful to

marine fish farming industry. With the development of high density cage culture model of

Larimichthys crocea, outbreaks of diseases caused by the C. irritans are frequent. The life

history of C. irritans consists of four periods including trophont, protomont, tomont and
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theront (Watanabe et al., 2021). Under suitable temperature

conditions, C. irritans can complete a life cycle in about 7 days,

and a tomont can release 200-300 theront to reinfect L.crocea.

Large-scale secondary infection is the main cause of marine fish

mortality (Tang et al., 2022). Blocking one stage of the life history of

C. irritans can block secondary infection and thus prevent mass

death caused by the disease. The trophont stage is the parasitic stage

of C. irritans, and the host fish is stimulated too much by taking

control measures in this stage. The tomont period is the most

prolonged period in the life history of C. irritans, during which

tomonts will fall off from their host fish. Therefore, taking measures

at this stage can prolong the operation time and reduce the harm to

the host fish.

The way to prevent and control the diseases caused by this

pathogen include physical, chemical and immunological methods

(Hu et al., 2017; Gao et al., 2022; Lu et al., 2022), but they cannot be

applied on a large scale due to the limitation of the open water cage

culture mode. Physical methods include adjusting water

temperature and ultraviolet (UV) irradiation. C. irritans is

sensitive to temperature, and its growth and reproduction can be

inhibited by raising the water temperature. However, in large-scale

aquaculture environments, adjusting the water temperature is

challenging and costly. Additionally, high temperatures can

negatively impact fish, causing stress reactions or diseases. UV

irradiation can effectively kill pathogens in the water, but its

effective range is limited, making it difficult to cover large-scale

aquaculture areas. Furthermore, UV irradiation equipment is

expensive and requires regular maintenance (Diggles and Lester,

1996; Zhou et al., 2023). Chemical methods primarily involve the

use of drugs or chemical agents (such as formalin, malachite green,

and sodium chloride) to kill C. irritans. However, many chemical

agents are toxic to fish and other aquatic organisms and can cause

environmental pollution (Pironet and Jones, 2000; Zhong et al.,

2023). Immunological methods include vaccination and the use of

immune stimulants. These methods are complex to operate, costly,

and individual immune responses can vary, leading to inconsistent

control effect (Mo et al., 2022). Therefore, it is urgent to explore

other effective prevention and control measures.

Copper, as a broad-spectrum antimicrobial material, has been

widely used in anti-parasitic applications in recent years. Copper

has many advantages as a means of controlling C. irritans. On the

one hand, copper usually exists in the form of copper alloy cage,

copper ion solution, etc., which does not require complicated

operation steps or professional technical personnel. Copper, on

the other hand, can be a long period of time continue to play a role

of antibacterial, reduce the demand for frequent handling. In

addition, copper do not cause environmental pollution as some

chemicals. Therefore, copper is suitable for large-scale breeding

application. It disrupts critical enzymatic activities in parasites by

binding to thiol groups in proteins, thereby inhibiting their

functions and leading to parasite mortality (Otludil and Ayaz,

2020; Li and Wu, 2021). The findings of certain studies suggest

that mammals possess a specific mechanism for copper chelation,

which effectively inhibits parasite growth without causing harm to

the host organism (Grechnikova et al., 2024). This indicates the
Frontiers in Cellular and Infection Microbiology 02
potential significance of copper in the defense mechanisms against

parasites in various organisms. In aquaculture, treatment with 0.2

mg/L copper sulfate has been demonstrated to eradicate

Amyloodinium ocellatum infestation on Sardinella brasiliensis,

while without inducing any damage to the fish (Owatari et al.,

2020). Some copper alloy coating was applied to tanks to block the

life cycle by damaging the tomonts of C. irritans, and the reinfection

rate and mortality of Trachinotus ovatus and Epinephelus coioides

decreased significantly (Jiang et al., 2021). This study explores the

effect of copper plates on tomonts of C. irritans based on

metabolomics, enhancing our understanding of how copper

disrupts parasites’ life processes, particularly its effects on crucial

metabolic pathways. This research serves as a foundation for

developing more precise prevention and control strategies,

including targeted interventions in specific metabolic pathways, to

optimize the efficacy of copper plate treatment.
2 Materials and methods

2.1 Sample collection

Larimichthys crocea infected with C. irritans were obtained

from a farm located in Ningbo. Kept in the lab for 4 ~ 6 days

until the tomonts fall off to the bottom. Collect and hatch the

tomonts at 25 °C, theront that hatch from the tomonts infect L.

crocea again. After obvious white spot appeared on L. crocea,

transfer the fish to a clean bucket and collect the tomonts falling

off at the bottom for subsequent experiment. Tomonts were

collected every 24 h, and were washed with filtered seawater.
2.2 Statistics of hatching rate

The washed tomonts were divided into two groups: the seawater

group (group CON, treated with filtered seawater) and the copper

plate group (group EXP, exposed to copper plates in filtered

seawater). After treatment, tomonts were placed in sterile

seawater in 24 well plates and cultured at 27°C. The hatching

number and hatching rate of tomonts were counted daily, then the

tomonts were flash frozen in liquid nitrogen and subsequently

stored at -80°C for metabolomics analysis.
2.3 Metabolite extraction

Accurately weigh a 100 mg mixtures of C. irritans tomonts from

group CON and group EXP, add 1 ml pre-cooled tissue extract

solution (75% 9:1 methanol: chloroform, 25% ddH2O) and grind

them with tissue grinder. Then, ultrasound was carried out at room

temperature for 30 min and placed on ice for 30 min. After

centrifugation, the supernatant was concentrated. Acetonitrile

solution was added to prepare 2-chlorophenylalanine solution to

redissolve the sample, and then the sample was filtered for

subsequent LC-MS detection.
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2.4 Conditions for chromatography and
mass spectrometry

Chromatographic separation was performed on a Thermo

Ultimate 30,000 system equipped with an ACQUITY UPLC® HSS

T3 column maintained at 40 °C. Gradient elution of analytes was

carried out with 0.1% formic acid in water (A) and 0.1% formic acid

in acetonitrile (B) or 5 mM ammonium formate in water (C) and

acetonitrile (D). Gradient elution procedure was performed: 0 ~ 1

min, 2% B/D; 1 ~ 9 min, 2%~50% B/D; 9 ~ 12 min, 50% ~ 98% B/D;

12 ~ 13.5 min, 98% B/D; 13.5 ~ 14 min, 98% ~ 2% B/D; 14 ~ 20 min,

2% B-positive model (14 ~ 17 min, 2% D-negative model). The ESI-

MSn experiments were executed on the Thermo Q Exactive HF-X

mass spectrometer. Full scan at resolution 60, 000, data dependent

acquisition (DDA) MS/MS experiments were performed with HCD

scan. Dynamic exclusion was implemented to remove some

unnecessary information in MS/MS spectra.
2.5 Data processing and
bioinformatics processing

The original data were converted into mzXML format by

Proteowizard (v3.0.8789). The XCMS program package of R

(v3.3.2) was used for peaks identification, peaks filtration and

peaks alignment. Metabolites were obtained through the data

matrix of mass to charge ratio, retention time, intensity and other

information. After confirmation according to the accurate

molecular weight of metabolites, the fragment information

obtained from MS/MS was further matched. The annotation was

based on Metlin (http://metlin.scripps.edu), MoNA (https://

mona.fiehnlab.ucdavis.edu//), and self-built standard database.

Autoscaling Mean-centering and scaled to unit variance (UV) was

used for standardization. Orthogonal Projections to Latent
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Structures Discriminant Analysis (OPLS-DA) was used to

determine the differences between treatment and control groups.

The cross-validation of the model mainly refers to R2X, R2Y, Q2 and

other parameters. The pheatmap program package in R was used to

perform differential metabolite agglomerative hierarchical

clustering on the dataset. The Kyoto Encyclopedia of Genes and

Genomes (KEGG) and MetPA was used to query and annotate

related metabolic pathways.
3 Results

3.1 Hatching rate of tomonts

According to the results (Figure 1), the control group of

tomonts exhibited a maximum hatching rate within 5 days,

from the initiation of the experiment until its completion,

while the experimental group of tomonts failed to hatch.

Hence, it is evident that copper plates have a pronounced killing

effect on C. irritans tomonts.
3.2 OPLS-DA of C.irritans tomonts

The metabolomic analysis determined the metabolic

characteristics of tomonts after treated with copper plate, the ion

peak had a stable retention time without drift in the chromatogram.

The samples from the treatment and control groups were clustered

separately in positive and negative ion mode, respectively.

Orthogonal Projections to Latent Structures Discriminant

Analysis (OPLS-DA) effectively extracted variation information

and distinguished between the groups (Figure 2), indicating that

copper plates altered the metabolome of C. irritants cysts. Table 1

shows the multiple correlation coefficients of OPLS-DA
FIGURE 1

Hatching rate of tomonts.
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(R2X= 0.584, R2Y = 0.999 in ion positive mode; R2X = 0.586, R2Y =

0.999 in negative ion mode) were all above 0.5, which signifies good

repeatability in the test set. The cross-validation predictive ability

(Q2 = 0.785 in positive ion mode and Q2 = 0.787 in negative ion

mode) indicates the samples were normal, and no over fitting

occurred in the test.
3.3 Screening of differential metabolites

According to the condition of VIP ≥ 1, a total of 2,663

differential metabolites (1,032 up-regulated and 1,631 down-

regulated) were screened in the positive ion mode, and 2,199

differential metabolites (840 up-regulated and 1,359 down-

regulated) were screened in the negative ion mode (Table 2).

Hierarchical clustering analysis was performed with the relative

value of differential metabolites as the metabolic level. The heat map

showed that 77 differential metabolites were significantly changed

(25 up-regulated and 52 down-regulated) in the group EXP

compared with the group CON (Figure 3A), among which L-

arginine and L-aspartic acid changed significantly (P < 0.001),

which could be used as potential biomarkers (Figure 3B).
3.4 Changes in the metabolic pathways

After integrating KEGG and MetPA information, a total of 25

metabolic pathway of the tomonts were affected by the treatment of

copper plate. The enrichment analysis of KEGG pathway showed
Frontiers in Cellular and Infection Microbiology 04
that the p values of histidine metabolism, retinol metabolism,

phenylalanine, tyrosine and tryptophan biosynthesis, as well as

arginine and proline metabolism were low, which also had a great

impact value on the pathway (Figure 4). Specifically, in the histidine

metabolism pathway, the level of L-histidine was reduced. Retinol

metabolism was affected by a decrease in all-trans-retinoic acid. In

the biosynthesis pathways of phenylalanine, tyrosine, and

tryptophan, there was a noted decrease in tyrosine. Conversely, in

the arginine and proline metabolism, there was an increase in the

levels of arginine and spermidine (Table 3). These changes suggest

that the presence of copper plates disrupts the metabolic activities

critical for the growth and development of C. irritans tomonts,

potentially inhibiting their progression through the lifecycle and

their ability to infect host organisms.
4 Discussion

White spot disease is considered to be the most harmful

parasitic disease limiting the development of marine fish farming.

Copper is a bactericidal material often used in aquaculture. It is very

necessary to figure out the role of copper on tomonts. The studies

have revealed that tomonts are capable of absorbing a substantial

concentration of Cu2+ upon contact with a copper plate, which may

cause membrane damage, subsequent oxidative stress, cellular

apoptosis, and DNA degradation, ultimately resulting in

organismal demise (Grass et al., 2011). In addition, When

tomonts were treated with copper plates, the H2A, H2B, H3 and

H4 proteins in the systemic lupus erythematosus pathway were

significantly down-regulated, indicating that processes such as

DNA replication were affected, blocking the division and hatching

of theronts (Yin et al., 2019). In this study, after treatment with

copper plates, the hatching rate of tomonts decreased to 0,

indicating that copper plates could effectively kill tomonts by

releasing copper ions after dissolution of copper plates in

seawater, which penetrated through the tomonts and destroyed

the growth mechanism of tomonts. The pivotal targets and

mechanisms of copper-induced stress were examined through the

observed changes in metabolomics.
FIGURE 2

OPLS-DA analysis of positive and negative ion mode.
TABLE 1 Model validation parameters of OPLS-DA.

pre R2X R2Y Q2

positive ion mode 1 + 1+0 0.584 0.999 0.785

negative
ion mode

1 + 1+0 0.586 0.999 0.787
Pre is principal component number; R2X is the interpretability of the model (for the x-variable
dataset); R2Y is the interpretability of the model (for the y-variable dataset); Q2 is the degree of
model predictability.
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An extensive array of differential metabolites were detected in

the tomonts following copper treatment—2,663 in positive ion

mode and 2,199 in negative ion mode. The wide variety of

differential metabolites underscores copper’s capacity to penetrate
Frontiers in Cellular and Infection Microbiology 05
and disrupt the fundamental biological processes of tomonts.

Notably, L-arginine and L-aspartic acid were highly differentially

expressed and may serve as potential biomarkers. The significant

upregulation of L-arginine suggests changes in polyamine synthesis

and nitric oxide pathways, which affected cell proliferation and

survival (Castilho-Martins et al., 2015). In contrast, the considerable

downregulation of L-aspartic acid could indicate an interruption in

neurotransmitter synthesis, affecting energy metabolism and neural

functions in tomonts (Hata, 1994). These pronounced alterations in

amino acids imply that copper treatment interferes with nitrogen

metabolic pathways, which are crucial for a range of cellular
B

A

FIGURE 3

(A) Heat map of differential metabolites; (B) Box plot of differential metabolites. ***P < 0.001.
TABLE 2 Statistical table of differential metabolite.

Total Up Down

positive ion mode 2,663 1,032 1,631

negative
ion mode

2,199 840 1,359
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functions, including protein synthesis, signaling, and immune

response regulation (James and Hibbs, 1990; Marchese et al.,

2018; Bushra et al., 2023). In conclusion, the extensive changes in

tomonts metabolism not only confirm copper’s efficacy in

disrupting the life cycle of C. irritans but also emphasize the

broad impact of copper-induced stress on cellular activities.

Moreover, the plethora of differential metabolites identified post-

copper treatment provides a valuable dataset for further

investigation. By concentrating on the most significantly altered

pathways, we can delineate the sequence of metabolic disruptions

caused by copper and clarify the molecular mechanisms, ultimately

contributing to targeted strategies for the prevention and control of

C. irritans infections in aquaculture.

L-histidine has various physiological functions such as

antioxidant, immunomodulatory and anti-inflammatory (Hara

et al., 2013). In the context of copper-induced oxidative stress, it

effectively mitigates intracellular toxicity by binding copper ions. For

example, the homolog of LEA (Late Embryogenesis Abundant) found

in C. elegans can combine with Cu2+ to form oligomers and polymers

due to its histidine-rich nature. This binding reduces the intracellular

Cu2+ concentration and alleviates the toxic effects of the metal on the

cells (Gal et al., 2004; Liu et al., 2017). Given the antioxidant and

metal-binding characteristics of histidine, its role in cellular
Frontiers in Cellular and Infection Microbiology 06
protection is underscored by the observed decrease in L-histidine

levels within the significantly impacted histidine metabolism pathway

after tomonts were treated with copper plates. This decline may

indicate an increased demand for histidine in tomonts, suggesting

that histidine-rich proteins are being recruited to bind and neutralize

excess Cu2+, counteracting the effects of increased copper levels.

Retinol metabolism is pivotal in regulating numerous essential

physiological functions. Retinol is enzymatically converted into all-

trans retinoic acid (ATRA), a critical metabolite of vitamin A, which

influences various biological processes. These processes include

embryonic development, cellular differentiation and communication,

immune function, and vision (Hurst and Else, 2012; Thompson et al.,

2019; Liang et al., 2021). ATRA contributes to the antioxidant role of

vitamin A by modulating the expression of genes involved in

antioxidant responses (Blaner et al., 2021). For instance,

chondrocytes treated with retinoic acid exhibit increased activities of

catalase, glutathione reductase, and superoxide dismutase, enhancing

their protection against oxidative damage (Teixeira et al., 1996). In

retinol metabolism, the content of all-trans-retinoic acid decreased,

which may be due to the involvement of retinoic acid in the expression

of antioxidant genes.

The uptake and metabolism of aromatic amino acids, including

tryptophan, phenylalanine, and tyrosine, are vital for parasite

survival. Studies using potent analogs have significantly disrupted

the metabolism of these amino acids in parasites, suggesting that

these analogs may directly target and inhibit these pathways

(Cockram et al., 2020). Tyrosine, in particular, is not only a

fundamental building block for protein synthesis but also a

precursor to several bioactive molecules. It plays a crucial role in

diverse biological functions, such as neurotransmission in the

nervous system, hormone production in endocrine regulation, and

energy yield in metabolism (Wheeler-Alm and Shapiro, 1992).

Within the scope of this study, the reduction in tyrosine levels due

to copper plate treatment might impair its role as a neurotransmitter

precursor, thus potentially affecting signal transduction and

behavioral responses in tomonts. This depletion may also interfere

with the synthesis of thyroid hormones, subsequently impacting

energy metabolism and growth in the parasite.

Studies have demonstrated that arginine plays a pivotal role in the

biosynthesis of biological proteins and the generation of nitric oxide

(NO). Additionally, it serves as the precursor for polyamine synthesis.

Polyamines, such as spermidine, are intricately linked to cellular

proliferation (Pegg and Casero, 2011). It plays a role in regulating cell

growth and metabolism (Han et al., 2022). For instance, in Stevia

rebaudiana subjected to salt stress, the application of exogenous

spermidine has been shown to enhance the activity of antioxidant

enzymes. This counters the reactive oxygen species produced

internally due to environmental stress, and concurrently, it

increases cell membrane stability (Bahari Saravi et al., 2022). Under

abiotic stress, the level of spermidine in Arabidopsis increases, thereby

enhancing tolerance (Alcázar et al., 2006) . In this experiment, the

results showed that the content of arginine and spermidine increased

significantly after tomonts contacted the copper plate, which can be

guessed as a response to external stress. This allows the tomonts to

maintain high antioxidant enzyme activity and maintain the redox

state of the cells (Naz et al., 2021).
FIGURE 4

Differential metabolite pathway analysis. The X-axis represents the
pathway impact, and the Y-axis represents -log(p).
TABLE 3 KEGG pathways significantly enriched for metabolites.

Enrichment pathways
Different

metabolites
Change

Histidine metabolism L-Histidine down

Retinol metabolism All-trans-Retinoic acid down

Phenylalanine, tyrosine and
tryptophan biosynthesis

Tyrosine down

Arginine and proline metabolism
Arginine

Spermidine
up
up
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5 Conclusion

The treatment of C. irritans tomonts with copper plates in the

present study significantly impacted their metabolome. L-arginine

and L-aspartic acid can serve as biomarkers for tomonts in C.

irritans under copper plate-induced stress. Annotation of

differential metabolites revealed that copper plates primarily

affected histidine metabolism, retinol metabolism, phenylalanine,

tyrosine and tryptophan biosynthesis, as well as arginine and

proline metabolism. These alterations in the metabolome indicate

that high concentrations of Cu ions disrupt the normal metabolic

processes and induce oxidative stress in tomonts, ultimately leading

to their rapid demise following copper plate treatment. This study

offers valuable insights into the potential mechanism of action of C.

irritans tomonts under copper plate stress. Subsequent

investigations could explore the effects of copper treatment on

other life stages of C. irritans. There is also an urgent need to

evaluate the long-term efficacy of copper therapy in controlling

infections and to develop alternative therapies.
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