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The gut microbiota intervenes
in glucose tolerance and
inflammation by regulating the
biosynthesis of taurodeoxycholic
acid and carnosine
Jianhua Zhen †, Yunan Zhang †, Yini Li , Yali Zhou, Yanan Cai,
Guangrui Huang* and Anlong Xu*

School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
Objective: This study aims to investigate the pathogenesis of hyperglycemia and

its associated vasculopathy using multiomics analyses in diabetes and impaired

glucose tolerance, and validate the mechanism using the cell experiments.

Methods: In this study, we conducted a comprehensive analysis of the

metagenomic sequencing data of diabetes to explore the key genera related to its

occurrence. Subsequently, participants diagnosed with impaired glucose tolerance

(IGT), and healthy subjects, were recruited for fecal and blood sample collection. The

dysbiosis of the gut microbiota (GM) and its associated metabolites were analyzed

using 16S rDNA sequencing and liquid chromatograph mass spectrometry,

respectively. The regulation of gene and protein expression was evaluated through

mRNA sequencing and data-independent acquisition technology, respectively. The

specific mechanism by which GM dysbiosis affects hyperglycemia and its related

vasculopathy was investigated using real-time qPCR,Western blotting, and enzyme-

linked immunosorbent assay techniques in HepG2 cells and neutrophils.

Results: Based on the published data, the key alterable genera in the GM

associated with diabetes were identified as Blautia, Lactobacillus, Bacteroides,

Prevotella, Faecalibacterium, Bifidobacterium, Ruminococcus, Clostridium, and
Abbreviations: T2D, type 2 diabetes; IGT, impaired glucose tolerance; HC, healthy control; NC, normal control;

PCA, principal component analysis; PCoA, principal coordinate analysis; PLS-DA, partial least squares discriminant

analysis; METACYC, Metabolic Pathways From All Domains of Life; KEGG, Kyoto Encyclopedia of Genes and

Genomes; KO, KEGG orthology; FPG, fasting plasma glucose; BMI, body mass index; AST, aspartate transaminase;

ALT, alanine aminotransferase; HDL, high-density lipoprotein; UA, uric acid; BUN, blood urea nitrogen; CREA,

creatinine; TC, total cholesterol; TG, triglyceride; LDL, low-density lipoprotein; RT-qPCR, real-time qPCR; OTU,

operational taxonomic unit; LDA, linear discriminant analysis; LEfSe, linear discriminant analysis effect size; OPLS-

DA, orthogonal partial least squares-discriminant analysis; ROC, receiver operating characteristic; AUC, area under

curve; FC, fold change; TEAB, triethylammonium bicarbonate buffer; IGF, insulin-like growth factor; IGFBP-3,

insulin-like growth factor binding protein-3; IL-17, interleukin-17; IL-6, interleukin-6; LPS, lipopolysaccharide; GM,

gut microbiota; DEG, differential expressed gene; TUDCA, taurodeoxycholic acid; CARN, carnosine; CD, cluster of

differentiation; MMP, matrix metallopeptidase; LCN2, lipocalin 2; GPR, G protein-coupled receptor; TNF, tumor

necrosis factor; ELISA, enzyme-linked immunosorbent assay; HMDB, The Human Metabolome Database; NCBI,

National Center for Biotechnology Information; SLX, sodium lithium xylene; DS, denaturing solution; HTR, high

throughput recovery; PHB, P-poly-b-hydroxybutyrate; SPW, sterile purified water; FLASH, Fast Length Adjustment

of Short Reads; FBS, fetal bovine serum; 2hFPG, 2-hour postprandial plasma glucose.
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Lachnoclostridium. The related metabolic pathways were identified as cholate

degradation and L-histidine biosynthesis. Noteworthy, Blautia and Faecalibacterium

displayed similar alterations in patients with IGT compared to those observed in

patients with diabetes, and the GM metabolites, tauroursodeoxycholic acid (TUDCA)

and carnosine (CARN, a downstream metabolite of histidine and alanine) were both

found to be decreased, which in turn regulated the expression of proteins in plasma

and mRNAs in neutrophils. Subsequent experiments focused on insulin-like growth

factor-binding protein 3 and interleukin-6 due to their impact on blood glucose

regulation and associated vascular inflammation. Both proteins were found to be

suppressed by TUDCA and CARN in HepG2 cells and neutrophils.

Conclusion: Dysbiosis of the GM occurred throughout the entire progression

from IGT to diabetes, characterized by an increase in Blautia and a decrease in

Faecalibacterium, leading to reduced levels of TUDCA and CARN, which

alleviated their inhibition on the expression of insulin-like growth factor-

binding protein 3 and interleukin-6, contributing to the development of

hyperglycemia and associated vasculopathy.
KEYWORDS

diabetes, gut microbiota, impaired glucose tolerance, metabolome, mRNA
sequencing, proteome
GRAPHICAL ABSTRACT

Baesd on the results of metagenomic data in diabetes and the multiomics analyses in impaired glucose tolerance, we found that decreased CARN
and TUDCA, the metabolites derived from GM, reduced the inhibition on the synthesis of IGFBP-3 and the expression of IL-6 to result in hyperglyce-
mia and related vasculopathy.
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Introduction

Diabetes is not merely an isolated condition; it is intricately

linked with various metabolic disorders and systemic inflammation,

leading to complications in multiple organs, including the

cardiovascular and renal systems. Given the rising global

prevalence of diabetes, the identification of early biomarkers and

an understanding of the pathological mechanisms are particularly

crucial. However, the progression from a healthy state to diabetes

may take several years or even more than a decade, and this

individualized progression can be observed in clinical settings

(Tabak et al., 2012; Tuso, 2014; Knight et al., 2017). During this

period, the oral glucose tolerance test reveals abnormal indices

indicating a decreased secretory function of the islets of Langerhans

(Schwabe and Jobin, 2013; Poutahidis and Erdman, 2016; Heintz-

Buschart and Wilmes, 2018). Furthermore, evidence of

corresponding vascular damage has been observed (Yonekura

et al., 2005). Consequently, impaired glucose tolerance (IGT) is

defined as a fasting plasma glucose (FPG) level < 7.0 mmol/L, while

2-hour postprandial plasma glucose (2hFPG) falls within the range

of 7.8 mmol/L to 11.1 mmol/L (Gilbert et al., 2018). Approximately

37% of patients with IGT progress to diabetes within 4 years

(DeFronzo and Abdul-Ghani, 2011). Nevertheless, by employing

appropriate treatment or intervention, the progression of IGT can

be effectively prolonged or reversed (Mithieux, 2018). This suggests

that IGT may serve as a potential target for intervention prior to the

onset of diabetes.

Previous studies have revealed the significant impact of the gut

microbiota (GM) on the development of diabetes. For instance,

patients with type 2 diabetes (T2D) exhibit decreased levels of

butyrate-producing bacteria and increased levels of pathogenic

bacteria in the GM. Therefore, the reduction in butyrate leads to

decreased secretion of glucagon-like peptide-1 and peptide YY in the

gut. This, in turn, hinders the insulin response and glucose absorption

in muscles and adipose tissues, promoting hyperglycemia (Park et al.,

2012; Qin et al., 2012). Furthermore, the predicted function based on

the 16S rDNA genes in diabetes showed abnormalities in pathways

associated with amino acids, fatty acids, sugars, other metabolites,

and energy metabolism (Overmyer et al., 2021; Shen et al., 2022). The

correlation between the GM and inflammation has been extensively

investigated. It is well known that increased intestinal permeability

arises due to defective tight junction proteins caused by insufficient

butyrate. Subsequently, pathogenic bacteria and their pathogen-

associated molecular patterns, such as lipopolysaccharides (LPS),

enter the bloodstream or other organs, inducing local or systemic

inflammation. This inflammation serves as the underlying pathology

in the development of vasculopathy associated with diabetes (Barrett

et al., 2017). In addition, Huijuan Yuan et al. identified a correlation

between distal symmetric polyneuropathy and the GM. Their

research indicated that patients with diabetes exhibited an impaired

intestinal barrier due to decreased levels of short-chain fatty acid-

producing bacteria and increased levels of LPS-producing bacteria.

This imbalance led to a lower tolerance to antigens and increased
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systemic inflammation and potentially led to the development of

distal symmetric polyneuropathy (Yang et al., 2023). In summary, the

GM and its metabolites make significant contributions to the

development of diabetes and its chronic complications

(Ro et al., 2019).

However, there have been few studies focusing on the overall

variation in the GM throughout the progression from IGT to

diabetes, and the subsequent changes in the metabolites derived

from the GM and their impact on the expression of genes and

proteins also remain largely unclear, while which may be crucial in

elucidating the pathogenesis of diabetes and its associated chronic

complications. This study is dedicated to unveiling the complex

interactions between the GM and diabetes, including its precursory

states such as IGT. We conducted a comprehensive analysis of

published GM metagenomic sequencing data to identify

characteristic genera and the related functional pathways in

diabetes. Furthermore, we recruited 49 patients with IGT and 27

healthy volunteers (HC) to investigate changes in the GM, GM-

derived metabolites, plasma proteins, and gene expression in

peripheral leukocytes during IGT using multiomics approaches,

and explored the intimate relationships between these changes and

the disease progression. Based all above, we intended to clarify the

specific role of the GM and its metabolites in the pathogenesis of

diabetes and associated chronic complications, particularly how

they influence insulin sensitivity and glucose homeostasis in the

host through impacting metabolic pathways and inflammatory

responses, and these results may pioneer new avenues for the

prevention and treatment of hyperglycemia, especially slow down

or potentially reverse the progression of diabetes by modulating the

composition and function of the GM and/or supplementing the

metabolites derived from the GM.
Materials and methods

Datamining of published metagenomic
sequencing data of diabetes

We obtained metagenome raw data about diabetes from the

NCBI (National Center for Biotechnology Information) database

(https://www.ncbi.nlm.nih.gov/), and these fastq double-end

sequencing files were dehosted using Kneaddata (version 0.6.1)

and qulified in FastQC (version 0.11.8). Then, the qualified

sequences were merged using Concat (version 1.1.5) to obtain

clean reads, and information about the taxonomy and function

was acquired by mapping these clean reads to the METACYC

(Metabolic Pathways From All Domains of Life) database (https://

metacyc.org) using HUMAnN2 (version 2.8.1). The visualization of

the above results was achieved in R (version 4.2.2). The beta

diversity was visualized in principal component analysis (PCA)

based on Bray-Curtis’s distance, while the difference between

groups was further shown in the partial least squares discriminant

analysis (PLS-DA). The differential genera between groups were
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https://www.ncbi.nlm.nih.gov/
https://metacyc.org
https://metacyc.org
https://doi.org/10.3389/fcimb.2024.1423662
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhen et al. 10.3389/fcimb.2024.1423662
distinguished in the Wilcoxon rank-sum test and displayed in

barcharts. Heatmaps were used to demonstrate the differential

metabolic pathways. Prokka (version 1.14.6)-based annotation

was performed after merging the double-ended files using

Megahit (version 1.2.9), and the differential expressed genes

(DEGs) were presented in the volcano plot.
Subject recruitment and sample collection

In this study, all patients with IGT were recruited from the

Beijing University of Chinese Medicine Third Affiliated Hospital

(Beijing, 100029, China) under the diagnostic criteria that FPG was

within 6.1–7.0 mmol/L while 2hFPG was within 7.8–11.1 mmol/L.

For the patients with IGT recruited in our study, we ensured that

they were not taking any medications at all during the last 3 months

before enrollment, including anti-diabetic drugs. Unfortunately,

those subjects with serious diseases of other systems, such as the

circulatory system, hematopoietic system, digestive system, and

endocrine system, would be excluded, as would those infected

with HBV/HCV/HIV/Treponema pallidum. The female subjects

who were pregnant/breastfeeding/planning to be pregnant within 6

months and those subjects who participated in other clinical

research were also requested to drop out of this study.

Healthy volunteers with matched genders and ages were

enrolled as the HC group from Beijing University of Chinese

Medicine (Beijing 102488, China), and their FPGs were within

3.9–6.1 mmol/L, while 2hFPGs were less than 7.8 mmol/L. There

were no abnormal indices in the physical examination, including

routine blood/urine tests, liver and kidney function, blood lipids,

and glycosylated hemoglobin. No medication history in the past 3

weeks before inclusion, especially drugs regulating gastrointestinal

motility, gastric acidity inhibitors, microecological agents

and immunosuppressants.

According to the approved protocol, fecal and blood samples

were collected in the hospital and transferred to the laboratory

within 2 hours (fecal samples: on dry ice; blood samples: on ice). In

the laboratory, the collected blood samples in 10 ml EDTA tubes

(BD, New York, USA) were centrifuged at 500 G for 30 min, and the

supernatant plasma sample was transferred into another Eppendorf

tube. Five milliliters of erythrocyte lysis buffer (Solarbio, Beijing,

China) was added to the remaining precipitated cells, and the tube

was placed on ice for 15 min. Then, the cells were centrifuged at 500

G for 15 min, and the supernatant was removed. The above lysis

step was repeated three or four times until there was no visible red

precipitate after centrifugation. Added 2 ml of 1 × PBS solution to

the precipitated cells, blowed the mixture gently and centrifulgated

with 500 G for 30 min once more. After that, the supernatant was

transferred, and 1 ml TRIzol reagent (Thermo Fisher Scientific,

Waltham, USA) was added to the precipitate, which was the

peripheral leukocyte sample used for mRNA sequencing. Fecal

samples were stored in fecal collectors and separated into 3

Eppendorf tubes. All samples were stored at -80 °C for the

downstream experiments.
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Illumina sequencing of 16S rDNA and
bioinformatic analysis

Fecal samples from the IGT and healthy groups were processed

for microbial genomic DNA extraction using the PF Mag-Bind

Stool DNA Kit (Omega, Norcross, USA). Firstly, grinded 0.5 g of

fecal sample with 250 mg magnetic beads and 700 µL sodium

lithium xylene (SLX) in a 2 mL tube at 45 Hz for 5 min; then added

70 µL denaturing solution (DS) buffer and incubated at 70 °C for 10

min and at 95 °C for 2 min. After that, centrifuged the sample at

13000 G for 5 min, and collected 500 µL supernatant to mix with

170 µL protein precipitation buffer and 170 µL high throughput

recovery (HTR), then incubated in ice for 5 min. Centrifuged again

(13000 G, 5min), and combined 450 µL supernatant with 450 µL

XP5 buffer and 40 µL magnetic beads, reacted for 8 min and

magneted by the frame, discarded the raffinate and washed the

beads with XP5 buffer, poly-b-hydroxybutyrate (PHB), and sterile

purified water (SPW), successively. Finally, centrifuged the beads

for several seconds (13000 rpm) and discarded the raffinate, dried

them by airing for 8 min. The genomic DNA from GM in the feces

was absorbed on the surface of the beads and was eluted with

elution buffer. DNA integrity was checked using 1% agarose gel

electrophoresis, and concentration and purity were measured with a

NanoDrop2000 (Thermo Fisher Scientific, Waltham, USA). Using

the extracted DNA as a template, PCR amplification of the V3-V4

variable region of the 16S rDNA gene was performed. The forward

primer 338F (5’-ACTCCTACGGGAGGCAGCAG-3’) and the

reverse primer 806R (5’-GGACTACHVGGGTWTCTAAT-3’),

both containing barcode sequences, were used. The amplification

profiles were constructed according to previous studies (Lawley and

Tannock, 2017; Zafeiropoulos et al., 2020). Quality control of the

paired-end raw sequencing reads was performed using fastp

(https://github.com/OpenGene/fastp, version 0.19.6). The reads

were then assembled using Fast Length Adjustment of Short

Reads (FLASH; http://www.cbcb.umd.edu/software/flash, version

1.2.11). Operational taxonomic unit (OTU) clustering of the

sequences was conducted using UPARSE (http://drive5.com/

uparse/, version 11) at 97% similarity. The representative

sequence of each OTU was assigned to the SLIVA 138/16S rDNA

bacteria database (https://www.arb-silva.de/) to obtain

taxonomic information.

The bacterial community richness, evenness and diversity were

assessed with alpha indexes, for example, the Sobs, Shannon,

Simpson, ACE and Chao indexes, and the beta diversity was

visualized in principal coordinate analysis (PCoA) and Adonis

analysis based on Bray-Curtis’s distance, while the difference

between groups was further shown in the PLS-DA. The function

of the GM was predicted by assigning 16S rDNA genes to the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database (https://

www.kegg.jp). The differential genera/KEGG orthologies (KOs)

were distinguished with the Wilcoxon rank-sum test and linear

discriminant analysis effect size (LEfSe) analysis. Afterward, the

area under the curve (AUC) in the receiver operating characteristic

(ROC) curve was used to evaluate the diagnostic value of the key
frontiersin.org

https://github.com/OpenGene/fastp
http://www.cbcb.umd.edu/software/flash
http://drive5.com/uparse/
http://drive5.com/uparse/
https://www.arb-silva.de/
https://www.kegg.jp
https://www.kegg.jp
https://doi.org/10.3389/fcimb.2024.1423662
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhen et al. 10.3389/fcimb.2024.1423662
differential genera, and the related pathways were obtained by

mapping the differential KOs to the KEGG database. Spearman’s

correlation coefficient was used to assess the relationship between

genera and the metabolites in the plasma.
Construction of metabolite profiles in
plasma and bioinformatic analysis

Plasma samples were thawed at 4°C, and 100 mL samples were

transferred into a 1.5 mL centrifuge tube. Next, 400 mL extraction

solution (methanol: acetonitrile, 1:1, V: V) with 0.02 mg/mL L-2-

chlorophenylalanine was added to the tube, which was vortexed for

30 s and then extracted with ultrasound (40 Hz) at 5°C for 30 min.

After that, the sample was placed at -20°C for 30 min and centrifuged

for 15 min (13000 G, 4°C), and the supernatant was blown with

nitrogen until the powder appeared. A 100 mL mixed solution

(acetonitrile: water, 1:1, V: V) was used to dissolve the extracted

powder, which was vortexed for another 30 s and extracted with

ultrasound (40 Hz) at 5°C for another 5 min. The supernatant

obtained after centrifugation for 10 min (13000 G, 4°C) was

transferred to the injection vial for detection. The quality control

sample was a mixture of 20 mL of supernatant from every sample.

The detection of the metabolites in this study used UHPLC-Q

Exactive HF-X (Thermo Fisher Scientific, Waltham, USA) and an

ACCQUITY UPLCHSS T3 chromatographic column (100 mm × 2.1

mm i.d., 1.8 mm; Waters, Milford, USA); mobile phase A was a water

solution containing 5% acetonitrile and 0.1% formic acid, while

mobile phase B was a water solution containing 47.5% acetonitrile,

47.5% isopropanol and 0.1% formic acid. The injection volume was 2

mL, and the column temperature was 40°C. The elution procedure

was as follows: 0–3.5 min, 100% A, 0.4 mL/min; 3.5–5 min, 75.5% A,

24.5% B, 0.4 mL/min; 5–5.5 min, 65% A, 35% B, 0.4 mL/min; 5.5–7.4

min, 100% B, 0.4 mL/min; 7.4–7.6 min, 100% B, 0.6 mL/min; 7.6–7.8

min, 48.5% A, 51.5% B, 0.6 mL/min; 7.8–9 min, 100% A, 0.5 mL/min;

and after 9th min, 100% A, 0.4 mL/min. Electrospray ionization was

used to separate the compound further, and the mass spectrum signal

was collected in both positive and negative ion modes. The spray

voltages were 3500 V (+) and 3500 V (-), and the normalized collision

energies were set as 20, 40 and 60 eV. Full scan mode (m/z ranged

from 70 to 1050) was performed with the resolution set at 60000 for

the full MS scans and 7500 for MS2 scans. The MS conditions were a

heater temperature of 425°C, capillary temperature of 325°C, sheath

gas flow rate of 50 arbitrary units, and aux gas flow rate of 13 arbitrary

units. A quality control sample was injected at regular intervals, such

as every 5–15 samples, to monitor the test stability.

Original data were processed with Progenesis QI software

(Waters, Milford, USA) to obtain the data matrix, including

retention time, m/z and peak intensity. First, the metabolites were

identified by searching the characteristic peaks in databases, such as

The Human Metabolome Database (HMDB; https://hmdb.ca/) and

METLIN database (https://metlin.scripps.edu/landing_page.php?

pgcontent=mainPage). The differential metabolites were screened

based on the criteria of P < 0.05 and fold change (FC) > 1.1 or < 0.9

and visualized as a volcano plot, OPLS-DA (orthogonal PLS-DA)
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and heatmap. The related pathways were obtained by mapping the

differential metabolites to the KEGG database.
Construction of protein profiles in plasma
and bioinformatic analysis

Eight M urea solution was added to the frozen plasma sample,

and the proteins with low abundances were quantified and enriched

according to the instructions of the kits (ProteoMiner™ Protein

Enrichment Kit, Bio-Rad, Hercules, USA). Then, triethylammonium

bicarbonate buffer (TEAB) was added to a 100 mg sample with a final

concentration of 100 mM, as well as tris-(2-carboxyethyl) phosphine

with a final concentration of 10 mM, and the mixture was reacted for

60 min at 37°C. Iodoacetamide was added at a final concentration of

40 mM, and the reaction needed 40 min at room temperature in the

dark. Centrifugation was performed for 20 min at 10000 G, and the

precipitate was redissolved in 100 mL of 100 mMTEAB. The proteins

were hydrolyzed using trypsin 1:50, m: m at 37°C to obtain peptide

segments, which were dried in a vacuum centrifugal concentrator

(Huamei, Taicang, China) and redissolved in a solution containing

1% trifluoroacetic acid. These peptide segments were desalinated with

a hydrophilic lipophilic balance and quantified after drying in a

vacuum centrifugal concentrator according to the instructions of the

kits (Thermo Fisher Scientific, Waltham, USA). The peptide

segments were dissolved with loading buffer for the downstream tests.

The detection of the proteins used Vanquish F-Q Exactive HF-

X (Thermo Fisher Scientific, Waltham, USA) and a C18 column (75

mm×25 cm, Thermo Fisher Scientific, Waltham, USA). A 2% or

80% acetonitrile solution containing 1% formic acid was used as the

mobile A or B phase, respectively. The flow rate was 300 nL/min,

and the procedure was as follows: 0–70 min, 5% B; 70–90 min, 23%

B; 90–100 min, 29% B; 100–102 min, 38% B; 102–103 min, 48% B;

103–120 min, 100% B. The scan mode ranged from 300 to 1500 m/

z, the dissociation used the higher energy mode, and 40 variable

windows were set.

Raw data acquired in Thermo Xcalibur (version 4.0, Thermo

Fisher Scientific, Waltham, USA) were retrieved using Proteome

Discoverer Software (version 2.4) to construct the digital

fingerprints, which were imported into Spectronau (version 16) to

select the ion peak, and the quantitative results were obtained based

on the calculation of the peak area. The differential proteins were

screened based on the criteria of P < 0.05 and FC > 1.2 or < 0.83 and

visualized as a heatmap. The related pathways were obtained by

mapping the differential proteins to the KEGG database.
Illumina sequencing of mRNA in peripheral
leukocytes and bioinformatic analysis

Total RNA in peripheral leukocytes was extracted using TRIzol

individually, and the integrity was tested using agarose gel

electrophoresis. The mRNA sequencing library for the Illumina

HiSeq platform was built according to the instructions of the

NEBNext® Ultra™ RNA Library Prep Kit (Illumina, California,
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USA). Clean reads were obtained after filtering and GC distribution

checking, which were assigned to the genome using HISAT2

software (https://ccb.jhu.edu/software/hisat2/manual.shtml#usage,

version 2.2.1). The quantitative analysis of the genome was

performed in subread software (http://subread.sourceforge.net/,

version 2.0.1), and the DEGs needed to satisfy the criterion of |

log2FC| ≥ 1 and P < 0.05, which was visualized as a heatmap. The

related pathways were identified by mapping the DEGs to the

KEGG database.
Purification and isolation of peritoneal
neutrophils from mice

Ten percent peptone (Sigma, Saint Louis, USA) was injected

twice into the peritoneum of 6- to 8-week-old male C57BL/6N mice

within 12 h, with a dosage of 1 mL every time. After 3 h of the

second injection, the mice were killed, the skin was separated from

the peritoneal wall under aseptic conditions, 1640 medium (Sigma,

Saint Louis, USA) containing 10% fetal bovine serum (FBS, Sigma,

Saint Louis, USA) was injected intraperitoneally, and the mice were

vibrated for 5 min to obtain abdominal lavage fluid. This fluid was

transferred to a centrifuge tube after filtering with a membrane of 70

mm (Corning, Corning, USA) and centrifuged for 10 min (1500

rpm) to obtain sediments. The cells were then resuspended in 1640

medium containing 10% FBS gently. Percolls with different

densities (70.2% and 54.8%, Sigma, Saint Louis, USA) were mixed

to dissociate the different cells. One milliliter of abdominal cell

suspension was added to the separation liquid and centrifuged for

30 min (500 G), and then the neutrophils were placed between the

two densities. The neutrophils were transferred to a new centrifuge

tube, 1× PBS (1:1, V:V) was added, the cells were mixed well and

centrifuged for 10 min (1000 rpm), and the supernatant was

removed. The above centrifugation was repeated once more, and

the neutrophils were resuspended in 1×PBS (1:1, V:V) and cultured

at 37°C in a 5% CO2 incubator. Then, 100 ml of PBS solution with

cells was added to an Eppendorf tube, to which 10 mL of Ly6g

antibody (Abcam, Cambridge, UK) was added and left on ice for 40

min, and the purity of the cells was examined by fluorescence

activated cell sorting (Supplementary Figure 1).
Cell culture

HepG2 cells (ATCC, Rockefeller, USA) and neutrophils from

the abdominal cavity of mice (C57BL/6N, Beijing SYXK (Jing)

2017–0033, Vitalriver, Beijing, China) were cultured to explore the

effect of sodium taurodeoxycholate (TUDCA; YUANYE, Shanghai,

China) and carnosine (CARN; Sigma, Saint Louis, USA) on the

organism as GM metabolites. Cellular drug delivery concentration

determined by the CCK8 (BIORIGIN, Beijing, China) assay. In the

culture of HepG2 cells, the intervening concentration of TUDCA

was 0.2 mmol/L, 0.4 mmol/L, and 0.8 mmol/L, while CARN was
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given as 50 mmol/L, 100 mmol/L and 150 mmol/L, and the

supernatant and the cells were collected for western blotting and

real-time qPCR (RT-qPCR) after 24 h. In the culture of neutrophils,

LPS (1 mg/mL, Sigma, Saint Louis, USA) was used to induce the

secretion of IL-6 (interleukin-6), and TUDCA was given as 0.2

mmol/L, 0.4 mmol/L, and 0.6 mmol/L, while CARN was given as 10

mmol/L, 20 mmol/L and 40 mmol/L. The supernatant and the cells

were collected for enzyme-linked immunosorbent assay (ELISA)

and RT-qPCR after 4 h.
RT-qPCR

RNA was extracted from cells with an RNA extraction kit

(Accurate Biology, Changsha, China). Reverse transcription was

conducted using a reverse transcription kit (Accurate Biology,

Changsha, China), with reaction conditions consisting of a 15-min

pre-treatment at 37°C, a 5-sec reaction at 85°C, and then a

maintainment at 4°C. RT-qPCR was performed using a Bio-Rad

CFX96 Real-Time PCR System (Bio-Rad, Hercules, USA). The PCR

procedure followed standard thermocycling parameters: an initial

denaturation at 95°C for 30 min, followed by 40 cycles that

including a 5-sec reaction at 95°C and a 30-sec reaction at 60°C in

each cycle. The primers were as follows: insulin-like growth factor

binding protein-3 (IGFBP-3; 5’-AGAGCACAGATACCCAGAACT-

3’, 5’-GGTGATTCAGTGTGTCTTCCATT -3’) and IL-6 (5’-CTGC

AAGAGACTTCCATCCAG-3’, 5’-AGTGGTATAGACAGGTCT

GTTGG -3’).
Western blotting and ELISA

Protein extraction was performed using RIPA buffer (Salorbnio,

Beijing, China) at 4°C for 30 min, and then centrifugation was

conducted at 4°C, 14000 G for 20 min to collect the supernatant,

which was used to detect the protein content for quantitative

analysis with a Pierce™ BCA protein quantification kit (Thermo

Fisher Scientific, Waltham, USA). IGFBP-3 was determined

through western blotting (Abcam, Cambridge, UK), while

interleukin-17C (IL-17C) and IL-6 were determined through

ELISA (BIORIGIN, Beijing, China; CLOUD-CLONE CORP,

Wuhan, China).
Statistical analysis

Statistical calculations were performed using SPSS software

(version 25.0, SPSS Inc., Chicago, USA). The normalization of

distribution was assessed using the Kolmogorov-Smirnov or

Shapiro-Wilk test, and then the independent sample t test or

Mann-Whitney U test was used for the analysis of variables. The

chi-square test was used to analyze the counting data. A significant

difference was declared at P < 0.05.
frontiersin.org

https://ccb.jhu.edu/software/hisat2/manual.shtml#usage
http://subread.sourceforge.net/
https://doi.org/10.3389/fcimb.2024.1423662
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhen et al. 10.3389/fcimb.2024.1423662
Results

Gut metagenome analysis of patients
with T2D

In this study, we collected a total of 465 metagenomic samples

related to GM, which comprised 225 samples from patients with T2D

and 240 samples from healthy volunteers. Subsequently, all the

dehosted fastq files met the quality control criteria and were eligible

for downstream analysis. PCA based on the Bray-Curtis distance

showed no discernible distinction between the T2D and HC groups.

(Figure 1A), while the separation between groups was magnified and

displayed in the PLS-DA (Figure 1B), and 29 differential genera were

screened in the Wilcoxon runk-sum test, including Faecalibacterium,

Blautia, Prevotella, Bifidobacterium, Ruminococcus, Subdoligranulum,

Collinsella, and Gordonibacter (Figure 1C; Supplementary Table 1).

Following functional gene mapping, a total of 7832 genes were

identified, including 732 upregulated genes and 189 downregulated

genes in patients with T2D (Figure 1D). Based on the taxonomic and

functional gene annotations, further exploration was conducted on

the metabolic pathways and related microbial species (Supplementary

Table 2). Two pathways, namely, cholate degradation and L-histidine

biosynthesis, caught our attention and the related species were

presented in Figures 1E.

During the cholate degradation process (Figure 2A), certain genes

played crucial roles, including cholate-CoA ligase (Cs), choloyl-CoA

3-dehydrogenase (Cs), 3-dehydrodeoxycholate reductase (Cs), and

12-a-hydroxy-3 oxochola-4,6-dienoate6-reductase (Cs). These genes,
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identified as DEGs between the T2D and HC groups, contribute to

the conversion of cholate into deoxycholate. The genes encoding

transferase, dehydratase and dehydrogenase, for instance, ATP

phosphoribosyltransferase, phosphoribosyl-ATP diphosphatase,

imidazoleglycerol-phosphate dehydratase HisB, and histidinol

dehydrogenase, were all involved in the DEGs between the T2D

and HC groups and mapped in the L-histidine biosynthesis process

(Figure 2B). Meanwhile, 5 gut microbial species were found to be

correlated with the above two pathways, and they all exhibited

reduced relative abundances in patients with T2D (Figure 1E). In

addition, the metabolic pathways related to all differential GM were

revealed in heatmaps (Figures 2C–G; Supplementary Figure 2).

Except for cholate degradation and L-histidine biosynthesis, the

pathways enriched in amino acid metabolism and glycometabolism

were highly prominent. These pathways encompassed pyruvate

fermentation to isobutanol (engineered), L-valine biosynthesis, the

superpathway of L-threonine biosynthesis, L-isoleucine biosynthesis I

(from threonine), L-arginine biosynthesis, the citrate cycle (TCA

cycle), the pentose phosphate pathway, and glycolysis (Figures 2C–G;

Supplementary Figure 2).
Clinical characteristics of the IGT and
healthy subjects

In total, 49 IGT patients and 27 HC volunteers were included. All

baseline details are shown in Supplementary Table 3. There was no

difference between the IGT and HC groups in terms of sex, age,
B

C

DA

E

FIGURE 1

Difference in GM metagenome between patients with T2D and healthy volunteers. (A) Beta diversity based on Bray-Curtis distance in PCA. (B) PLS-DA.
(C) Differential genera in the Wilcoxon rank-sum test. (D) Volcano plots of the GM gene profiles in patients with T2D and HC volunteers. (E) Differential
species in cholate degradation and L-histidine biosynthesis. HC, healthy control; T2D, type 2 diabetes; PC, principal component; COMP, component;
GM, gut microbiota; PCA, principal component analysis; PLS-DA, partial least squares discriminant analysis. *P<0.05, **P<0.01, ***P<0.001.
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height, weight, and BMI (body mass index, Supplementary Tables 4–

11), while there were significant increases in FPG and 2hFPG in the

patients with IGT (Supplementary Tables 5, 9, 11, 13; FPG: GM, P =

0.003, metabolome, P = 0.008, proteome, P = 0.031, mRNA

sequencing, P = 0.012; 2hFPG: GM, P = 0.009, metabolome, P =

0.006, proteome, P = 0.004, mRNA sequencing, P = 0.009). However,

the liver and kidney function indices in the patients with IGT also

displayed alterations, such as a decline in the concentration of alanine

aminotransferase (ALT; Supplementary Tables 5, 7, 9, 11; GM, P =

0.005, metabolome, P = 0.006, proteome, P = 0.015, mRNA

sequencing, P = 0.017) and rising concentrations of aspartate

transaminase (AST), uric acid (UA), creatinine (CREA) and blood

urea nitrogen (BUN) (Supplementary Tables 5, 7, 9, 11; AST:
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proteome, P = 0.033, mRNA sequencing, P = 0.021; UA: GM, P =

0.008, metabolome, P = 0.007, proteome, P = 0.002, mRNA

sequencing, P = 0.011; CREA: metabolome, P=0.044, proteome, P

= 0.042, mRNA sequencing, P = 0.031; BUN: GM, P = 0.024,

metabolome, P = 0.001, proteome, P = 0.024, mRNA sequencing, P

= 0.017). Notably, lipid metabolism exhibited disorder in patients

with IGT (Supplementary Tables 5, 7, 9, 11), for example, decreases in

the concentrations of total cholesterol (TC; proteome, P=0.021,

mRNA sequencing, P=0.023), triglyceride (TG; GM, P=0.008,

proteome, P=0.009, mRNA sequencing, P=0.017), high-density

lipoprotein (HDL; GM, P = 0.003, metabolome, P = 0.032,

proteome, P=0.017, mRNA sequencing, P=0.011) and low-density

lipoprotein (LDL; proteome, P=0.021).
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FIGURE 2

Key differential metabolic pathways between patients with T2D and healthy volunteers. (A) Cholate degradation. (B) L-histidine biosynthesis.
(C-G) Overview heatmap of metabolic pathways related to differential species between T2D and HC groups in cholate degradation and L-histidine
biosynthesis. HC, healthy control; T2D, type 2 diabetes.
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Differences in GM between the IGT and
HC groups

There was no significant difference observed in the richness,

evenness, and diversity of the bacterial community between the IGT

and HC groups as the similar values of alpha diversity indexes (Sobs,

Shannon, Simpson, ACE, and Chao) (Figure 3A; Supplementary

Figure 3). However, the PCoA and PLS-DA analysis revealed a

distinct separation in the distribution between patients with IGT

and HC volunteers based on the Bray-Curtis distance (Figures 3B, C).

Moreover, the relative abundances of the genera in the IGT group

altered significantly, and 21 genera were screened in the Wilcoxon

rank-sum test, as well as 45 genera in LEfSe analysis (Supplementary

Tables 12, 13), and there were 19 genera in common in both

(Figure 3D), including some predominant genera with relative

abundance > 1%, such as Faecalibacterium, Fusicatenibacter,

Blautia and Lachnoclostridium . Significantly, Blautia ,

Faecalibacterium and Dorea displayed the same alterations in both

T2D and IGT patients (Figures 1C, 3D). In addition, ROC curve was

constructed based on Blautia, Fusicatenibacter and Butricococcus, and

the AUC was 0.97, which displayed credible diagnostic value

(Supplementary Figure 4).
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Differential plasma metabolites between
the IGT and HC groups

There were 56 metabolites that showed different concentrations

between IGT patients and HC volunteers. Among these metabolites,

22 significantly increased in the IGT group, while 34 decreased

dramatically (Figure 4A; Supplementary Table 14). This resulted in

a clear separation between the groups in the OPLS-DA (Figure 4B).

Furthermore, this difference was even more pronounced in the

heatmap (Figure 4C). Notably, the metabolite involved in secondary

bile acid metabolism and derived from the GM - TUDCA, showed a

decreasing trend in patients with IGT, and similar changes were

observed in numerous metabolites involved in amino acid

metabolism, including tryptophyl-methionine, tryptophyl-valine,

and Trp-P-1, the latter being a carcinogenic heterocyclic amine.
Differential plasma proteins between the
IGT and HC groups

A total of 172 proteins exhibited significant differences between the

IGT and HC groups. Twenty-one proteins showed decreased
B

C D

A

FIGURE 3

GM in IGT and HC groups. (A) Alpha indices represented the bacterial community richness, evenness and diversity. (B) Beta diversity based on Bray-
Curtis’s distance in PCoA and Adonis analysis. (C) PLS-DA. (D) Differential genera both screened in the Wilcoxon rank-sum test and LEfSe analysis.
HC, healthy control; IGT, impaired glucose tolerance; PC, principal component; COMP, component; GM, gut microbiota; PCoA, principal coordinate
analysis; PLS-DA, partial least squares discriminant analysis; LEfSe, linear discriminant analysis effect size. *P<0.05, **P<0.01, ***P<0.001.
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expression levels in the IGT group, while 151 proteins showed

increased expression levels (Supplementary Table 15). The heatmap

(Figure 4D) displayed some of these proteins, with a noteworthy

observation that most of them were immunoglobulins. Additionally,

certain proteins resembled blood coagulation factors and proteases,

such as lysozyme C and carboxypeptidase. Interestingly, the insulin

sensitizing hormone adiponectin D exhibited downregulation in the

IGT group, while insulin-like growth factor II (IGF II) and IGFBP-3

were upregulated (Supplementary Table 15).
Frontiers in Cellular and Infection Microbiology 10
DEGs in peripheral leukocytes between the
IGT and HC groups

A total of 2561 DEGs were identified between IGT patients

and HC volunteers. Among these DEGs, 1725 genes were

upregulated in peripheral leukocytes in patients with IGT, while

836 genes were downregulated (Supplementary Table 16).

Figure 4E displayed the immune- and endocrine-related DEGs.

The heatmap revealed that these DEGs included clusters of
B

C

D E

A

FIGURE 4

Differential plasma metabolites, proteins and DEGs in peripheral leukocytes in IGT and HC groups. (A) Volcano plots and (B) PLS-DA based on the
plasma metabolite profiles in patients with IGT and HC volunteers. (C) Heatmap based on the differential plasma metabolites, (D) the representative
differential plasma proteins and (E) the representative DEGs in peripheral leukocytes between IGT and HC groups. HC, healthy control; IGT, impaired
glucose tolerance; FC, fold change; OPLS-DA, orthogonal partial least squares discriminant analysis; DEG, differential expressed gene.
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differentiation (CDs) that regulate the differentiation and

activation of leukocytes. Examples of downregulated CDs in the

IGT group were CD80/180/302, while upregulated CDs were

CD83/177. Additionally, numerous inflammatory genes, such as

IL-6/10/11/12/13/17/27, tumor necrosis factors (TNFs), NFkB
inhibitors, and matrix metallopeptidases (MMPs, MMP-9/23/

28), were observed in patients with IGT (Supplementary

Table 16). Notably, the gene encoding lipocalin 2 (LCN2) was

also significantly upregulated in the IGT group (Figure 4E).

Furthermore, the expression of pattern recognition receptors

varied, with G protein-coupled receptors (GPR) 3/42/84/87

showing upregulation and GPR15/79/171 demonstrating

downregulation (Figure 4E; Supplementary Table 16).
Functional changes in KEGG pathways
between the IGT and HC groups

The 16S rDNA gene was annotated using TAX4FUN (version

0.3.1) and mapped to the KEGG database, resulting in the

identification of 6022 KOs (Supplementary Table 17). To

identify differential KOs between IGT and HC groups, we

conducted Wilcoxon rank-sum tests and LEfSe analysis. In the

former, 2682 KOs showed significant differences (P < 0.05,

Supplementary Table 18), while the latter identified 408 key

differential KOs shared in both analyses (LDA (linear

discriminant analysis) > 2 and P < 0.05, Supplementary

Table 19). Subsequently, we identified 144 KEGG pathways

(Supplementary Table 20), several of which were related to

glycometabolism, including the TCA cycle, glycolysis/

gluconeogenesis, fructose and mannose metabolism, and

galactose metabolism (Supplementary Table 20; Figure 5).

Additionally, pathways associated with well-known bacterial

metabolites, such as propanoate and butanoate, were also

identified (Supplementary Table 20; Figure 5), and pathways

involved in the regulation of blood glucose, such as insulin and

glucagon signaling were also identified, as well as inflammatory

pathways, including Th17 cell differentiation, IL-17 signaling

pathway, AMPK signaling pathway, and PI3K-Akt signaling

pathway (Supplementary Table 20; Figure 5). Interestingly, the

KEGG pathways associated with differential metabolites/proteins

in the plasma and the DEGs in peripheral leukocytes also

exhibited involvement in endocrine and immune functions

(Figure 5; Supplementary Tables 21–23). This finding suggests

that these processes may play crucial roles in the progression of

diabetes and its accompanying vasculopathy. Moreover, we found

the pathway associated with histidine metabolism to be

consistently present in all functional analyses. A metabolite in

plasma linked to this pathway was identified as CARN (Figure 5;

Supplementary Table 21).
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FIGURE 5

Key KEGG pathways mapped by differential KOs in GM, differential
plasma metabolites/proteins and DEGs in peripheral leukocytes
between IGT and HC groups. KEGG, Kyoto Encyclopedia of Genes
and Genomes; KO, KEGG orthology; IGT, impaired glucose
tolerance; DEG, differential expressed gene; HC, healthy control.
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TUDCA and CARN derived from the GM
regulated blood glucose and inflammation
by inhibiting the expression of IGFBP-3
and IL-6

To explore the regulatory mechanisms of GM on blood glucose

and inflammation, we focused on the metabolites TUDCA and

CARN, both of which were decreased in IGT (Figures 6A, B). It is

well established that TUDCA production is closely related to GM.

However, there is currently no research reporting the influence of

GM on the biosynthesis of CARN. Interestingly, among the predicted

KOs based on the 16S rDNA genes, K00817 (histidinol-phosphate

aminotransferase) - the gene that monitors CARN production -

showed a reduction in expression in the IGT group (Figure 6C).

Previous studies have demonstrated the ability of the GM to

synthesize alanine and histidine. However, it is important to note

that the synthesis of these amino acids serves as the rate-limiting step

in myostatin synthesis. This suggests that GM can potentially supply

precursor species for the synthesis of CARN. Analysis of Spearman’s

correlation coefficients revealed that only Faecalibacterium (R=0.82,

P=0.04; R=0.71, P=0.03) exhibited a positive influence on the

product ion of both TUDCA and CARN (Figure 6D;

Supplementary Figure 5). In contrast, Anaerostipes (R=-0.56,

P=0.04; R=-0.61, P=0.02), unclassified f_Lachnospiraceae (R=-0.48,

P=0.03; R=-0.71, P=0.01), Ruminococcus gnavus group (R=-0.48,
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P=0.02; R=-0.68, P=0.04), Eubacterium hallii group (R=-0.55,

P=0.02; R=-0.66, P=0.04), Peptostreptococcus (R=-0.56, P=0.03; R=-

0.81, P=0.02), and Blautia (R=-0.72, P=0.01; R=-0.48, P=0.02) all

displayed negative correlations with the concentrations of these two

metabolite (Figure 6D; Supplementary Figure 5), and Blautiawas also

considered to be one of the potential biomarkers in the ROC curve

(Supplementary Figure 4). As mentioned in previous research,

TUDCA has been identified as a regulator of inflammation

progression, while CARN has the ability to impact blood glucose

levels by monitoring the expression of IGFBP (Wang et al., 2018;

Kusaczuk, 2019). Fortunately, we identified IGFBP-3 among the

differential proteins in plasma and IL-6 among DEGs obtained

from mRNA sequencing of leukocytes as targets influenced by

TUDCA and CARN. Consistent with our expectations, the levels of

both IGFBP-3 and IL-6 increased significantly in patients with IGT

(Figures 6E, F). Furthermore, in the subsequent cell experiments,

TUDCA and CARN exhibited remarkable inhibitory effects on

IGFBP-3 and IL-6, respectively (Figures 6G–N). In summary,

patients with IGT demonstrated decreased levels of TUDCA and

CARN, which originate from GM dysbiosis. This decrease led to a

reduced suppression on the expression of IGFBP-3 and IL-6.

Overexpression of these proteins may play significant roles in

insulin resistance and the development of vasculopathy during the

onset of diabetes (Rahman et al., 2007; Cleland et al., 2013; Alwin

Robert and Al Dawish, 2019; Malone and Hansen, 2019) (Figure 7).
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FIGURE 6

TUDCA and CARN derived from the GM regulated blood glucose and inflammation by inhibiting the expression of IGFBP-3 and IL-6. (A) TUDCA and
(B) CARN decreased significantly in the plasma of IGT group. (C) The predicted KO based on the 16S rDNA gene related to the synthesis of CARN
were downregulated in the IGT group. (D) Genera related to TUDCA and CARN based on the Spearman’s correlation coefficient. (E) IGFBP-3 and (F)
IL-6 were both increasing in the IGT group. (G-J) TUDCA and CARN inhibited the expression of IGFBP-3 in the HepG2 cells. (K-N) TUDCA and
CARN inhibited the expression of IL-6 induced by LPS in neutrophils from mice. HC, healthy control; IGT, impaired glucose tolerance; GM, gut
microbiota; KO, KEGG orthology; TUDCA, taurodeoxycholic acid; CARN, carnsine; IGFBP-3, insulin-like growth factor binding protein-3; IL-6,
interleukin-6; LPS, lipopolysaccharide. (A–F) *P<0.05, **P<0.01, ***P<0.001; (G–J) Comparing with blank control group (0 mM) *P<0.05, **P<0.01,
***P<0.001; (K-N) Comparing with group intervened with only LPS *P<0.05, **P<0.01, ***P<0.001.
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Discussion

This study investigated the GM metagenome in patients with

T2D, and the results revealed that variations in cholate and histidine

metabolism, which are associated with changes in GM, played

significant roles in diabetes. The prominent genera identified

inc luded Bac t e ro ide s , P r evo t e l l a , Fae ca l i bac t e r ium,

Bifidobacterium, Ruminococcus, Blautia, and Lachnoclostridium.

This is highly similar to previous studies (Gurung et al., 2020;

Yang et al., 2021). Subsequently, to investigate the specific

mechanisms by which the GM and its metabolites contribute to

the development of diabetes and its complications, we recruited

individuals with IGT, representing the prediabetic state, along with

healthy volunteers. Testing included 16S rDNA sequencing, mRNA

sequencing of peripheral leukocytes, plasma metabolome, and

proteome. Encouragingly, we discovered that TUDCA, a

component of cholate metabolism, and CARN, a downstream

metabolite of histidine, both originating from the GM, played

crucial roles in regulating blood glucose levels and vascular
Frontiers in Cellular and Infection Microbiology 13
inflammation. The increased abundance of Blautia in GM,

coupled with the decreased abundance of Faecalibacterium, leads

to reduced synthesis of TUDCA and CARN in the plasma. Previous

studies have also found abnormal expression of TUDCA in patients

with diabetes, as well as the precursors of CARN -histine and

alanine - in diabetic mice (Chen et al., 2019; Guasch-Ferre et al.,

2020; Liu et al., 2021). Consequently, the significant reduction in the

expression of IGFBP-3 and IL-6, as a result of the inhibitory effects

of these metabolites, leads to the emergence of abnormal blood

glucose levels and the accompanying vasculopathy during the

occurrence of diabetes in this study.

Undoubtedly, the GM possesses the capacity to ferment food

components into metabolites that can be absorbed by the body.

These metabolites, in turn, play pivotal roles in regulating nutrient

intake, energy metabolism, and immune homeostasis within the

organism (Len et al., 2004; Medini et al., 2005; Bhardwaj and

Somvanshi, 2017; Zhang et al., 2017). The dysbiosis of the GM in

patients with diabetes has been extensively investigated (Sato et al.,

2014; Fernandes et al., 2019). The most extensively studied
FIGURE 7

GM and its associated metabolites dysbiosis caused hyperglycemia and the related vasculopathy. GM, gut microbiota; TUDCA, taurodeoxycholic
acid; CARN, carnosine; IGFBP-3, insulin-like growth factor binding protein-3; IL-6, interleukin-6; IGF, insulin-like growth factor.
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mechanism involves the reduction in butyrate-producing bacteria,

which leads to a consequent decrease in the concentration of

butyrate (Noureldein et al., 2020; Arora and Tremaroli, 2021).

However, Faecalibacterium, the representative butyrate-producing

bacteria (Zhou et al., 2018), was also found in our study - both in

T2D and IGT research, which indicated the significance of short-

chain fatty acid metabolism in diabetes occurrence. Unfortunately,

we did not identify short-chain fatty acids as differential metabolites

between the T2D/IGT and HC groups in our study. However,

throughout the entire research process, from IGT to T2D, we

consistently focused on studying the metabolism of cholate and

L-histidine. Previous studies have shown that alterations in cholate

impact fat digestion and glucose metabolism, enhance insulin

sensitivity and reduce hepatic glucose production through the

farnesoid X receptor (Watanabe et al., 2006). The pathway related

to L-histidine biosynthesis plays a critical role in regulating

inflammation and oxidative stress, while both these two were key

elements in the pathogenesis of T2D (Miyazaki et al., 2019).

Notably, L-histidine can be converted into histamine and CARN,

the substances that potentially benefit insulin sensitivity and anti-

inflammatory responses (Hirasawa, 2019). Therefore, these two

metabolic pathways not only play central roles in the progression

of T2D, but also may serve as potential targets for the

future treatments.

Blautia, a widely present probiotic bacteria and dominant

genus, is commonly found in the feces and intestines of mammals

(Rodriguez et al., 2020). Numerous studies have confirmed its

association with obesity, diabetes, cancer, and various

inflammatory diseases (Houtkooper et al., 2010; Hwang and Song,

2017; Wang et al., 2017; Kirkland and Meyer-Ficca, 2018). It is

known that Blautia influences the conversion of bile acids into

secondary bile acids, for example, TUDCA, by regulating the related

enzymes, such as 7a-dehydrogenase, thereby modulates the

enterohepatic circulation and the insulin sensitivity (Nakamura

et al., 2016). Moreover, Blautia indirectly affects the synthesis of

CARN by influencing the availability of L-carnitine through its

impact on the intestinal pH and microenvironment (Wang et al.,

2023). Faecalibacterium, as a primary butyrate-producing

bacterium, promotes the bile acid metabolism as result of its anti-

inflammatory effect and maintains intestinal barrier integrity, thus

to stabilize the concentration of TUDCA (Miquel et al., 2013). And

it also enhances the intestinal environment to increase the

availability of L-carnitine and promote the synthesis of CARN

(Hales, 2019). However, the role of Blautia in the biosynthesis of

CARN remains understudied, and there is limited research

investigating the correlation between Faecalibacterium and

TUDCA and CARN. Our study results uncover the significant

impact of the balance between Blautia and Faecalibacterium on the

production of TUDCA and CARN. It is possible that variations in

the abundances of coding genes in the bacterial genome, which are

associated with these genera, play key roles in their biosynthetic

alterations. Nevertheless, further exploration is needed to elucidate

the specific mechanism.

TUDCA, a conjugated natural secondary bile acid, is widely

present in humans and animals. It serves to protect hepatocytes,

promote the transport and secretion of bile acids, and has been
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found to lower blood glucose levels by enhancing insulin sensitivity

through its role as a molecular chaperone (Kars et al., 2010;

Bronczek et al., 2019; da Silva et al., 2021). TUDCA enhances the

viability and migration ability of Schwann cells under high glucose

conditions, suggesting its potential therapeutic effects on diabetic

peripheral neuropathy (Wang et al., 2024). Additionally, TUDCA

inhibits the endoplasmic reticulum stress response, therefore

mitigates insulin resistance (Kars et al., 2010; Vettorazzi et al.,

2017), as well as protects cells from inflammatory damage and

lowers the systematic inflammation (Alhasani et al., 2020), while the

inflammation indicated as elevated CRP, TNF-a, and IL-6 also can

drive the dysfunction of pancreatic b-cells and increase the insulin

resistance in patients with T2D (Donath and Shoelson, 2011).

CARN is an endogenous dipeptide with diverse biological

functions in vivo (Lievens et al., 2024). These include anti-

inflammation, antioxidation, anti-glycosylation, metal ion

chelation, and promotion of wound healing (Alhamdani et al.,

2007; Jukic et al., 2021; Schwank-Xu et al., 2021). Previous studies

have revealed the potential of CARN in regulating blood glucose

levels, as it protects the cells responsible for controlling blood

glucose, enhances their sensitivity to glucose, and promotes

insulin secretion (Boldyrev and AldiniW Derave, 2013; Liu et al.,

2020), while CARN supplementation can reduce fasting blood

glucose, serum triglyceride levels, advanced glycation end

products, and TNF-a in T2D patients (Houjeghani et al., 2018),

and inhibit the production of extracellular matrix components and

transforming growth factor-b in a high glucose environment to

protect against diabetic nephropathy (Janssen et al., 2005).

Meanwhile, CARN restricts the migration and activation of the

inflammatory cells, decreases the production of pro-inflammatory

cytokines (such as TNF-a and IL-6) and the reactive oxygen species

(Abdin et al., 2010), while peroxidation can damage the vascular

endothelial cell and exacerbate the progression of the diabetic

complications (Da Ros et al. , 2004). The decrease in

concentrations of TUDCA and CARN among the patients with

IGT in our study aligns with their recognized roles in blood glucose

regulation. This highlights the potential of these two metabolites as

medication to potentially halt or reverse the progression from IGT

to diabetes.

Furthermore, we demonstrated the inhibitory effect of TUDCA

and CARN on IGFBP-3 in HepG2 cells. IGFBP-3, the most

abundant IGF binding protein in the blood, plays a crucial role in

transporting IGFs by safeguarding them from degradation and

modifying their interaction with specific receptors through

structural changes (Ranke, 2015; Varma Shrivastav et al., 2020).

Moreover, IGFBP-3 is implicated in insulin resistance (Chan et al.,

2005; Mohanraj et al., 2013). Hence, the decrease in TUDCA and

CARN resulting from GM dysbiosis in patients with IGT leads to

elevated blood glucose levels. This reduction in TUDCA and CARN

diminishes the inhibitory effect on IGFBP-3, thereby promoting

subsequent insulin resistance. In addition, we also directed our

attention to the significance of inflammation caused by GM

dysbiosis, which has the potential to contribute to vasculopathy in

the presence of hyperglycemia (Calle and Fernandez, 2012). It has

been indicated that inflammation serves as a significant

pathophysiological basis for various vascular diseases, notably
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atherosclerosis and hypertension (Whiteford et al., 2016). The

increased levels of inflammatory cytokines not only damage

vascular endothelial cells but also lead to elevated oxidative stress,

ultimately contributing to the development of fundamental vascular

injury throughout disease progression (Steven et al., 2019).

Regrettably, no significant difference was observed in the

concentration of IL-17 between the IGT and HC groups

(Supplementary Figure 6), despite its confirmed importance in

diabetes incidence (Xiao et al., 2017; Huang et al., 2020). Notably,

pathways related to IL-17 were identified in our functional analyses

(Figure 5). Consequently, we investigated the impact of TUDCA

and CARN on the expression of IL-6, an extensively recognized

cytokine involved in inflammation that can activate macrophages

and modulate the differentiation of B/T cells and thymocytes (Ma

et al., 2012; Dixit et al., 2018). Additionally, IL-6 plays a critical role

in various cellular processes, including the maturation of

megakaryocytes into platelets, the activation of hematopoietic

stem cells, and the differentiation and proliferation of multiple

cell types, such as osteoblasts, keratinocytes, glomerular membrane

cells, myeloma, and plasmacytoma cells (Akbari and Hassan-Zadeh,

2018; Robinson et al., 2020). Our study revealed that the reduction

in TUDCA and CARN in the IGT group led to an increase in the

expression of IL-6. This inflammatory response in the blood may

contribute to the development of vasculopathy, which could serve

as the underlying pathology for diabetic complications.

However, due to the small sample size and a focus on the specific

population, the results of this study are restricted, and we plan to

employ a large-scale study with long-term follow-up in the future to

better understand the long-term effects of these genera and their

metabolites during the progression of T2D. Additionally, investigating

these genera and their metabolites in diverse populations will enhance

the global understanding of T2D and promote to develop new targeted

therapies (Domingueti et al., 2016; Jha et al., 2018).
Conclusions

GM dysbiosis, characterized by increased Blautia and decreased

Faecalibacterium, occurs throughout the progression from IGT to

diabetes. This dysbiosis leads to reduced levels of TUDCA and

CARN, which in turn alleviate their inhibition on the synthesis of

IGFBP-3 and the expression of IL-6, ultimately resulting in

hyperglycemia and related vasculopathy. This finding advances

our understanding of the pathogenesis of IGT and diabetes,

provides the potential for early disease screening and clinical

diagnosis, and suggests possible therapeutic targets for preventing

the progression from IGT to diabetes.
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