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Porphyromonas endodontalis
HmuY differentially participates
in heme acquisition compared to
the Porphyromonas gingivalis
and Tannerella forsythia
hemophore-like proteins
Michał Śmiga * and Teresa Olczak

Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
Introduction: Porphyromonas gingivalis and Porphyromonas endodontalis

belong to the Bacteroidota phylum. Both species inhabit the oral cavity and

can be associated with periodontal diseases. To survive, they must uptake heme

from the host as an iron and protoporphyrin IX source. Among the best-

characterized heme acquisition systems identified in members of the

Bacteroidota phylum is the P. gingivalis Hmu system, with a leading role played

by the hemophore-like HmuY (HmuYPg) protein.

Methods: Theoretical analysis of selected HmuY proteins and spectrophotometric

methods were employed to determine the heme-binding mode of the P.

endodontalis HmuY homolog (HmuYPe) and its ability to sequester heme. Growth

phenotype and gene expression analysis of P. endodontaliswere employed to reveal

the importance of the HmuYPe and Hmu system for this bacterium.

Results: Unlike in P. gingivalis, where HmuYPg uses two histidines for heme-iron

coordination, other known HmuY homologs use two methionines in this

process. P. endodontalis HmuYPe is the first characterized representative of the

HmuY family that binds heme using a histidine-methionine pair. It allows HmuYPe

to sequester heme directly from serum albumin and Tannerella forsythiaHmuYTf,

the HmuY homolog which uses two methionines for heme-iron coordination. In

contrast to HmuYPg, which sequesters heme directly from methemoglobin,

HmuYPe may bind heme only after the proteolytic digestion of hemoglobin.

Conclusions: We hypothesize that differences in components of the Hmu

system and structure-based properties of HmuY proteins may evolved allowing

different adaptations of Porphyromonas species to the changing host

environment. This may add to the superior virulence potential of P. gingivalis

over other members of the Bacteroidota phylum.
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1 Introduction

Bacteria belonging to the Porphyromonas genus (Gibson and

Genco, 2006; Summanen et al., 2015; Guilloux et al., 2021) inhabit

mainly the oral cavity, gastrointestinal tract, and urogenital tract of

humans, domestic and wild animals (Paster et al., 1994; Finegold et al.,

2004; Sakamoto and Ohkuma, 2013; Zamora-Cintas et al., 2018;

Acuna-Amador and Barloy-Hubler, 2020; Guilloux et al., 2021;

Morales-Olavarria et al., 2023). Usually, they are isolated from oral

infections (e.g., gingivitis, periodontitis, endodontic infections,

abscesses) but also from other body infections (e.g., abscesses,

infections of amniotic fluid and umbilical cord, infected wound sites)

(van Steenbergen et al., 1984; Sundqvist, 1992; Zamora-Cintas et al.,

2018; Acuna-Amador and Barloy-Hubler, 2020; Morales-Olavarria

et al., 2023). Some of them, like Porphyromonas gingivalis, belong to

opportunistic pathogens found in healthy oral cavities in low numbers

but in high numbers in patients with periodontitis (Ximenez-Fyvie

et al., 2000; Gomes et al., 2005; Bik et al., 2010).

Porphyromonas endodontalis is a Gram-negative, anaerobic,

asaccharolytic, black-pigmented bacterium, primarily associated

with root canal infections, often identified in dental periapical

abscesses of endodontic origin and orofacial odontogenic infections

(Sundqvist et al., 1979; van Steenbergen et al., 1984; van Winkelhoff

et al., 1985a; Sundqvist et al., 1989; Sundqvist, 1992; Gomes et al.,

2005; Siqueira and Rocas, 2009; Flynn et al., 2012). The most

prevalent species in persistent endodontic infections, aside from P.

endodontalis, comprise other members of the Bacteroidota (formerly

Bacteroidetes) phylum, mainly P. gingivalis, Tannerella forsythia, and

Prevotella intermedia (Gomes et al., 2005; Siqueira and Rocas, 2009;

Flynn et al., 2012; Pinto et al., 2023). P. endodontalis can also be found

together with P. gingivalis, T. forsythia, and P. intermedia in diseased

periodontal sites in patients with periodontitis, mainly in apical

periodontitis originating from endodontic infection (Tran et al.,

1997; Kumar et al., 2003; Pereira et al., 2011; Lombardo Bedran

et al., 2012; Lourenco et al., 2014; Perez-Chaparro et al., 2014; Na

et al., 2020; Jimenez et al., 2022; Alvarez et al., 2023). Among

Porphyromonas species, the best characterized P. gingivalis is not

only the main etiologic agent and keystone pathogen of periodontitis

(Darveau et al., 2012; Hajishengallis and Lamont, 2012; Deng et al.,

2017, 2018; Hajishengallis and Diaz, 2020) but is often associated

with systemic inflammation-based diseases (Nazir, 2017; Mei

et al., 2020).

Although P. endodontalis and P. gingivalis belong to the same

genus, both species differ in their phenotypes. In contrast to P.

gingivalis, P. endodontalis is more sensitive to oxygen, grows better

in culture media supplemented with heme, hemoglobin, or PPIX,

does not exhibit hemagglutination activity, does not produce trypsin-

like proteolytic enzymes and gingipains (van Steenbergen et al., 1984;

van Winkelhoff et al., 1985b, 1986; Zerr et al., 2000, 2001). Similar to

P. gingivalis, it produces collagenases and other proteases, such as

dipeptidyl-peptidases (Sorsa et al., 1992; Tran et al., 1997; Odell et al.,

1999; Chang et al., 2002; Nishimata et al., 2014), and can degrade host

proteins, including hemoglobin (Kilian, 1981; Carlsson et al., 1984;

Jansen et al., 1994; Rosen et al., 2001). Due to the lack of genes

encoding a functional heme biosynthesis pathway in the P.

endodon ta l i s genome (GenBank acce s s ion number :
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ACNN00000000.1), typical for almost all members of the

Bacteroidota phylum, P. endodontalis must uptake this compound

from the host as an iron and protoporphyrin IX (PPIX) source.

Among the best-characterized heme acquisition systems

identified in members of the Bacteroidota phylum is the P.

gingivalis Hmu system (Wojtowicz et al., 2009a, Wojtowicz et al.,

2009b; Bielecki et al., 2018, 2020; Sieminska et al., 2021; Antonyuk

et al., 2023). The Hmu system comprises six proteins

(HmuYRSTUV) encoded on the P. gingivalis hmu operon. The

first protein encoded on this operon, HmuYPg, is the first

representative of the novel HmuY family comprising hemophore-

like proteins, different from classical hemophores or other

hemophore-like proteins, such as P. gingivalis HusA protein

(Olczak et al., 2024). Although P. gingivalis can transport free

heme directly using TonB-dependent outer-membrane receptor

HmuRPg, encoded downstream of the hmuYPg gene, HmuYPg

protein facilitates this process through binding of heme and its

delivery to HmuRPg (Smalley and Olczak, 2017). Importantly,

HmuYPg can sequester heme directly from host hemoproteins or

heme-binding proteins produced by cohabitating bacteria and

deliver it to HmuRPg (Smalley and Olczak, 2017; Olczak et al.,

2024). The functions of the other proteins encoded on the P.

gingivalis hmu operon are unknown and they most likely play a

role in heme transport into the bacterial cell and/or heme

metabolism (Smalley and Olczak, 2017; Rocha et al., 2019).

Our research has shown that proteins belonging to the HmuY

family differ in their heme-binding properties (Olczak et al., 2024),

which may influence the adaptation of bacteria to the host

environment they occupy. The most significant difference among

HmuY homologs is the type of amino acids engaged in heme-iron

coordination, which results in different heme-binding capacities

depending on the heme-iron redox state. So far characterized

HmuY proteins coordinating heme iron by two methionines

(HmuY homologs from P. intermedia, T. forsythia, Bacteroides

vulgatus, and Bacteroides fragilis) bind heme preferentially under

reducing conditions (Bielecki et al., 2018, 2020; Sieminska et al.,

2021; Antonyuk et al., 2023), while P. gingivalis HmuY coordinates

heme iron by two histidines which results in a high affinity of heme

binding in both oxidized and reduced environments (Wojtowicz

et al., 2009a, Wojtowicz et al., 2009b).

In this study, we characterized another member of the HmuY

family, a hemophore-like protein produced by P. endodontalis

(HmuYPe), and compared its properties with P. gingivalis

HmuYPg and T. forsythia HmuYTf. This approach allowed us to

understand better the function and properties of HmuY family

proteins produced by different human pathogens.
2 Materials and methods

2.1 Bacterial strains and growth conditions

P. endodontalis ATCC 35406 (Argenta, Poznań, Poland) and P.

gingivalis A7436 (laboratory collection) strains were grown on

Schaedler blood agar (ABA) plates (Argenta) at 37°C for 6 and 4

days, respectively, under anaerobic conditions (80% N2, 10% H2
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and 10% CO2) (Whitley A35 anaerobic workstation; Bingley, UK).

Then, bacteria were used to inoculate a liquid basal medium (BM)

composed of 3% trypticase soy broth (Becton Dickinson, Sparks,

MD, USA) and 0.5% yeast extract (Biomaxima, Lublin, Poland),

supplemented with 0.05% L-cysteine (Carl Roth, Karlsruhe,

Germany), 0.5 mg/l menadione (Sigma-Aldrich, St. Louis, MO,

USA) (BM medium), and 7.7 µM hemin chloride (Fluka, Munich,

Germany) to allow bacteria to grow in optimal, iron- and heme-rich

conditions (Hm medium). Alternatively, to starve bacteria of iron

and heme, no heme source was added and the medium was

supplemented with 160 µM 2,2-dipyridyl (Sigma-Aldrich) to

complex free iron (DIP medium). The optical density at 600 nm

(OD600) at the beginning of the liquid culture was at least 0.5 and

0.2 for P. endodontalis and P. gingivalis, respectively.

To analyze growth curves, bacteria were cultured for two

passages in BM medium without the addition of a heme source.

BM medium (BM alone) or medium supplemented with 1.25 or 5

µM human hemoglobin (Hb), BM medium supplemented with 5

µM heme and 5 µM human serum albumin (HSA), 5 µM HmuYPg,

5 µM HmuYPe, or 5 µM HmuYTf were inoculated with P. gingivalis

or P. endodontalis at starting OD600 equal to 0.2 or 0.5, respectively.

Media supplemented with proteins and heme were preincubated for

16 hours at 4°C before use, to allow saturation of proteins

with heme.

Escherichia coli ER2566 strain (New England Biolabs, Ipswich,

MA, USA) was grown under standard aerobic conditions.
2.2 Plasmid construction, mutagenesis,
protein overexpression, and
protein purification

The recombinant HmuYPe, lacking the predicted signal peptide

(MKTRFFLALIATSLVLGVASCRP), was overexpressed and

purified using affinity chromatography. Briefly, the hmuYPe gene

f rom P. endodonta l i s (GenBank acces s ion number :

POREN0001_0444) was PCR amplified using primers listed in

Supplementary Table S1 and cloned into XcmI and BamHI

restriction sites of a pTriEx-4 plasmid (Sigma-Aldrich) using

NEBuilder HiFi DNA Assembly (New England Biolabs), resulting

in the plasmid encoding HmuYPe protein with an N-terminal 6×His

tag and the site recognized by Factor Xa.

To generate plasmids encoding HmuYPe variants with amino

acid substitutions, the QuikChange II XL Site-Directed Mutagenesis

Kit (Agilent Technologies, Santa Clara, CA, USA) and primers

listed in Supplementary Table S1 were used.

HmuYPe protein and its site-directed mutagenesis variants were

overexpressed in E. coli after induction with 0.5 mM isopropyl-ß-D-

thiogalacto-pyranoside (IPTG; Carl-Roth) at 16°C for 16 hours.

Proteins were purified using the soluble fraction of E. coli cell lysates

and TALON Superflow resin according to the manufacturer’s

instructions (Sigma-Aldrich), using 25 mM HEPES buffer, pH 7.8,

supplemented with 300 mM NaCl. For the elution step, 25 mM Tris/

HCl buffer, pH 7.6, supplemented with 80 mM NaCl and 150 mM

imidazole (Carl-Roth) was used. To obtain un-tagged proteins, the

buffer was exchanged for 25 mM Tris/HCl, pH 7.6, supplemented with
Frontiers in Cellular and Infection Microbiology 03
80 mM NaCl. The 6×His tag was removed using Factor Xa (New

England Biolabs) and filtration through an Amicon Ultra-4 Centrifugal

Ultracel-10KDa filter unit (Millipore). If necessary, another step of

affinity chromatography with nickel-immobilized resin (Ni-NTA; New

England Biolabs) was used to remove the 6×His tag before protein

concentration (Supplementary Figure S2).

HmuYPg protein from P. gingivalis and HmuYTf protein from

T. forsythia were overexpressed and purified as described previously

(Slezak et al., 2020; Śmiga et al., 2023a). To determine protein

concentration, empirical molar absorption coefficients for HmuYPg

(ϵ280 = 36.86 mM−1 cm−1) (Wojtowicz et al., 2009b) and HmuYTf

(ϵ280 = 26.32 mM−1 cm−1) (Bielecki et al., 2018) were used. For P.

endodontalis HmuYPe, the empirical molar absorption coefficient

was determined in this study (ϵ280 = 35.56 mM−1 cm−1), as

described by others (Eakanunkul et al., 2005).
2.3 Sodium dodecyl sulfate-polyacrylamide
gel electrophoresis, Western blotting, and
dot blotting

Protein samples, P. endodontalis and P. gingivalis whole cell

lysates, or samples prepared from the whole bacterial cultures were

analyzed by SDS-PAGE. Samples were separated on 12%

polyacrylamide gels and the proteins were visualized with

Coomassie Brilliant Blue G-250 (CBB G-250) or were transferred

onto nitrocellulose membranes (Millipore, Billerica, MA, USA). 20

or 100 ng of HmuYPe, HmuYPg, or HmuYTf proteins in 5 µl were

applied onto nitrocellulose membranes for dot blotting. Western

blotting and dot blotting were performed as described before

(Śmiga et al., 2015; Śmiga et al., 2023a). Briefly, membranes were

incubated with rabbit anti-HmuYPg or rabbit anti-HmuYTf

polyclonal antibodies (1:10,000; GenScript USA Inc.).

Subsequently, goat anti-rabbit IgG antibodies conjugated with

horseradish peroxidase (1:10,000; Sigma-Aldrich) were applied.

Chemiluminescence staining (Perkin Elmer, Waltham, MA, USA)

and ChemiDoc Imaging System (Bio-Rad Laboratories, Hercules,

CA, USA) were used to visualize proteins.
2.4 Heme-protein complex formation

Analysis of heme binding was performed as described

previously (Śmiga et al., 2023b). Briefly, ~8 mg of hemin chloride

(Pol-Aura, Morag̨, Poland) was dissolved in 0.1 M NaOH, and its

concentration was determined using empirical molar absorption

coefficient (ϵ385 = 58.5 mM−1 cm−1). Proteins at 5 µM concentration

were prepared in 20 mM sodium phosphate buffer, pH 7.4,

containing 140 mM NaCl (PBS). Protein samples were titrated

with heme, and protein-heme complexes were monitored by UV-

visible absorbance (250–700 nm) spectroscopy with a double-beam

Jasco V-750 spectrophotometer (Jasco GmbH, Pfungstadt,

Germany). The reduced conditions were formed by the addition

of sodium dithionite (Sigma-Aldrich) to the final 10 mM

concentration and mineral oi l overlay of the sample

(Sigma-Aldrich).
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1421018
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
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2.5 Heme sequestration experiments

Heme sequestration was examined by mixing holo- (protein-

heme complex) and apo-protein (protein alone) in PBS and

monitoring heme transfer by UV-visible absorbance spectroscopy

or PAGE, as described before (Smalley et al., 2011; Śmiga et al.,

2023b). Except for methemoglobin (metHb; Sigma-Aldrich),

protein-heme complexes were prepared by mixing protein and

heme at a 1:1.2 molar ratio and incubation at room temperature

for 1 hour. To remove unbound heme, the solutions were passed

through Zeba Spin desalting columns (Thermo Fisher, Scientific,

Waltham, MA, USA).

1.25 µM metHb or 5 µM other holo-proteins were mixed with 5

µM apo-proteins. The heme sequestration process was monitored over

time by recording UV-visible absorbance spectra under oxidizing and

reducing conditions. Alternatively, 20 µM holo-HmuYTf protein or 10

µM other holo-proteins were mixed with 10 µM apo-proteins and

incubated for 30minutes at 37°C. To 30 µl of the sample, 10 µl of 0.4M

Tris/HCl buffer, pH 6.8, supplemented with 40% glycerol and 0.08%

bromophenol blue was added, and 25 µl of the sample was immediately

loaded on the 13.5% PAGE-separating gel prepared without SDS. After

electrophoresis, the heme-containing complexes were first stained

using 5 mM 3,3′,5,5′-tetramethylbenzidine (TMB) prepared in 100

mM Tris/HCl buffer, pH 7.5, supplemented with 140 mM NaCl and

0.05% H2O2 (TMB-H2O2 staining) up to 30 minutes. Subsequently, all

proteins were stained with CBB G-250.
2.6 Analysis of gene expression using
reverse transcriptase-quantitative
polymerase chain reaction

To determine the influence of iron and heme on P. endodontalis

gene expression, bacteria were cultured in Hm medium or DIP

medium for one or two 24-hour passages. Bacteria from 1 ml of

culture were centrifuged and used for RNA isolation with the Total

RNA Mini Kit (A&A Biotechnology, Gdańsk, Poland). Genomic

DNA contamination was removed using the Clean-up RNA

concentrator Kit (A&A Biotechnology). RNA was used to

generate cDNA with a LunaScript RT SuperMix Kit (New

England Biolabs). qPCR was performed using SensiFAST SYBR

no-ROX Kit (Bioline, London, UK) and LightCycler 96 (Roche,

Basel, Switzerland). PCR program comprised initial denaturation at

95°C for 120 seconds, 35 cycles of denaturation at 95°C for 5

seconds, primers annealing at 60°C for 10 seconds, and extension at

72°C for 15 seconds. After PCR, the melting curves were generated

for PCR quality control. Relative change in gene expression was

calculated using LightCycler 96 software (Roche) and 16S rRNA as a

reference gene. All analyses were carried out in 4 biological

repetitions. All primers used are listed in Supplementary Table S1.
2.7 Determination of proteolytic activity

The total proteolytic activity of whole bacterial cultures was

measured using azocasein (Sigma-Aldrich) as a substrate. Briefly, to
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40 ml of 1.5% azocasein solution in reaction buffer (20 mMTris/HCl

buffer, pH 7.5, supplemented with 150 mM NaCl, 5 mM CaCl2,

0.05% Tween 20, and 10 mM L-cysteine hydrochloride freshly

neutralized with NaOH), 10 ml of total P. endodontalis or P.

gingivalis overnight culture (grown for 24 hours) was added.

Samples were incubated for 30 minutes at 37°C, and the reaction

was stopped by adding 200 ml of 5% TCA (Sigma-Aldrich).

Precipitated, undigested azocasein was separated by centrifugation

(2000×g, 10 min). 100 ml of the supernatant was mixed with 60 ml of
0.5 M NaOH and the absorbance at 450 nm (A450) was measured

using a GloMax Discover plate reader (Promega, Madison, WI,

USA). The final results were presented as a change of A450 over 60

minutes caused by 1 ml of culture exhibiting OD600 equal to 1

(DA450/60 min/ml).
2.8 The susceptibility of proteins
to proteolysis

HSA (Sigma-Aldrich), metHb (Sigma-Aldrich), hemopexin

(Hpx; Sigma-Aldrich), P. gingivalis HmuYPg, P. endodontalis

HmuYPe, and T. forsythia HmuYTf were used to analyze their

susceptibility to proteolysis performed by proteases produced by

P. endodontalis. Briefly, Hm medium was supplemented with 2 µM

proteins and the bacterial cultures were started with the initial

OD600 equal to 0.5. Samples were collected over time and examined

using SDS-PAGE and staining with CBB-G250. As a control, the

fresh BM+Hm medium or P. gingivalis culture started at OD600

equal to 0.2 was used.
2.9 Statistical analyses

All experiments were performed independently at least in two

biological replicates and at least in three technical repetitions each.

The numerical values are represented as mean ± standard deviation

(mean ± SD) or mean ± standard error (mean ± SE). All statistical

analyses were done using unpaired Student’s t-test with GraphPad

software (GraphPad Prism 8.0 Inc., San Diego, CA, USA).
2.10 Bioinformatics analyses

Search for protein sequences was performed in the GenBank

database using PSI-BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Protein amino acid sequences were compared with The Clustal

Omega (Madeira et al., 2022) and Jalview (Waterhouse et al.,

2009). Protein similarity and identity were analyzed using Sequence

Manipulation Suite: Ident and Sim (Stothard, 2000). Solved (RCSB

Protein Data Bank; https://www.rcsb.pdb) and predicted with

AlphaFold Protein Structure Database (Jumper et al., 2021; Varadi

et al., 2022) three-dimensional protein structures were visualized with

UCSF Chimera (Pettersen et al., 2004). Heme binding in HmuYPe

was predicted with EDock (Zhang et al., 2020). Prediction of P.

endodontalis hmu operon genes was performed using an Operon

mapper (https://biocomputo.ibt.unam.mx/operon_mapper/).
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3 Results

3.1 Characterization of Hmu system in
Porphyromonas endodontalis

P. endodontalis ATCC 35406 hmu operon organization is similar

to that found in P. gingivalis, including one HmuY homolog

(Figure 1A). HmuYPe protein is closely related to HmuYPg

with ~50% amino acid sequence identity, as well as 21–22%

identity and 32% similarity to other characterized HmuY proteins

produced by human oral pathogens from the Bacteroidota phylum

(Figures 1B, C). Other proteins of the Hmu system in P. endodontalis

show high homology to those found in P. gingivalis with amino acid

sequence identity as follows: HmuR ~49%, HmuS ~ 65%,

HmuT ~50%, HmuU ~68%, and HmuV ~79%. Interestingly, in

P. endodontalis an additional gene (GenBank accession number:

POREN0001_0445) is located upstream of the hmuYPe gene,

encoding a protein containing T9SS type A sorting domain (T9SS)

(Figure 1A). Using theoretical and experimental approaches, we

confirmed that the POREN0001_0445 gene is a part of the hmu

operon (Supplementary Figure S1A). Proteins homologous to the

protein encoded by the POREN0001_0445 gene are found in other

bacteria including some Porphyromonas species and P. intermedia.

However, in contrast to P. endodontalis, they are not encoded as a

part of operons but as orphan genes (data not shown). Despite the

low amino acid sequence identity between analyzed homologs of the

POREN0001_0445 protein (Supplementary Figure S1B), their

predicted tertiary structure is highly similar (Supplementary Figure

S1C). They form a b-barrel-like structure, which may suggest their

role in transporting an unknown molecule through the

outer membrane.
3.2 P. endodontalis HmuYPe binds heme

Analysis of the overall three-dimensional experimentally solved

(P. gingivalis HmuYPg and T. forsythia HmuYTf) or theoretically

predicted (other selected Porphyromonas species) protein structures

revealed that HmuY proteins identified in the Porphyromonas

species are highly similar to the P. gingivalis HmuYPg

(Figure 1D), with the highest similarities observed in the core

region (Śmiga et al., 2023a). As in so far characterized HmuY

proteins (Olczak et al., 2024), the main differences in HmuY

proteins identified in Porphyromonas species are visible in the

structure of heme-binding pockets and differ mainly in the size of

the entrance of the heme-binding pocket (Figure 1D). The data

shown in Figure 1 allowed us to verify the spatial location of

predicted amino acids involved in heme binding in HmuY

homologs in analyzed Porphyromonas species. To date, the

characterization of HmuY proteins has included the HmuYPg

protein from the P. gingivalis, which uses two histidines for

heme-iron coordination, and HmuY homologs which use two

methionines in this process (for example T. forsythia HmuYTf, P.

intermedia HmuYPi-1 and HmuYPi-2). Our theoretical analyses

showed that the majority of HmuY proteins identified in
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Porphyromonas species most likely coordinate heme-iron using a

histidine-methionine pair or two methionines (Figures 1C, D). Only

proteins closely related to the HmuYPg, namely HmuYPgu from P.

gulae and HmuYPlo from P. loveanamay coordinate heme iron with

two histidines (Figures 1C, D).

To confirm the heme binding ability of the HmuYPe, the protein

was overexpressed in E. coli and purified using chromatographic

methods (Supplementary Figures S2A, S2B). Purified and

concentrated protein samples exhibited a reddish color (data not

shown) similar to the HmuYPg sample (Bielecki et al., 2018, 2020).

The UV-visible spectroscopic analysis demonstrated that under

both oxidizing and reducing conditions, the HmuYPe sample

exhibited spectra similar to those of the purified HmuYPg sample

(Figures 2A, B), which indicated heme binding. To confirm this, the

HmuYPe protein was saturated with heme [Fe(III)heme], and heme

excess was removed by desalting. A UV-Vis absorbance spectrum of

the sample was characterized by maxima in both the Soret band

(414 nm) and Q bands (530 nm and 559 nm) (Figure 2C).

Reduction of heme in this sample [Fe(II)heme] resulted in a red

shift in the Soret band (425 nm), and a shift of the Q bands to 528

nm and 558 nm, which became more intense and resolved

(Figure 2D). These spectra were similar to those obtained for the

HmuYPg-heme complex (Figures 2E, F).

Heme binding strength was analyzed by determination of the

HmuYPe-heme complex dissociation constant (Kd) (Figure 3A) by

titration of apo-protein with increasing concentrations of heme

(Supplementary Figure S3). Kd of HmuYPe-heme complex was

lower under reducing (4.10 × 10-8 M) than oxidizing (2.45 × 10-7

M) (Figure 3A) conditions, thus being similar to HmuY homologs

coordinating heme-iron with two methionine residues, e.g., T.

forsythia HmuYTf, than to P. gingivalis HmuYPg (Bielecki

et al., 2018).

To experimentally confirm heme-iron coordinating amino

acids, we prepared HmuYPe site-directed mutagenesis protein

variants with selected histidines or methionines replaced by an

alanine (M123A, H128A, H132A, and M163A), chosen based on

the comparative analysis of amino acid sequences (Figure 1C).

Particular single mutagenesis variants were overexpressed in E. coli

and purified at similar levels as the unmodified protein

(Supplementary Figure S2C). All protein variants were stable after

purification, which suggests that amino acid replacements did not

influence the tertiary protein structure. UV-visible absorbance

spectra of HmuYPe-heme complexes showed changes mostly in

the case of H128A and M163A protein variants, suggesting that

these amino acids could be engaged in heme-iron coordination

(Figure 3B). The determination of Kd showed that the H128A and

M163A variants are characterized by a lower affinity for heme than

an unmodified protein (Figure 3A). A slightly lower affinity of heme

binding under reducing conditions in the case of the M123A variant

(Figure 3A) may suggest local structural changes in the loop

engaged in heme-iron coordination and/or supportive role in

heme binding as it was shown for HmuYPg M136 (Wojtowicz

et al., 2009b; Bielecki et al., 2018). This finding was confirmed by

our theoretical analysis using the modeled HmuYPe structure and its

comparison to the experimentally solved HmuYPg-heme

structure (Figure 3C).
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3.3 Histidines are an evolutionarily gained
advantage in heme acquisition by
HmuY proteins

To compare the strength of heme binding to the HmuYPe with

other HmuY proteins, we used a competitive analysis with HmuYPg

and HmuYTf. For this purpose, we employed UV-visible
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spectroscopy and native electrophoresis (PAGE) (Figure 4).

HmuYPe protein was unable to sequester heme complexed with

HmuYPg (Figures 4A–C). At the same time, HmuYPg was able to

capture heme from the HmuYPe-heme complex under both

oxidizing and reducing conditions (Figures 4D–F). In the case of

HmuYTf, we observed efficient heme sequestration of heme from

the HmuYTf-heme complex by HmuYPe under oxidizing and
B

C

D

A

FIGURE 1

Theoretical analysis of the P. endodontalis Hmu system. (A) Organization of P. endodontalis hmu operon and its counterpart in P. gingivalis.
(B) Homology of the HmuYPe protein to the representatives of the HmuY protein family presented in the form of a heat map indicating the % identity
and similarity between the amino acid sequences of the proteins. The simplified guide tree was created with Clustal Omega (https://www.ebi.ac.uk/
jdispatcher/msa/clustalo). (C) The alignment of HmuY protein sequences with marked residues involved in heme-iron coordination experimentally
confirmed (green) or theoretically predicted (blue). The consensus amino acid sequence is shown below the examined sequences. HmuY homologs
from P. gingivalis (HmuYPg), P. gulae (HmuYPgu), P. endodontalis (HmuYPe), P. loveana (HmuYPlo), P. gingivicanis (HmuYPgc), P. circumdentaria
(HmuYPcd), P. crevioricanis (HmuYPcc), T. forsythia (HmuYTf) and P. intermedia (HmuYPi-1 and HmuYPi-2). (D) Comparison of overall structures of
representative HmuY proteins produced by Porphyromonas species and T. forsythia, with marked heme-iron coordinating amino acids. Structures of
HmuPg and HmuYTf determined by crystallography have been deposited under PDB IDs: 6EWM and 6EU8, respectively. Other structures of HmuY
homologs were predicted with AlphaFold: HmuYPgu (ID: AF-A0A099WTH2-F1), HmuYPe (ID: AF-C3JC46-F1), HmuYPlo (ID: AF-A0A2U1FHF1-F1),
HmuYPgc (ID: AF-A0A0A2GAC0-F1), HmuYPcd (ID: AF-A0A1T4NY32-F1), and HmuYPcc (ID: AF-A0A0A2FIS2-F1).
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reducing conditions, while HmuYTf was not able to capture heme

from the HmuYPe complex (Figures 4G–L). In contrast to the

spectroscopic method, we could visualize neither HmuYPe-heme

nor HmuYTf-heme complexes with PAGE because they were hardly

visible after TMB-H2O2 staining (Figures 4A, D, G, J). This effect

could be caused by oxidizing conditions applied in this experiment,

resulting in weak heme binding or heme release.
3.4 Heme sources for P. endodontalis

Further, we analyzed the ability of HmuYPe to directly sequester

heme from host hemoproteins, which serve in vivo as the main heme

source. Under oxidizing conditions, the affinity of HSA and HmuYPe
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to heme was similar because while using HSA-heme or HmuYPe-

heme complex with apo-form of the counterpart, we observed an

equilibrium in heme binding between the proteins (Figures 5A–F).

Although PAGE results are not clear (Figures 5A, D), using the

spectroscopic method we observed the spectrum shift in two

experimental settings (Figures 5B, E). Under reducing conditions,

HmuYPe was able to capture heme bound to HSA, whereas apo-HSA

could not sequester heme from HmuYPe (Figures 5C, F). In the case

of Hpx, the results are inconclusive due to the low quality of HmuYPe

TMB-H2O2 staining (Figures 5G, J). In the case of these proteins,

equilibrium in Hpx-heme and HmuYPe-heme complexes could also

occur, which was confirmed by changes in the intensity of the

analyzed UV-visible absorbance spectra over time (Figures 5H, I,

K, L). However, since the absorbance maxima of both proteins in
B

C D

E F

A

FIGURE 2

The heme-binding ability of HmuY proteins. The UV-visible absorbance spectrum of 50 µM purified P. endodontalis HmuYPe protein indicates heme
binding (A), similar to the 50 µM purified P. gingivalis HmuYPg (B), examined under oxidizing (black lines) and reducing conditions (red lines), the
latter formed by 10 mM sodium dithionite. Heme binding by HmuYPe (C, D) or HmuYPg (E, F) was confirmed by saturating the protein with heme at a
1:1.2 molar ratio and removing the excess heme by desalting. The UV-visible absorbance spectrum of the obtained sample (5 µM protein with bound
heme) was compared to the spectrum of the 5 µM heme alone sample under oxidizing (C, E) and reducing conditions (D, F).
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complex with heme are similar, we cannot draw firm conclusions. In

contrast to HmuYPg (Smalley et al., 2011; Byrne et al., 2013; Śmiga

et al., 2021), HmuYPe was unable to capture the heme associated with

metHb (Supplementary Figures S4A, S4B). Moreover, heme

sequestration was not observed after the chemical reduction of

metHb (Supplementary Figure S4C). As a control, we used

HmuYPg, which can directly sequester heme complexed with HSA

(Figure 5A; Supplementary Figure S5) (Smalley et al., 2011; Sieminska

et al., 2021), Hpx (Figure 5G) (Bielecki et al., 2018), and metHb

(Supplementary Figure S4A) (Smalley et al., 2011).

P. gingivalis can use a variety of heme sources thanks to the direct

sequestration of heme from hemoproteins by HmuYPg or its
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synergistic cooperation with highly active proteases – gingipains

(Smalley and Olczak, 2017; Śmiga et al., 2023b; Olczak et al., 2024).

Although P. endodontalis does not encode gingipain homologs, it

produces proteases, albeit less active compared to P. gingivalis proteases

(Figure 6A). Nevertheless, they can efficiently degrade metHb in the P.

endodontalis culture (Figure 6B). None of the additionally analyzed

proteins were degraded by P. endodontalis proteases, including human

hemoproteins and representatives of HmuY homologs produced by

other human pathogens (Figure 6B). These results are consistent with

P. endodontalis growing in the planktonic form with different heme

sources, the best achieved in the presence of free heme or metHb

(Supplementary Figure S6; Figure 6C).
B

C

A

FIGURE 3

Analysis of P. endodontalis HmuYPe protein site-directed mutagenesis variants in complex with heme. (A) To determine the dissociation constant
(Kd), HmuYPe protein variants were titrated with increasing heme concentrations. Difference absorbance spectra were used for plotting graphs of the
change in the Q band absorbance maximum for oxidizing (DAbsorbance at 532 nm) and reducing (DAbsorbance at 558 nm) conditions versus heme
concentration. Kd was determined using the one-site binding model. (B) Purified HmuYPe and its variants with single substitutions of methionine or
histidine for alanine were saturated with heme at a 1:1 molar ratio. UV-visible absorbance spectra were recorded under oxidizing (black lines) and
reducing (red lines) conditions, and compared to the spectrum of heme alone and the unmodified HmuYPe protein. The reducing conditions were
formed by 10 mM sodium dithionite. (C) Comparison of overall protein structures of HmuYPe and HmuYPg in complex with heme. The
experimentally solved three-dimensional structure of P. gingivalis HmuYPg in complex with heme (PDB ID: 3H8T) and modeled predicted structure
of P. endodontalis HmuYPe in complex with heme are shown. The heme-iron coordinating amino acids are indicated in black, and amino acids with
supporting or putatively supporting roles in heme binding are marked in red.
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3.5 P. endodontalis expresses the hmuYPe

gene under iron and heme starvation

Similar to other HmuY proteins that were characterized previously

(Bielecki et al., 2018, 2020; Sieminska et al., 2021; Antonyuk et al.,

2023), transcript encoding HmuYPe was produced at higher levels

when bacteria were grown in iron- and heme-depleted conditions,
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formed as shown in Figure 7A. However, the increase of the hmuYPe

gene expression was only up to 6 times, whereas for hmuYPg the

expression increased up to several hundred times (Bielecki et al., 2018,

2020), resulting in a significant increase in produced HmuYPg protein

(Figure 7B) (Olczak et al., 2010). This dissimilarity may result from

weaker growth of P. endodontalis under laboratory conditions,

especially under iron and heme starvation (Supplementary Figure S6).
B C
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J K L

A

FIGURE 4

Heme sequestration capacity of P. endodontalis HmuYPe and HmuY homologs from P. gingivalis [HmuYPg; (A–F)] or T. forsythia [HmuYTf; (G–L)].
Heme transfer was examined using PAGE, staining with TMB-H2O2, and subsequent visualization of proteins by CBB G-250 staining (A, D, G, J). P.
gingivalis HmuYPg was used as a control. The HmuYPe-heme complex after TMB-H2O2 staining is hardly visible due to analysis performed under
aerobic conditions, causing lower heme binding to the HmuYPe under oxidizing conditions. Apo-proteins or proteins in complex with heme were
incubated at equimolar concentrations under oxidizing (B, E, H, K) or reducing conditions (C, F, I, L), the latter formed by 10 mM sodium dithionite.
Changes in spectra were monitored using UV-visible absorbance spectroscopy.
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3.6 HmuY proteins may serve as
biological markers

Finally, we aimed to find whether, despite 50% amino acid

sequence identity (Figure 1) and almost identical tertiary structures

of HmuYPe and HmuYPg (Figure 3C), HmuYPe could potentially

serve as a specific marker for P. endodontalis. We analyzed the

purified HmuYPe protein, both in the form of native and denatured
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protein and showed cross-reactivity neither with IgG antibodies

raised against HmuYPg nor HmuYTf (Supplementary Figure S7).
4 Discussion

Interactions between microorganisms and the host play an

important role in the etiopathogenesis of many human diseases.
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FIGURE 5

Heme sequestration capacity of P. endodontalis HmuYPe from human serum albumin [HSA; (A–F)] or hemopexin [Hpx; (G–L)]. Heme transfer was
examined using PAGE, staining with TMB-H2O2, and subsequent visualization of proteins by CBB G-250 staining (A, D, G, J). P. gingivalis HmuYPg

was used as a control. The HmuYPe-heme complex after TMB-H2O2 staining is hardly visible due to analysis performed under aerobic conditions,
causing lower heme binding to the HmuYPe under oxidizing conditions. Apo-proteins or proteins in complex with heme were incubated at
equimolar concentrations under oxidizing (B, E, H, K) or reducing conditions (C, F, I, L), the latter formed by 10 mM sodium dithionite. Changes in
spectra were monitored using UV-visible absorbance spectroscopy.
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Although the main ecological niches of P. gingivalis and

P. endodontalis (subgingival pockets and root canals, respectively)

are different, both species can be found in the same polymicrobial

consortia, including periodontal pockets, often with other members

of the Bacteroidota phylum (Kumar et al., 2003; Pereira et al., 2011;

Lombardo Bedran et al., 2012; Lourenco et al., 2014). Proteomic

analysis revealed that the type and number of proteins associated

with virulence were more similar between P. endodontalis and the

more virulent P. gingivalis W83 strain as compared to the less

virulent P. gingivalis ATCC 33277 strain (Li et al., 2016). One of the

main virulence factors expressed by the members of the

Bacteroidota phylum is the Hmu heme acquisition system.
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Recently, we demonstrated that the expression of heme

acquisition systems, mainly the Hmu system, is different between

more and less virulent P. gingivalis strains, expressed and used more

effectively in more virulent strains (Śmiga et al., 2024). Since one of

its components, namely the HmuY protein is considered to be one

of the main virulence factors of opportunistic pathogens, in this

study, we performed a comparative analysis of the P. endodontalis

HmuYPe protein and HmuY proteins produced by P. gingivalis

(HmuYPg) and T. forsythia (HmuYTf).

The main heme sources for P. endodontalis, similar to P.

gingivalis , are serum heme-sequestering proteins, heme

complexed to bacterial proteins, and periodically, hemoglobin
B

CA

FIGURE 6

Comparison of the proteolytic activity of P. endodontalis and P. gingivalis. (A) Total proteolytic activity in whole bacterial cultures (iron- and heme-
rich medium; Hm medium) was determined using azocasein as a substrate. The activity is shown as an increase in absorbance at 450 nm (A450)
caused by the release of a colored product within 60 minutes by 1 ml of bacterial culture with an optical density at 600 nm of 1. (B) Susceptibility of
human hemoproteins and selected HmuY proteins to degradation by proteases produced by P. endodontalis or P. gingivalis. Purified proteins were
added to the bacterial cultures (Hm medium) at a final 2 µM concentration, samples were incubated, collected at the indicated time points, and
analyzed by SDS-PAGE and CBB G-250 staining. As a control, Hm medium alone was used instead of bacterial cultures. (C) Protein pattern of P.
gingivalis or P. endodontalis proteins in iron- and heme-rich culture medium (Hm medium) without adding host hemoproteins or HmuY proteins.
metHb, methemoglobin; HSA, serum albumin; Hpx, hemopexin; HmuYPg, P. gingivalis HmuY; HmuYPe, P. endodontalis HmuY homolog; HmuYTf,
T. forsythia HmuY homolog; M, protein molecular mass markers. ****P<0.0001.
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released from erythrocytes (Grenier and Mayrand, 1986; Sundqvist,

1992; Zerr et al., 1998, 2000, 2001; Smalley and Olczak, 2017). In

humans, oral pathogens are provided with heme mainly by HSA,

the main component of the gingival crevicular fluid. This is also the

case of HmuYPe which captures heme directly from the HSA-heme

complex, with higher ability under reducing conditions. This

finding is consistent with literature data reporting Kd of HSA-

heme of 10-7-10-8 M, which is similar to that determined for the

HmuYPe, as well as by the fact that heme can be more easily released

from the HSA-heme complex under reducing conditions (Cao et al.,

2012). This property is also exploited by HmuY homologs in which

two methionines are used to coordinate heme-iron (Bielecki et al.,

2018, 2020; Sieminska et al., 2021; Antonyuk et al., 2023).

Although hemoglobin is unavailable in higher concentrations in

the main niche occupied by P. endodontalis, namely root canals, this

heme source can be available for this bacterium during treatment

procedures, or when the bacterium is found in deep periodontitis

sites, where in advanced stages of disease bleeding may occur. As

shown in this study, even though the total proteolytic activity of

P. endodontalis cultures was significantly lower compared to

P. gingivalis cultures, the degradation capacity of metHb was

comparable in both bacterial cultures. In contrast to P. gingivalis,

which prefers to convert oxyhemoglobin possessing Fe(II)heme to

metHb possessing Fe(III)heme, the process facilitating hemoglobin

degradation by gingipains (Smalley et al., 2007, 2008) and direct

heme sequestration by P. gingivalis HmuYPg (Smalley et al., 2011),

HmuYPe was unable to sequester heme bound to metHb. It has been

demonstrated that P. endodontalis can reduce metHb under

anaerobic conditions (Zerr et al., 2001). However, we showed that

this ability does not allow HmuYPe for heme sequestration from

chemically reduced metHb in the experiment carried out under

limited oxygen access. Therefore, based on better P. endodontalis
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growth in a culture medium supplemented with metHb, we assume

that the high ability of metHb degradation by this bacterium may be

used to efficiently release heme from metHb which can be

subsequently bound by HmuYPe, instead of direct heme capture

by HmuYPe.

P. gingivalis expresses several features engaged in its higher

adaptation to the changing host environment and inhibitory

activity against other bacteria, including P. endodontalis (van

Winkelhoff et al., 1987). Many Porphyromonas species are

obligate anaerobes and can survive temporarily in the presence of

oxygen, P. gingivalis being the best example (Smalley et al., 1998;

Mark Welch et al., 2016; Slezak et al., 2020). But this is not the case

for P. endodontalis which is highly sensitive to oxygen (van

Winkelhoff et al., 1985b, 1986). Data obtained in our study

showed that one of the P. gingivalis adaptive features can be

assigned not only to better tolerance to oxygen and higher

proteolytic activity but also to different properties of heme

binding by HmuYPg as compared to HmuYPe. The strength of

heme binding by HmuY proteins depends on the redox state of the

external environment (Olczak et al., 2024) and based on our results

is as follows: HmuYPg>HmuYPe>HmuYTf. HmuYPg, coordinating

heme iron with two histidines, binds heme efficiently under both

oxidizing and reducing conditions. When two methionine residues

are involved in this process in HmuY homologs, including T.

forsythia HmuYTf, they bind heme preferentially under reducing

conditions (Olczak et al., 2024). P. endodontalis HmuYPe,

coordinating heme-iron with the histidine-methionine pair, is a

missing link between the HmuY proteins mentioned above.

Although P. endodontalis HmuYPe is the first characterized

protein among HmuY family members with a histidine-

methionine pair engaged in heme-iron coordination, our

theoretical analysis showed that histidine-methionine pair may be
BA

FIGURE 7

Influence of iron and heme starvation on P. endodontalis HmuYPe expression. (A) Determination of relative hmuYPe gene expression examined by
RT-qPCR with 16S rRNA as a reference gene. Relative expression fold change represents mRNA levels in bacteria starved of iron and heme (DIP
medium) versus bacteria grown in rich iron and heme conditions (Hm medium), the latter set as 1.0. (B) The influence of iron and heme starvation
on the overall production of proteins in P. endodontalis was examined by SDS-PAGE and CBB G-250 staining. P. gingivalis was used as a control and
a band indicating HmuYPg is shown with a blue arrow. M, protein molecular mass markers. *P<0.05.
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commonly used by HmuY homologs from other Porphyromonas

species. This feature allows HmuYPe and possibly other HmuY

homologs for better heme sequestration from other hemophore-like

proteins that use two methionines to coordinate heme-iron, for

example from T. forsythia HmuYTf, allowing P. endodontalis and

other Porphyromonas species to compete for heme source.

However, HmuYPe is unable to capture heme bound to HmuYPg,

which confirms the predominance of P. gingivalis in heme

acquisition in polymicrobial consortia.

Identification and characterization of bacterial antigens

expressed by the members of the Bacteroidota phylum allows not

only for improved knowledge of pathogens’ phenotypes and their

pathogenicity but also for the development of diagnostic and

therapeutic strategies. One of the targets in such methods can be

the host’s immune response toward components of bacterial heme

acquisition systems, including HmuY proteins. The amino acid

residues that form the core of the protein structure in HmuY family

members are most conservatively preserved, whereas the greatest

variability of epitopes exists on the surface of HmuY proteins

(Śmiga et al., 2023a). Previously, in patients with periodontitis, we

reported higher serum levels of antibodies directed against total

P. gingivalis antigens and HmuYPg protein, as well as HmuY

homolog from P. intermedia (HmuYPi-2) (Trindade et al., 2012;

Śmiga et al., 2023a). Others demonstrated that in patients with

apical periodontitis, P. gingivalis and P. endodontalis correlated

with higher serum levels of IgG antibodies directed toward both

bacterial species (Flynn et al., 2012). Importantly, we showed that

there is no cross-reactivity between P. gingivalis HmuYPg and

T. forsythia HmuYTf (Śmiga et al., 2015; Śmiga et al., 2023a) and

that IgG antibodies raised toward these proteins did not recognize

HmuYPe (this study). This suggests that HmuY proteins produced

by oral pathogens differ in their epitopes sufficiently to be

considered candidates for the development of diagnostic methods

or biological markers to monitor polymicrobial diseases.
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