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Exosomes are extracelluar vesicles that facilitate intercellular communication

and are pivotal in post-transcriptional regulation within cellular gene regulatory

networks, impacting pathogen dynamics. These vesicles serve as crucial

regulators of immune responses, mediating cellular interactions and enabling

the introduction of viral pathogenic regions into host cells. Exosomes released

from virus-infected cells harbor diverse microRNAs (miRNAs), which can be

transferred to recipient cells, thereby modulating virus infection. This transfer is a

critical element in the molecular interplay mediated by exosomes. Additionally,

the endosomal sorting complex required for transport (ESCRT) within exosomes

plays a vital role in virus infection, with ESCRT components binding to viral

proteins to facilitate virus budding. This review elucidates the roles of exosomes

and their constituents in the invasion of host cells by viruses, aiming to shed new

light on the regulation of viral transmission via exosomes.
KEYWORDS

exosomes, virus infection, mechanism, microRNAs (miRNAs), endosomal sorting
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1 Introduction

1.1 Introduction of exosomes

Exosomes are a type of extracellular vesicles (EVs) secreted by cells, which have a lipid

bilayer membrane with a diameter of 30nm~150nm (Marote et al., 2016), a buoyancy density

of 1.13~1.19g/mL in a sucrose gradient (Yellon and Davidson, 2014), and a cup-shaped

vesicle structure under an electron microscope (Zakharova et al., 2007). Exosomes are widely

present in various biological fluids, and all cells can secrete exosomes. In 1983, Pan et al.

(Pan and Johnstone, 1983) first discovered a small vesicle capable of transporting the

transferrin receptor to the extracellular space during the maturation of sheep reticulocytes,

and it was named “Exosome” by Johnstone in 1987 (Johnstone et al., 1987). Initially

considered merely a means of discarding metabolic waste and removing obsolete
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2024.1418168/full
https://www.frontiersin.org/articles/10.3389/fcimb.2024.1418168/full
https://www.frontiersin.org/articles/10.3389/fcimb.2024.1418168/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2024.1418168&domain=pdf&date_stamp=2024-06-26
mailto:donghao@jlau.edu.cn
mailto:mqfboy@163.com
https://doi.org/10.3389/fcimb.2024.1418168
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2024.1418168
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Zhang et al. 10.3389/fcimb.2024.1418168
membrane proteins during erythrocyte maturation, exosomes are

now recognized as “communicators” between cells. They carry

signaling molecules that interact with target cells, influencing their

physiological and pathological states, and are intimately connected

with disease processes and treatments (Kalluri, 2016).
1.2 The composition of exosomes

Exosomes consist of functional proteinss, lipids, and nucleic

acids (miRNAs, lncRNAs, circRNAs, rRNAs, etc.) (Zhou S. et al.,

2022). The RNA in the exosome is transferred from the parent cell

to the receptor cell. The protein composition of exosomes varies

depending on the cells that secrete them, and their surface features a

range of biomarkers, such as the tetraspanins CD9, CD63, CD81,

CD82, heat shock protein HSP70, HSP90, the MVB-forming

proteins TSG101, ALIX, etc. (Figure 1) (Nam et al., 2020).

Beyond these common proteins, exosomes contain a variety of

specific proteins that change according to their physiological and

pathological conditions. Furthermore, exosomes are enriched with

cholesterol, sphingomyelin, sphingosine, phosphatidylserine, and

ceramide (Li S. et al., 2021), crucial for maintaining exosomal

structure, biogenesis, and regulating the homeostasis of

recipient cells.
1.3 Biogenesis of exosomes

Exosomes originate from multivesicular bodies (MVBs), where

the plasma membrane inwardly sprouts to form the early

endosomes, which mature into the late endosomes and MVBs
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containing Intraluminal vesicles (ILVs), after the formation of

ILVs (Samuels et al., 2023). A part of MVBs is released into the

extracellular space as exosomes after fusion with the cell membrane,

while another part is degraded by lysosomes (Figure 2) (Marote

et al., 2016). The exosomal secretion process requires the aid of the

endosomal sorting complex required for transport (ESCRT), a

family of proteins that includes four complexes: ESCRT-0,

ESCRT-I, ESCRT-II, and ESCRT-III (Addi et al., 2020). Escrt-0

regulates content aggregation through a ubiquitination-dependent

pathway, ESCRT-I and ESCRT-II induce bud formation, ESCRT-III

drives vesicle shedding, and helper proteins (VPS4 ATPase)

mediate dissociation and circulation of the ESCRT system.

ESCRT-0: The ESCRT-0 complex (HRS, STAM) is not involved

in the process of budding and membrane separation, so it can be

used as a basis to trace the origin of exosomes (Duguez, 2021). HRS

recognizes monoubiquitinated proteins and binds to the

ubiquitination site to target the protein to ILVs (the process of

protein sorting into ILVs is mainly dependent on ubiquitination),

forming complexes with STAM, Eps15, and Clathrin (Vechetti

et al., 2021). HRS then recruits the tumor susceptibility gene

TSG101 (a component of ESCRT-I), and ESCRT-0 and ESCRT-I

are jointly responsible for sorting the ubiquitination protein.

ESCRT-I is a heterotetramer composed of VPS23, VPS28, VPS37,

and MVB12 (Pashkova and Piper, 2012). ESCRT-II: ESCRT-II is a

Y-type heterotetramer protein complex composed of VPS36,

VPS22, and VPS25. The N-terminal of VPS36 binds to ubiquitin

(the cargo protein or other proteins on ESCRT) and the C-terminal

of ESCRT-I. The supercomplex of ESCRT-I/II has been shown to

play an important role in membrane deformation of ILVs. VPS25 of

ESCRT-II and VPS20 of ESCRT-III have the ability to combine with

high affinity, and when the two are combined, it initiates the work of
FIGURE 1

The content of exosomes and biomarkers for exosomes. Exosomes have a phospholipid bilayer, which has the same topology as cells, and their
bilayer membrane contains sphingomyelin, phosphatidylserine, cholesterol, ceramide, etc., which protects their inclusions from degradation.
Exosomes contain a variety of bioactive substances, mainly composed of proteins, nucleic acids and lipids. Different cells carry different bioactive
ingredients in different states.
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ESCRT-III. ESCRT-III: In yeast, ESCRT-III consists of four core

subunits: VPS20, Snf7 (VPS32), VPS24, and VPS2, as well as helper

proteins Did2, VPS60, and Ist (Capalbo et al., 2012). These subunits

are inactive monomers in the cytoplasm and form a transient

ESCRT-III heteropolymer once combined on the membrane. Its

main function is to promote membrane separation and allow it to

enter the endosomal compartment in the form of ILVs to form

MVBs (Kesidou et al., 2020).
2 The role of exosomes in
virus infection

2.1 Relationship between exosomes and
virus infection

Most cells release exosomes during normal growth. Exosomes

are an important part of viral pathogenesis and immune response,

and can carry intracellular substances to participate in intercellular

information exchange, which also contributes to the transmission of

viral nucleic acids and proteins between cells (Liu et al., 2016b).

Many studies have shown that exosomes are the vectors of DNA

and RNA viruses (As shown in Table 1: describes how RNA enters

the exosomes). Viruses can regulate the intracellular environment

of host cells by wrapping viral nucleic acid, viral protein, and even

the whole virion in exosomes to help viruses proliferate and

replicate, and make use of the transport function of the exosome

to follow the circulation of body fluids to the target cells for

diffusion and infection (Meckes and Raab-Traub, 2011). For

example, studies of several RNA viruses have shown that

exosomes summon viral proteins to integrate into exosomes

(Angela et al., 2015). The exosomes isolated from the supernatant

of HIV-infected cells contain Gag and Nef proteins (Fujinaga and

Cary, 2020). Similarly, HTLV-1’s trans-activating protein Tax,

which is an important amplification and conversion factor for T

cells, can also be integrated into exosomes released by viral infection

supernatant (Harendra et al., 2015). Exosomes secreted by Hepatitis
Frontiers in Cellular and Infection Microbiology 03
C virus (HCV) infection contain not only HCV core proteins, but

also apolipoprotein ApoE and ApoB (Bandopadhyay and

Bharadwaj, 2020). In the serum of HCV infected patients, the E2

protein of the virus and CD81 can also co-locate (Favre and

Muellhaupt, 2005). Exosomes have characteristics similar to some
FIGURE 2

The biogenesis of exosomes. Early endosomes formed by plasma
membrane invagination grew into late endosomes and MVB
containing intracavitary vesicles (ILVs) after the formation of ILV. Part
of MVBs fuses with the cell membrane and is released into the
extracellular space as exosomes, while the other part is degraded
by lysosomes.
TABLE 1 Different ways of RNA entering the exosomes.

Types
of RNA

Different ways of entering the exosomes

mRNA Preloading method: heavily dependent on the production
cells in the biogenesis process to package mRNA goods into
exosomes (Olanrewaju and Hakami, 2020).

Active preloading method: The production cells were
transfected with two types of plasmids (Hirata et al., 2018).
A plasmid encodes a fusion protein (surface marker CD9,
CD63, or cell membrane protein Hspa8) composed of
mRNA-binding components and Exosomes-enriched
proteins (Li Z. et al., 2022). The mRNA of interest
transcribed from the plasmid contains deliberately designed
recognition sites that can specifically bind to the mRNA of
the fusion protein (Zhao et al., 2021). The rest of the fusion
protein, namely Exosomes-enriched protein, is incorporated
into exosomes in the process of biogenesis to realize the
preloading of active mRNA (Yan et al., 2022).
Another method is targeted and modular exosomes loading
(TAMEL) (Yin et al., 2022a). By fusing exosomes-rich
proteins into the coat protein of MS2 phage, mRNA is
actively loaded into the exosomes (Yang et al., 2023). Then
the homologous stem-ring sequence was integrated into the
mRNA vector to promote mRNA binding and load into the
exosomes (Li Z. et al., 2022).

Post-loading method: Exogenous mRNA is loaded into
isolated exosomes by electroporation or chemical
transfection reagent (Liu et al., 2015). Electroporation is a
commonly used method of loading various molecules,
including siRNA and miRNA, as well as mRNA, into the
purification of exosomes (Koh et al., 2023). Another
commercial loading reagent called REG1 is also used to
load mRNA into exosomes after its separation (Aslan
et al., 2021).

miRNA Blood cells and mononuclear lymphoma cells THP1 can
actively and selectively package miRNA into exocrine
bodies and secrete it into the body circulation in response
to various stimuli (Badimon et al., 2017).

Neutral sphingomyelinase 2 (nSMase2), which controls
ceramide biosynthesis, can regulate the secretion of
exosome miRNA (Nishida-Aoki and Ochiya, 2015). The
increase of miRNA secretion mediated by nSMase2
increases the number of exosomes released by cells and the
number of miRNA packaged into exosomes (Khalyfa and
Gozal, 2014). NSMase2 is a key factor in determining the
infiltration of miRNA into exosomes or RNA-binding
proteins (Song et al., 2013).

Specific protein control of miRNA entry into exosomes by
RNA-induced silencing complex (RISC) (Li C. et al., 2021).
By combining with AGO2, the GW182 required for miRNA
function is enriched in exosomes (Chiou et al., 2018). RISC
is involved in the process of packaging miRNA into
exosomes (Shirazi et al., 2024).

lncRNA LncARSR is regulated by hnRNAPA2B1 and packaged into
exosomes (Jiang et al., 2023).

HnRNPA2B1-mediated packaging of LNMAT2 into
exosomes secreted by BCa cells (Tang et al., 2021).
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viruses, including biogenesis, molecular properties taken up by cells,

and intercellular transfer of functional RNAs, mRNAs, and cellular

proteins (Alenquer and Amorim, 2015). Differences that exist

between exosomes and some viruses include the complexity of

self-replication after infection with new cells, temporarily regulated

virus expression, and the complexity of virus entry (Xu et al., 2020).

Exosomes extracted after virus infection of cells can transmit many

regulatory factors, which change cargo transport and cause the host

to produce an effective immune response to pathogens, including

activation of antiviral mechanisms and transfer of antiviral

components in a variety of cells (Xu et al., 2022), and can detect

the presence of pathogens that promote viral infection. Exosomes

containing viral genomes can accelerate virus transmission by

entering susceptible cells. At the same time, some specific

contents of exosomes can also play an anti-viral role in antiviral

infection by inhibiting viral replication or inducing an antiviral

immune response (Li et al., 2019). These contents enter the

recipient cells through exosome transmission and transport, and

participate in intracellular communication and life activities.
2.2 The role of exosomal miRNAs in
virus infection

Exosome miRNAs are regulatory non-coding RNAs, which are

usually encapsulated into exosomes as signal molecules. They are

about 19–25 nucleotides in length and play an important role in

regulating gene expression, translation, and information

transmission between cells; a single miRNA can target hundreds

of mRNAs, and multiple miRNAs may regulate a single mRNA and

affect the expression of many genes in the organism (Lee et al.,

2021). The typical function of miRNAs is to regulate the stability of

mRNA by identifying the 3’ untranslated region (3’ UTR) of
Frontiers in Cellular and Infection Microbiology 04
mRNA, thus affecting the level of gene expression (Papadakos

et al., 2023). miRNAs are often encapsulated by exosomes and

protected from degradation (Figure 3). Therefore, the changes of

exosomal miRNAs affect the degree of regulation of target genes,

and then affect the homeostasis of the organism. miRNAs generally

participates in a series of biological processes by cleaving target

genes to degrade target genes and inhibiting protein translation

(Pan et al., 2022). miRNAs are considered the most promising non-

invasive biomarker because of their high abundance, good stability,

and regulation effect on cells (Miyoshi et al., 2022). Understanding

the role of exosomal miRNAs in the pathogenesis of infectious

diseases and their therapeutic potential is necessary for the

development of new therapeutic approaches. It has been proven

that a variety of viruses can self-replicate and infect with the

functional properties of exosomal miRNAs, such as: Human

immunodeficiency virus (HIV), Hepatitis C virus (HCV),

Enterovirus 71 (EV71), Epstein-Barr virus (EBV), Hepatitis B

virus (HBV), and Severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2), they are listed in Table 2.

2.2.1 Human immunodeficiency virus (HIV)
Exosomes secreted by HIV-infected cells and patient serum

carry transactivation response element (TAR) RNA as well as its

products vmiR-TAR, vmiR88 and vmiR99 (Martini et al., 2020).

TAR RNA is located in HIV 5’ long terminal repeat (5’-LTR) with a

52-base RNA stem-loop structure. vmiR TAR reduces the level of

cyclin-dependent kinase 9 (Cdk 9) and Bcl-2 interacting mediators

of cell deaths (Bim) and silences the mRNA of Bcl-2 interacting

protein in receptor cells (Kaur and Kumar, 2021). The down-

regulation of apoptosis prolongs the incubation period of the

virus to produce more viruses. vmiR88 and vmiR99 encoded by

HIV 5’-LTR can activate the Toll-like receptor 8 (TLR 8)-mediated

signaling pathway in macrophages, and promote the mass release of
FIGURE 3

The biogenesis and functions of exosomal miRNAs. miRNAs are transcribed from RNA Pol II in the nucleus into primary mirnas (pri-miRNAs) and
further processed and clipped into precursor RNA with a stem-ring structure (pre-miRNAs), which are then exported to the cytoplasm via exportin-
5. In the cytoplasm, the 5 ‘end and 3’ end of the precursor RNAs are cut by Dicer enzyme to form mature miRNAs, which are then wrapped and
released by exosomes to play their role.
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TABLE 2 The function and mechanism of exosomal miRNAs secreted by different viruses.

Virus Recipient
exosomes

miRNA Function Mechanism
of action

References

HIV Serum
exosomes

vmiR-TAR Down-regulation of apoptosis prolongs
the incubation period of the virus to
produce more virus

Reduces the level of
Cdk 9 and Bim and
silences the mRNA of
Bcl-2 interacting
protein in
receptor cells

(Martini et al., 2020)

vmiR88, vmiR99 Promote the release of a large number of
inflammatory cytokines

It can activate TLR8-
mediated signaling
pathway
in macrophages

(Kaur and
Kumar, 2021)

Exosomes
secreted by

T-cell

miR-155–5p Transfer directly from HIV-1-infected T
cells to cervical cancer cells via exosomes
and activate the NF-kB signaling pathway
by reducing the expression of their target
gene ARID2

Promote the infection
of cervical cancer cells

(Güler et al., 2021)

Plasma
exosomes

miR-146a, miR-126,
miR-21, miR-let-7a

Mediated immune regulation
and neuroinflammation

The expression level is
upregulated after
HIV infection

(Khalid et al., 2022)

HCV Exosomes
secreted

by Hepatocyte

miR-122 Anti-HCV antibodies are produced during
HCV infection

Stimulates B cell
proliferation
and activation

(Yin et al., 2022b)

let-7b, miR-206 As the ligand of TLR7 Induction of
Macrophage
production by
exosomal
delivery BAFF

(Liao et al., 2021)

Exosomes
secreted by

umbilical cord
mesenchymal
stem cells

miR-145,miR-199a,
miR-221

Largely contributed to the suppression of
HCV RNA replication.

These miRNAs have
binding sites on
HCVRNA, have
unique expression
profiles, and are
representative
functional miRNAs

(Zhou L. et al., 2022)

miR-4718,
miR-642a-5p,
miR-6826–3p,

miR-762

Down-regulated expression induces cell
proliferation and prevents apoptosis
in vitro.

It was positively
correlated with the
expression pattern
in liver

(Zhang et al., 2021)

EV71 Exosomes
secreted by
human oral
epithelial cells

miR-30a Inhibition of type I IFN reaction It is delivered to
macrophages and
targeted by
bone MyD88

(Hu et al., 2023)

Exosomes
secreted by
THP-1

miR-146a The concentration was significantly
increased and could be transferred into
target cells

Inhibition of type I
interferon response
and functional transfer
to recipient cells

(Li et al., 2019)

EBV Exosomes
secreted by

B-cell

hsa-miR-21–5p, hsa-miR-146a-5p Regulation of host inflammatory response Expression disorder in
EBV infection

(Hatton et al., 2014)

Exosomes in
cerebrospinal

fluid of
RRMS
patients

miR-BART9–3p, miR-BART15 It provides a substantial connection for
the transformation from EBV infection
to MS.

Expression increased
in EBV infection

(Mohammadinasr
et al., 2024)

Exosomes
secreted
by LCL

miR-BART3 Implicated in the regulation of
innate immunity

Targeted introduction
of IPO7 induces pro-
inflammatory cytokine
IL-6

(Li J. et al., 2022)

(Continued)
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TABLE 2 Continued

Virus Recipient
exosomes

miRNA Function Mechanism
of action

References

miR-BHRF1–1 Strongly potentiate the transforming
properties of EBV

Down-regulation of
host p53 protein in
nasopharyngeal
carcinoma

(Li J. et al., 2022)

HBV Plasma
exosomes

miRNA-1246, miRNA-150–5p,
miRNA-5787, miRNA-8069,

It can be used as new markers of miRNAs
of peripheral blood plasma exosomes after
HBV infection

Combined diagnosis
using multiple markers
is more effective

(Wang D.
et al., 2022)

Serum
exosomes

miRNA-574–5p The expression of HBV polymerase
was inhibited

By binding HBV
genome sequence at
2750 ~ 2757 positions

(Khanam
et al., 2021)

miR-222–3p Promote anti-apoptosis, proliferation and
drug resistance of hepatocellular
carcinoma cells

Induce the expression
of miR-135a-5p and
pass through the
VAMP2 axis

(Wei et al., 2021)

miR-125b miR-125b was an independent predictor
of HBV DNA, HBsAg, and HBeAg levels.

miR-125b was up-
regulated in
HBV patients

(Zhou et al., 2018)

miR-146a Enhanced HBV replication Regulation of TLR4
inhibits M1
immune function

(Hou et al., 2016)

miR-142–3p Promote the proliferation, migration and
invasion of liver cancer cells

SLC3A2 promotes iron
death in HBV-infected
M1-type macrophages
and affects the
production of GSH,
MDA and Fe2+.

(Alenquer and
Amorim, 2015)

miR21, miR-192, miR-215, miR-221,
miR-222

Lead to immune escape of HBV Targeting the IL-21
gene decreases
its expression

(Enomoto
et al., 2017)

Exosomes
secreted

by hepatocytes

miR-222 Promotes the activation of LX-2 cells Inhibition of iron
death in LX-2 cells
induced by TFRC

(Liu et al., 2016a)

Exosomes
secreted by

HepG2-NTCP

miR-21 Promotes cancer progression by activating
cancer-associated fibroblasts (CAF)

Converting normal
HSC into CAF by
directly targeting
PTEN leads to
activation of PDK1/
AKT signal in HSC
and secretion of
angiogenic cytokines,
which can down-
regulate IL-12p3
mrna expression

(Zhao et al., 2020)

miR-29a Causes obstruction of HBV clearance The expression level of
IL-12p40 gene A is
down-regulated, the
activity of IL-12 is
decreased, and the
proliferation and
activation of NK and
CTL cells are affected

(Chaudhari
et al., 2022)

SARS-CoV-2 Serum
exosomes

miR-223–3p, miR-24–3p,
miR-145–5p, miR-75p

Inhibition of SARS-CoV-2 replication It directly binds to S-
protein-specific target
sites and mediates
membrane fusion and
entry into SARS-
CoV-2

(Mishra and
Banerjea, 2021)

(Continued)
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preinflammatory cytokines, such as tumor necrosis factor-a (TNF-

a) (Güler et al., 2021). After HIV-1 enters the incubation period,

due to the poor recognition of miRNA by the immune system, the

virus takes advantage of exosomes to release miRNA, making

neighboring cells more susceptible while accelerating viral

infection (Khalid et al., 2022). HIV-infected T-cell-derived miR-

155–5p is transferred directly from HIV-1-infected T cells to

cervical cancer cells via exosomes while activating the NF-kB
signaling pathway by reducing the expression of its target gene

ARID2, thus promoting the invasion of cervical cancer cells

(Li J. et al., 2022).

2.2.2 Hepatitis C virus (HCV)
HCV-infected hepatocellular derived miRNAs (such as miR-

122, let-7b and miR-206) as TLR7 ligands can induce macrophages

to produce the B cell activating factor (BAFF) through exosomal

delivery, while hepatocellular derived exosomal miR-122-induced

BAFF can stimulate B cell proliferation and activation, meanwhile

anti-HCV antibodies are produced during HCV infection (Yin

et al., 2022b). Tlr3-activated macrophages impart anti-HCV

activity to hepatocytes via exosomes containing members of the

anti-HCV miRNA-29 family (Zhou L. et al., 2022). In addition,

exosomes secreted by umbilical cord mesenchymal stem cells

inhibit HCV infection by transferring multiple mirnas, including

miR-145, miR-199a and miR-221 (Zhang et al., 2021). The

expression patterns of miR-4718, miR-642a-5p, miR-6826–3p and

miR-762 in exosomes were positively correlated with those in the

liver, and the down-regulation of these miRNAs induces cell

proliferation and prevents cell apoptosis in vitro (Cabral

et al., 2022).
Frontiers in Cellular and Infection Microbiology 07
2.2.3 Enterovirus 71 (EV71)
EV71 is a single plus-stranded RNA virus. The exosomes of

EV71-infected RMS cells contain EV71 RNA, viral capsid protein

VP1 and EV71 particles, which, partially resistant to antibody

neutralization, can establish an effective infection in vitro (Gu

et al., 2020). However, exosomes of human oral epithelial cells

infected with EV71 selectively package high levels of miR-30a,

which can be delivered to macrophages and inhibit the type I IFN

response by targeting the bone marrow differentiation factor 88

(MyD88), thereby enhancing viral replication (Hu et al., 2023). It

can induce the increase of exosomes secreted by colon cancer cell

line HT29 and human mononuclear/macrophage cell line THP-1,

meanwhile the EV71 virus nucleic acid carried in those exosomes

can break through the limitation of virus-specific receptors and

assemble its own genes into exosomes to expand the range of host

infection (Li et al., 2019). After infection, the enrichment of

secreted exosome miR-146a significantly increases and can be

transferred into target cells, which can be functionally transferred

to recipient cells by inhibiting the type I interferon response, while

promoting the replication of exosome EV71 RNA in recipient cells

(Fu et al., 2017).

2.2.4 Epstein-Barr virus (EBV)
EBV expresses 44 mature miRNAs derived from 25 miRNA

precursors encoded by 2 primary transcripts BamHI fragment H

to the right open reading frame 1 CSF (BHRF1) and BamHI

fragment A to the right transcription (BART), which are

important for cell survival and proliferation during the pre-

infection incubation period of B cells (Gallo et al., 2020). EBV

miRNAs can regulate genes involved in apoptosis, antigen
TABLE 2 Continued

Virus Recipient
exosomes

miRNA Function Mechanism
of action

References

Exosomes
secreted by
Activate
Human
Microglia

miR-148a As an immunomodulator Transported into
human microglia and
inhibited USP33 and
downstream IRF9
protein
expression levels

(Zhang et al., 2020)

miR-590 Direct targeting of IRF9 expression levels miR-590 binds
strongly to the
complementary IRF9
3’ UTR sequence

(Estep et al., 2020)

MSC-derived
exosomes

miR-125a-3p, miR-125b-1–3p Minimizes cell death and works
collaboratively to reduce inflammation
throughout the body

It can be targeted to
bind to the 3’ UTR
region of
multiple genes

(Wang H.
et al., 2022)

miR-769–3p,
miR-202–3p

Reduce cell death and avoid tissue damage Synergistically target
the 3’ UTR region of
the TNF e IFN gene
that inhibits its
protein translation

(Lei et al., 2022)

miRNA let-7e-5p The anti-apoptotic effect is mediated by
the transfer of miRNA let-7e-5p

Binds to the 3’ UTR
region involved in cell
death
signaling pathways

(Wu et al., 2020)
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presentation and recognition as well as B-cell transformation

(Hassani et al., 2019). Chronic infection can alter the expression

of host miRNA, thereby regulating the host inflammatory

response (Mourenza et al., 2022). The dysregulation of host

miRNA can affect B cell function. miRNAs and EBV miRNAs of

B cells are dysregulated before and after EBV infection, and

participate in the pathogenesis of multiple sclerosis (MS)

through interactions with MS risk sites (Afrasiabi et al., 2021).

EBV miRNAs, including Bart miRNAs, have important functions

in cancer growth, tumor invasion and host immune surveillance

(De Re et al., 2020). Studies have found that EBV infection can

induce the expression of some miRNAs in B cells, including hsa-

miR-21–5p and hsa-miR-146a-5p, which participate in

tumorigenesis and are dysregulated in EBV infection (Hatton

et al., 2014). In vitro, BART miRNA can induce macrophages to

produce immunomodulatory phenotypes (Song et al., 2017). It is

characterized by the gene expression of interleukin 10 (IL10),

TNF-a and arginase 1 (Arg1) (Jourdan et al., 2017). The elevated

expression of miR-BART9–3p, miR-BART15 and inflammatory

cytokines in the cerebrospinal fluid exosomes of patients with

relapsing multiple sclerosis (RRMS) provides a substantial link

between EBV activity and disease pathogenesis as well as the

transition from EBV infection to MS (Mohammadinasr et al.,

2024). The exosomes secreted by EBV-infected lymphoblastic cell

line (LCL) contain miR-BART3 and miR-BHRF1–1, which are

pathways for the transfer of viral miRNAs (Li J. et al., 2022). miR-

BART3 targets the introduction of importin 7 (IPO7), induces the

pro-inflammatory cytokine IL-6, and plays an anti-apoptotic role

against caspase 3, and miR-BHRF1–1 enhances EBV replication

by down-regulating host p53 in nasopharyngeal carcinoma.

2.2.5 Hepatitis B virus (HBV)
Hepatitis B virus (HBV) is the pathogen of hepatitis B and its

related diseases and is characterized by long-term chronic infection

with hepatocyte damage and complex interaction between HBV

and the immune system (Sahasrabuddhe et al., 2012). Studies have

found that exosomal miRNAs from HBV-infected cells can inhibit

the immune response and lead to the dysfunction of immune cells,

thereby interfering with the clearance of HBV from host cells and

resulting in persistent infection of the virus (Lin et al., 2023). After

HBV infection, the expression levels of some miRNAs in plasma

and serum exosomes changed significantly and participated in the

process of virus infection to varying degrees. The function and

mechanism of miRNAs in the exosomes during HBV infection are

listed in Table 2. A large number of studies have demonstrated that

exosomal miRNAs can be used to monitor the progress of HBV and

as biomarkers for for early detection of hepatocellular

carcinoma (HCC).

2.2.6 Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2)

SARS-CoV-2 belongs to the coronavirus group and is a positive

RNA single-stranded virus with potential pathogenicity associated

with respiratory diseases. The genome has 14 open reading frames

(ORF), encoding 27 proteins, 4 of which are structural proteins,

namely the envelope protein (E), nucleocapsid protein (N), matrix
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protein (M), and spike protein (S). Fifteen non-structural proteins

(NSP) within the ORF1a and ORF1b regions are located at the 5’

end of the genome, and the 3’ end of the genome contains sequences

associated with 8 helper proteins and structural proteins

(Jamalkhah et al., 2021). The SARS-CoV-2 genome is wrapped by

N proteins, while M and E proteins are key proteins to ensure the

assembly of virus particles, and S proteins provide receptor

specificity for viruses entry into cells (Maddali et al., 2024).

The coronavirus spike protein (S protein) is the outermost

“coronavirus” structural protein that mediates the entry of the

coronavirus into host cells (Wan et al., 2020). miRNA inhibits

SARS-CoV-2 replication by inhibiting the expression of the targeted

spike protein (S protein). Circulating miRNA in exocrine has

similar effects to endogenous miRNA and can be delivered to

receptor cells to regulate multiple target genes or signal events

(Wang et al., 2024). Studies have shown that increasing the

expression level of antiviral circulating miRNA can enhance their

inhibition of SARS-CoV-2 replication. miRNA contained in

exosomes released by SARS-CoV-2 S protein-transfected cells are

transported into human microglia and inhibit ubiquitin specific

peptidase 33 (USP33) (These are summarized in Table 2). The

cellular level of USP33 regulates the turnover time of IRF9 through

deubiquitination, effectively regulates the main pro-inflammatory

factors of TNF-a, NF-kB, and IFN-b, and plays a role as a

protective factor in inflammation (Mishra and Banerjea, 2021).

Serum-derived exosomes have the potential to be used as a

diagnostic tool for the detection of SARS-CoV-2, as well as a

messenger RNA (mRNA) transmission carrier, even in

asymptomatic patients, which is the limitation of the current

practice of diagnostic testing around the world (Zhang et al.,

2020). These results reveal that SARS-CoV-2 has become an

indirect way to mediate central nervous system injury through

the over-activation of human microglia, which provides a

theoret ical basis for finding new treatments for the

neuropathogenesis related to SARS-CoV-2.
2.3 The role of exosomal ESCRT pathway
in virus infection

Virus infection begins with the binding to the plasma

membrane of the host cell, where the virus enters the host cell

and is replicated and packaged, and then new virions leave the host

cell and start a new infection cycle (Sharma et al., 2021). Many

enveloped viral structural proteins include one or more short

peptide sequences-late-domains, that facilitate the final separation

of newborn viruses from infected cells, and the interactions between

these domains and proteins involved in exosome formation are

indispensable (Barton et al., 2016). So far, three types of domain

motifs (PT/SAP, YXXL/YPXnL and PPxY) have been identified,

and mutations or deletion of these short peptide sequences will lead

to accumulation of immature virions on the plasma membrane

(Urata and Yasuda, 2012). The enveloped RNA virus itself cannot

synthesize most of the elements needed for budding, and its

encoded Late-domains will hijack the host’s ESCRT pathway to

complete virion budding (Figure 4). And studies have shown that
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retroviruses and many other viruses (Filoviruses, Arenavirus,

Paramyxoviruses, Flaviviruses and Rhabdoviruses, etc.) use or

require the ESCRT pathway for release (the following viruses are

listed: Human immunodeficiency virus1 (HIV-1), Equine infectious

anemia virus (EIAV), Herpes simplex virus types 1 (HSV-1), Ebola

virus (EBOV)) (Igari et al., 2024), which participates in a variety of

cellular functions, and its special feature acts from the inner surface

of the bud to promote membrane budding and cut the membrane

neck, but the specific mechanism of various proteins affecting virus

production needs to be further studied (Little and Dwyer, 2021).

2.3.1 Human immunodeficiency virus 1 (HIV-1)
Retroviral HIV-1 recruited ESCRT-I, ESCRT-III, and VPS4 to

participate in its budding, which does not require ESCRT-0 and

ESCRT-II in this process because the Gag protein of HIV-1 plays a

similar role to ESCRT-0 and -PIN (Bigalke and Heldwein, 2017).

The main HIV structure polyprotein Gag forms a polymer array

under the plasma membrane, which leads to the change of

membrane curvature. The PTAP and YPXnL motifs of Gag p6

domain are involved in exosomal biogenesis (Wang Y. et al., 2023).

The PTAP sequence can bind the UEV domain of ESCRT-I protein

TSG101 and mediate the recruitment of ESCRT-I complex to

nuclear endosomes (Rose et al., 2020). The YPXnL motif located

near the c-terminal of HIV-1 Gag protein can interact with the V

domain in ALIX to recruit ESCRT-I and ALIX in the cell membrane

region of virus assembly and budding, and then recruit ESCRT-III

and VPS4 (Wang Y. et al., 2023) through ESCRT-I and ALIX

protein, thus completing the whole process of virus budding. The

final cutting involves the formation of ESCRT-II, which is caused by

CHMP4B recruiting VPS4 through CHMP6 or ALIX (Meng et al.,

2020). Early studies have confirmed the role of ESCRT-I and

ESCRT-III in HIV budding (Moulin et al., 2023). However, it has

not been proved until recently that ESCRT-II plays an indispensable

role in membrane remodeling (Effantin et al., 2013). During HIV-1
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infection, the elimination and deletion of ESCRT-II produced

different effects. The elimination of ESCRT-II did not reduce the

release of the virus, but the deletion of ESCRT-II had a similar effect

as the deletion of ESCRT-I and ESCRT-III components, indicating

that ESCRT-II is also necessary for effective budding of HIV

(Effantin et al., 2013). In addition, ESCRT-I interacts with

ESCRT-II and activates ESCRT-II through the C-terminal gall

and H0 connecting domain of EAP45, and then recruits the

CHMP6 of ESCRT-III to form an ESCRT-III-CHMP6 complex to

function (Xia et al., 2023). HIV-1 Gag protein initiates virus

assembly and budding, which requires ESCRT-III and VPS4 to

isolate and release virions from the cell membrane, which is similar

to the role of ESCRT-0 and ESCRT-II in MVB (Ju et al., 2021).

2.3.2 Equine infectious anemia virus (EIAV)
EIAV is a special virus among the enveloped viruses studied so

far. Due to the lack of TSG101/ESCRT-I binding sites, TSG101 does

not participate in EIAV budding (Dowlatshahi et al., 2012). EIAV

can only function with a new motif in Gag, YPDL, as a late-domain

(Rivera-Cuevas et al., 2021). In contrast, YPDL is unique in that it

can interact with the mu2 subunit of the AP-2 adapator protein

complex and the ALIX protein respectively, which can only connect

to the ESCRT system through ALIX, playing a key role in the release

of virions in the late stage of EIAV budding (Ju et al., 2021). ALIX is

involved in EIAV budding, responsible for attaching the YPDL of

EIAV p9 Gag to host cell ESCRT-III (Dores et al., 2012). The N-

terminal Bro1 domain of ALIX binds to CHMP4 and the central V

domain binds to Gag protein (Sette et al., 2011). CHMP4B

recruitment/polymerization helps control Gag polymerization and

processing to ensure that ESCRT factor assembly and membrane

fission occur at the appropriate stage of virion assembly (Sandrin

and Sundquist, 2013). EIAV budding requires only a collection of

ESCRT proteins, including ALIX, CHMP4B, CHMP2A and VPS4,

which interact directly with each other (Sanford et al., 2014). In the
FIGURE 4

Interaction between ESCRT system and late-domain encoded by virus. The ESCRT system consists of five complexes, including ESCRT-0, I, II, III, and
Vacuolar protein sorting-associated protein 4 (VPS4), and some auxiliary proteins including Alix. The viral structural protein Gag contains late-
domains whose core sequences are PPxY, PT/SAP, and YPxnL. PPxY can bind to E3 ubiquitin ligase Neural precursor cell expressed developmental
downregulated gene 4 (NEDD4), PT/SAP can bind to ESCRT-I subunit VPS23 and YPxnL can bind Alix.
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process of finding new ways to prevent and treat EIAV, it is entirely

possible to inhibit the interactions of these proteins or inhibit some

of them to inhibit EIAV infection.
2.3.3 Herpes simplex virus type 1 (HSV-1)
HSV-1 is a nervous system pathogen, which uses its own virus-

encoded protein and host ESCRT mechanism to promote viral

budding (Button et al., 2020). Unlike other enveloped viruses, HSV-

1 does not require TSG101 or ALIX, a protein containing the Bro1

domain, to recruit or activate ESCRT-1 (Wang C. et al., 2023).

HSV-1 capsid uses nucleoplasmic ESCRT to obtain a lipid envelope

from the inner nuclear membrane (INM) and then fuses with the

outer nuclear membranes (ONM) (Wilhelmsen et al., 2005). The

herpesvirus nuclear exit complex (NEC) consists of viral proteins

encoded by the UL31 and UL34 genes that induce perinuclear

vesicles in uninfected cells (Draganova et al., 2021). In addition,

HSV-1 NEC can mediate the budding of membrane vesicles in the

absence of endogenous cellular proteins and ATP, where UL34 can

interact with Alix in infected cells, and NEC recruits CHMP4 to the

budding site of INM (Calistri et al., 2021). However, CHMP4/Vps4

controls the rate at which HSV-1 sprouts into the perinuclear space.

When infected with HSV-1, ESCRT-III/Vps4 can promote the

germination of HSV-1 from INM by playing a role in the

biogenesis of autophagosomes, thereby degrading laminin (Butt

et al., 2020). By recruiting ESCRT-III to the binding site of INM, it

helps with HSV-bud while maintaining the integrity of INM

(Calistri et al., 2021). Subsequent studies have shown that the

secondary envelope of HSV-1 not only depends on VPS4, but

also requires a functional ESCRT-III complex, and that the

inactivation of any protein in ESCRT-III can effectively block the

production of HSV-1 (Ju et al., 2021). ESCRT-III is the main driver

of membrane remodeling and fracture containing a total of four

core subunits, with the most abundant component being CHMP4,

and it has been found that HSV-1 morphogenesis requires

CHMP4C, but not CHMP4A or CHMP4B (Russell et al., 2020).

At present, the specific mechanism of interactions between the

HSV-1 structural protein and ESCRT components is still unknown

to a large extent, which needs to be further studied.
2.3.4 Ebola virus (EBOV)
EBOV is a single-stranded, enveloped RNA virus belonging to

the Filoviridae family (Lv et al., 2024). EBOV virus matrix protein

VP40 plays an important role in the later stage of virion assembly

and release, recruiting ESCRT-1 complex proteins TSG101 and Alix

proteins to the plasma membrane through vacuolar protein sorting

(VPS) during budding (Silvestri et al., 2007). The L domain of VP40

mediates the separation of the virus from the host cell membrane by

hijacking host proteins associated with the ESCRT pathway (Liang

et al., 2017). VP40 contains two overlapping L-domain PPXY

sequences and PT/SAP sequences capable of binding NEDD4

ubiquitin ligase, TSG101, and ALIX, respectively (Adu-Gyamfi

et al., 2014). After TSG101 binds to EBOV VP40, normal

functional sites are recruited from endosomes to the plasma

membrane (Strickland et al., 2017). The entire ESCRT
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mechanism is recruited to the virus budding site. In the final

sorting of the VPS pathway, the energy provided by the

dissociated protein complex from VPS4 ATPase activity is

required (Roshani et al., 2022).Studies have shown that VP40 can

act independently of TSG101, directing each protein from nuclear

weight to the cell surface (Okumura et al., 2008). Deactivation of

VPS4 adenosine triphosphatase can reduce the budding rate by

80%, inhibition of VPS4 gene expression by phosphodiamine

morpholino oligonucleotides can inhibit the toxicity of EBOV

(Harty, 2009). These data results suggest that EBOV can use VPS

protein budding to manipulate exosome tetraspanin proteins and

ESCRT systems, up-regulate exosome biogenesis, and reveal VPS4

as a potential target for linear virus therapy (Zeng et al., 2022). In

recent years, antiviral treatments targeting the interaction of TAP-

TSG101 and PPXY-NEDD4 have been developed based on the

research mechanism of ESCRT in EBOV infection, and it is believed

that humans will be able to develop a treatment against EBOV in

the future (Effantin et al., 2013).
3 Therapeutic potential of exosomes

Due to the biology of exosomes, they are able to reduce

inflammation, cross the blood-brain barrier and have stability.

Exosomes play an important role in the prognosis and diagnosis

of a variety of pathological conditions such as cancers,

neurodegenerative diseases, liver and kidney diseases as well as

many cardiopulmonary diseases (Amiri et al., 2022). Recent studies

have shown that exosomes are novel therapeutic agents for the

treatment of cancers and other diseases (György et al., 2011). Msc-

derived exosomes have the immunomodulatory and cytoprotective

activities of parent cells, inhibit the expression of pro-inflammatory

cytokines, exert the anti-inflammatory effect and promote tissue

regeneration by enhancing extracellular matrix remodeling

(Gurunathan et al., 2019). Exosomes can not only reproduce the

biological potential of mesenchymal stem cells, but also have

characteristics including targeted delivery, low immunogenicity

and high repairability Bone marrow mesenchymal-stem-cell-

derived exosomes (BM-MSC-Exos) have the anti-inflammatory,

immunomodulatory and inhibitory effect on IFN-g secreted by T

cells (Lotfy et al., 2023). In addition, it also has advantages such as a

low infection rate of pathogenic microorganisms, stable biological

performance, low immune rejection after transplantation and high

possible passage times, which is not easy to inactivate, but can

interact with various types of cells (Raghav et al., 2021). Human

adipose-derived stem cell (HASC) derived exosomes have better

angiogenesis than BM-MSC-Exos, which not only promote

angiogenesis, but also up-regulate early inflammatory responses,

and can be used to improve graft rejection while inducing

osteogenesis and adipogenesis, playing a key role in tissue repair

and regeneration (Liu et al., 2022). In addition, it can inhibit cell

apoptosis and regulate the immune system. Exosomes derived from

human umbilical cord mesenchymal stem cells have a strong in

vitro expansion and multidirectional differentiation ability, which

can inhibit viral infection and replication, and promote the growth
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of new blood vessels, nerve regeneration as well as ossification of

osteoblastic progenitor cells (Nasiry and Khalatbary, 2023).

The most representative application of exosomes in detection is

undoubtedly the early diagnosis and disease monitoring of tumors

(Dinish et al., 2014). Some liquid biopsy techniques are used to

target exosomes. A large number of studies have found that

exosomes derived from tumor cells contain a large number of

specific miRNAs, and their biochemical properties are stable and

easy to preserve, which can be used as markers for the early

diagnosis of pancreatic cancer, colorectal cancer and other

(Huang et al., 2022). Changes in the expression level of exosomal

miRNA can reflect physiological and pathological changes while

playing a regulatory role in the body, which is thus considered as a

potential biomarker for diagnosis (Shufang and Ning, 2018).

Tumor-specific circulating exosomal miRNAs have been

developed as biomarkers for the early diagnosis of lung cancer.

Exosomal miRNAs released by cancer cells can mediate phenotypic

changes in TME cells, thereby promoting tumor growth and

therapeutic resistance, such as fibroblast- and macrophage-

induced differentiation (Wani et al., 2022). Cancer stem cells can

transfer and enhance drug resistance in neighboring sensitive

cancer cells by releasing exosomal miRNAs targeting anti-

apoptotic and immunosuppressive pathways (Santos and

Almeida, 2020). Exosomes induce resistance by carrying ABC

transporters, which export chemotherapeutic drugs from recipient

cells, thereby reducing drug concentrations to suboptimal levels

(Colletti et al., 2021). Exosomal biogenic inhibitors represent a

promising adjunctive therapeutic approach in cancer therapies,

conferring drug resistance and survivability on tumor cells, and

we still need to conduct in-depth research on this promising area

(Das et al., 2020).
4 Conclusions

As nanoscale biological vesicles, exosomes safeguard their

contents from degradation and facilitate intercellular transport,

significantly influencing cellular pathophysiological processes,

including immune defense, cell proliferation, and tumor

metastasis. Viruses exploit the exosomal production mechanism

to alter the host cell’s microenvironment, aiding their expansion

and utilizing the humoral circulatory system to target and infect

specific host cells, thereby evading the host’s immune response. The

discovery of exosomal miRNAs offers fresh insights into the

interactions between pathogens and immune cells, opens new

avenues for immune regulation, and heralds innovative strategies

for developing therapeutics against infectious diseases. However,

numerous challenges remain. Advancements in research on

exosomal miRNAs will unravel the pathogenic mechanisms of

infectious diseases involving these miRNAs, pave the way for

specific exosomal miRNA inhibitors, and explore their

therapeutic potential. Future studies will aim to elucidate the

action mechanisms and signaling pathways of exosomal miRNAs

in treating infectious diseases, both in vitro and in animal models, to
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confirm their safety and efficacy. The involvement of the exosomal

ESCRT system’s components in the budding and infection

processes of viruses highlights the system’s role in viral

proliferation and host cell invasion. Investigating the exosomal

ESCRT pathway’s role in viral infections is crucial, presenting

new prospects for developing targeted antiviral drugs and

innovative vaccines.

Nonetheless, challenges persist in the practical application of

exosomes, particularly concerning the safety and biocompatibility

of exosomes from varied sources for drug transport. Enhancements

in exosomal targeting techniques are imperative for clinical

applications, and the rapid isolation, purification, and acquisition

of clinically viable high-concentration exosomes remain critical

hurdles to overcome. Advancements in technologies are essential

to elucidate exosomal molecular properties and refine diagnostic

and therapeutic approaches to align closely with clinical

requirements. With robust support from proteomics, genomics,

high-throughput sequencing, and bioinformatics data analysis,

exosomes are poised to make significant strides in disease

diagnosis, treatment, and clinical integration.
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