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of antimicrobial resistance
and virulence genes
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Limei Zhang1* and Weijie Qu1*

1College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China, 2Faculty of Animal
Science and Technology, Yunnan Agricultural University, Kunming, China
Streptococcus agalactiae (Strep. agalactiae) is bovine mastitis pathogen and has

thus became a matter of concern to dairy farms worldwide in terms of economic

loss. The aims of this study were to (a) determine virulence genes, and (b)

characterize the antimicrobial resistance (AMR) profiles and AMR genes and (c)

figure out the relationship between AMR phenotypes and genotypes of Strep.

agalactiae isolated from dairy cows in north China. A total of 20 virulence genes

and 23 AMR genes of 140 isolates collected from 12 farms in six provinces were

studied. The antimicrobial susceptibility of 10 veterinary commonly used

antimicrobials were tested using the broth microdilution method. Results showed

that all the isolates harbored the virulence genes lacIV, gapC, and dltA. The isolates

that harbored the genes lacIII, fbsA, hylB, and cfb exhibited the high prevalence

(99.29%), followed by isolates that harbored lacI (98.57%), bibA (97.86%), cylE

(97.14%), lacII (92.14%), cspA (52.14%), pavA (25%), bca (2.14%), and scpB (0.71%).

The fbsB, lmb, spbI,bac, and ribgeneswerenotdetected.ThevirulencepatternsofB

(fbsA_cfb_cylE_ hylB_bibA_cspA_ gapC_dltA_lacIII/IV) and C (fbsA_cfb_ bibA _

gapC_ dltA_lacIV) were dominant, accounting for 97.86% of the isolates. The

following AMR genes were prevalent: pbp1A (97.14%), tet(M) (95.00%), lnu (A)

(80.71%), erm (B) (75.00%), tet(O) (72.14%), blaZ (49.29%), tet(S) (29.29%), blaTEM

(25.71%), erm (A) (17.14%), erm (C) (13.57%), tet (L) (10.71%), linB (2.86%), and erm (TR)

(2.86%). Thepbp2b,mecA1,mecC, lnu (D),erm (F/G/Q), andmef (A) geneswerenot

detected. Eighty percent of the isolates harbored AMR genes and were highly

resistant to tetracycline, followed by macrolides (10.71%), lincosamides (9.29%)

and b-lactams (4.29%). In conclusion, isolates only exhibited well correlation

between tetracyclines resistance phenotype and genotype, and almost all isolates

harbored intact combination of virulence genes.
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Introduction

Bovine mastitis is one of the costliest diseases in the dairy

industry due to the discarding of milk, costs of treatments, and even

the culling of cows (Shaheen et al., 2016; Krömker and Leimbach,

2017; Gussmann et al., 2019). Streptococcus agalactiae (Strep.

agalactiae), as one of the major mastitis pathogens, causing 11%–

60% of mastitis cases in Brazil (Reyes et al., 2017). The

implementation of the five-point mastitis control program has

reduced the prevalence of Strep. agalactiae mastitis to less than

10% in dairy herds in Europe and North America (Jørgensen et al.,

2016). However, the herd prevalence of Strep. agalactiae is still high

in developing countries, such as Colombia (34.4%), Brazil (60%),

and China (92%) (Ramıŕez et al., 2014; Bi et al., 2016; Carvalho-

Castro et al., 2017). Meanwhile, the re-emergence of Strep.

agalactiae mastitis in Denmark and Norway has been reported

(Katholm et al., 2012; Jørgensen et al., 2016). Moreover, the harm

caused by Streptococcus agalactiae to China’s dairy farming

industry is still very serious (Yang et al., 2016).

Strep. agalactiae is considered one of contagious pathogens that

cause bovine mastitis, which can spread among cows (Thompson-

Crispi et al., 2014). Once Strep. agalactiae colonize the bovine

mammary gland, it obtains nutrient sources from milk for its

proliferation and causes long-term and harmful effects. Therefore,

the ability of metabolism and capability for adhesion, invasion,

and immune evasion of Strep. agalactiae might play crucial roles

in the bovine mastitis (Keefe, 2012). Strep. agalactiae harbors a

great range of virulence genes encoding virulence factors, such as

fbsA/B and lmb, which are involved in adhesion, cylE and hylB,

which are involved in invasion, cspA, which is involved in immune

evasion, and LacI/II/III/IV, which play a role in metabolism.

Antimicrobial treatment is major option for treating Strep.

agalactiae inducing mastitis (Keefe, 2012). However, the excessive

use of antimicrobials increased the risks of antimicrobial resistance

(AMR), which is a public health concern worldwide (Flynn and

Guarner, 2023). Monitoring the resistance of Strep. agalactiae

associated with bovine mastitis is important to the control of AMR

of the bacterium.

Antimicrobial resistance genes, pbp1A, lnuA/D, tetO/M/L/S,

ermA/B/C/F/G/Q/TR, and mefA, which are involved in resistance

to b-lactams, lincosamide, tetracycline, and macrolide have been

detected in Strep. agalactiae usually (Poyart et al., 2003; Dogan et al.,

2005; Duarte et al., 2005), while AMR gene carrying status of the

strains involved in this study is still unclear.

Investigations on virulence genes, and the phenotype and genotype

of AMR can contribute to treatment decision and optimization of

Strep. agalactiae control programs (Kaczorek et al., 2017). This study

aims 1) to determine the antimicrobial resistance and virulence gene

profiles of Strep. agalactiae, 2) to detect the AMR profiles of Strep.

agalactiae under in vitro conditions, and 3) to determine the

correlation between phenotypic and genotypic resistance patterns of

Strep. agalactiae isolated in China.
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Materials and methods

Statement of ethics

All experiments followed the China Ministry of Science and

Technology. Regulations of Experimental Animals (2008) issued by

China Ministry of Science and Technology. All animal procedures

were approved by the Institutional Animal Care and Use Committee

of Yunnan Agricultural University (Approval No: 202403058).
Sample collection and identification
of pathogens

Milk samples were collected from cows with clinical mastitis

from large dairy farms (>500 cows) in China from 2017 to 2019

(Supplementary Table S1). Milk sampling details were provided by

Gao et al. (2017). In brief, udders were disinfected before sample

collection, the first three streams of milk were discarded, and 1–2

mL of quarter milk samples were aseptically collected using 50 mL

sterile centrifuge tubes. The samples were packed in ice boxes and

delivered to the laboratory to be processed within 10 h.

The quarter milk (200 uL) of each sample was coated on Edwards

medium (Oxoid, USA) and incubated at 37°C for 24 h, and putative

blue colonies without fermentation were enriched in 4 mL of

Mueller–Hinton broth containing 5% fetal bovine serum. The

putative isolates were identified through PCR using 16S rRNA

amplification with the primer (5’-AGAGTTTGATCCTGGCTCAG-

3’, 5’-CGGCTACCTTGTTACGACTT-3’) concentration of 5 mmol/L

(Frank et al., 2008). The confirmed Strep. agalactiae isolates were

stored at −80°C.
Virulence gene identification

Multiplex PCR was conducted three times for the examination

of 13 virulence genes (cspA, pavA, cylE, hylB, lmb, fbsB, scpB, bca,

pbp1A/ponA, bac, cfb, rib, and fbsA). The final volume of the

multiplex PCR mixture was 25 µL, and the mixture contained the

template composed of 1 mL (final amount of 20 ng) of bacterial

genome, 12.5 mL of premixed 2×PCR master mix (Sangon,

Shanghai, China), 1 mL of each primer (final concentration of 5

mmol/L), and ddH2O. The amplification program is provided in

Supplementary Table S1, in detail, for SET 1 (cspA, pavA, cylE, hylB,

lmb), the amplification program was as follows: 95°C for 5 min; 35

cycles of 95°C for 60 s; annealing temperature for 60 s; and 72°C for

10 min; for SET 2 (fbsB, scpB, bca), the amplification program was

as follows: 95°C for 5 min; 35 cycles of 95°C for 60 s; annealing

temperature for 60 s; and 72°C for 10 min; for SET 3 (pbp1A/ponA,

bac, cfb, rib, and fbsA), the amplification program was as follows:

95°C for 5 min; 35 cycles of 95°C for 60 s; annealing temperature for

60 s; and 72°C for 10 min.
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The rest of the virulence genes (spb1, dltA, bibA, gapC, and lacI/

II/III/IV) were detected using normal PCR assay. The final volume of

the PCR mixture was 25 µL, and the mixture contained the template

composed of 1 mL (final amount of 20 ng) of bacterial genome, 12.5

mL of premixed 2×PCR master mix (Sangon, Shanghai, China), 1 mL
of primers (final concentration of 5 mmol/L), and 10.5 mL of ddH2O.

The amplification program was as follows: 95°C for 5 min; 35 cycles

of 95°C for 60 s; annealing temperature for 60 s; and 72°C for 10 min

(Supplementary Table S2). Strep. agalactiae ATCC 13813 was used as

positive control and PCR mixture without bacterial genome was used

as negative control. Agarose gel electrophoresis (AGE) and UV

transillumination was conducted to analyze the PCR products

(Supplementary Figure S1). The virulence genes were divided into

four groups: adhesion(fbsA/B, lmb, pavA), invasion(cfb, cylE, hylB,

spbI), immune evasion(bac, bca, bibA, cspA, rib, scpB), and

metabolism(gapC, dltA, LacI/II/III/IV).
Antimicrobial resistance gene identification

AMR genes associated with resistance to four kinds of

antimicrobials: b_lactams (blaTEM, blaZ, pbp2b, mecA1, and mecC),

lincosamides (lnuA, lnuD, and linB), tetracyclines (tetO/M/L/S), and

macrolides (ermA/B/C/F/G/Q/TR,mefA) were detected using normal

PCR assay. The final volume of the PCRmixture was 25 µL containing

a template composed of 1 mL (final amount of 20 ng) of bacterial

genome, 12.5 mL of premixed 2×PCR master mix (Sangon, Shanghai,

China), 1mL of primers (final concentration of 5 mmol/L), and 10.5mL
of ddH2O. The amplification program was as follows: 95°C for 5 min;

35 cycles of 95°C for 60 s; annealing temperature for 60 s; and 72°C for

10 min (Supplementary Table S3). Strep. agalactiae ATCC 13813 was

used as positive control and PCR mixture without bacterial genome

was used as negative control. Agarose gel electrophoresis (AGE) and

UV transillumination was conducted to analyze the PCR products

(Supplementary Figure S2).
Antimicrobial resistance testing

Antimicrobial resistance testing of all the isolates were

conducted using the broth microdilution method according to

Clinical and Laboratory Standards Institute (CLSI, 2020). Strep.

pneumonia ATCC 49619 and Strep. agalactiae ATCC 13813 were

used as quality control strains. Antimicrobials commonly used in

practice for mastitis treatment and in medicines for humans

(penicillin, cefalexin, ceftiofur, cefquinome, oxacillin, clindamycin,

tetracycline, enrofloxacin, amoxicill in/clavulanate, and

erythromycin) were selected for antimicrobial resistance testing.
Statistical analysis

The online statistical tool VassarStats (http://www.vassarstats.net/)

was used in calculating the proportion of genes and its 95% confidence

interval (95% CI). Correlation calculation was performed using SPSS

26.0 (IBM Corp, Armonk, NY). The cluster of AMR genes and
Frontiers in Cellular and Infection Microbiology 03
virulence genes were obtained using R (version 4.0.5) and the

package “pheatmap” (the clustering method of “complete” and

“ward.D” were used).
Results

Detection and pattern of virulence genes

The virulence genes were divided into four groups: adhesion,

invasion, immune evasion, and metabolism. The dominant virulence

genes in the adhesion group were fbsA (99.29%; n=139) and pavA

(25%, n=35), and cfb, cylE, gapC, and hylB genes were the

predominant invasion genes, accounting for 99.29% (n=139),

97.14% (n=136), 100% (n=140), and 99.29% (n=139), respectively.

bibA, cspA, bca, and scpB existed in the immune evasion group, with

detection rate of which were 97.86% (n=137), 52.14% (n=73), 2.14%

(n=3), and 0.71% (n=1), respectively. dltA was exhibited in all the

isolates (n=140), and detection rate of Lac I/II/III/IV genes were

98.57% (n=138), 92.14% (n=129), 99.29% (139), and 100% (n=140),

respectively. fbsB and lmb were not detected in the adhesion group,

spbI was not detected in the invasion group, and bac and rib were not

detected in the immune evasion group (Table 1).

Virulence genes can be grouped into subgroups A

(cylE_hylB_gapC_dltA_lacI/II/III/IV), B (fbsA_cfb_cylE_hylB_

bibA_cspA_gapC_dltA_lacIII/IV), and C (fbsA_cfb_bibA_

gapC_dltA_lacIV). Subgroups B and C were the predominant

subgroups, accounting for 97.86% of the isolates (Figure 1).
Antimicrobial resistance testing

The isolates were sensitive to most of the tested antimicrobials:

penicillin, ceftiofur, Amoxi/clav, and cefquinome (100%); cefalexin

(97.9%); oxacillin (96.4%); enrofloxacin (95.7%); erythromycin

(89.3%); and clindamycin (88.6%), but only 19.3% of the isolates

were sensitive to tetracycline (Liu et al., 2022).
Detection and patterns of antimicrobial
resistance genes

The antimicrobial resistance (AMR) genes were divided into

four groups: b-lactam, lincosamide, tetracycline, and macrolide

groups according to the type of antimicrobials. The main AMR

genes in the b-lactam group were pbp1A (97.14%; n=136), blaZ

(49.29%; n=69), and blaTEM (25.71%; n=36). lnu(A) and linB

existed in the lincosamide group, with detection rate of 80.71%

(n=113) and 2.86% (n=4), respectively. tet(O/M/L/S) were all found

in the tetracycline group, with detection rate of 72.14% (n=101),

95.00% (n=133), 10.71% (n=15), and 29.29% (n=41), respectively.

In the macrolide group, erm(B) was dominant, with a detection rate

of 75.00% in the isolates (n=105), followed by erm(A), erm(C) and

erm(TR), with detection rate of 17.14% (n=24), 13.57% (n=19), and

2.86% (n=4), respectively. pbp2b, mecA1, and mecC were not

detected in the b-lactam group, lnu(D) gene was not detected in
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the lincosamide group, and erm(F/G/Q) and mef(A) were not

detected in the macrolide group (Table 2).

AMR genes can be divided into subgroups A and B. Subgroup A

harbored more blaZ and tetL genes than subgroup B, and subgroup

B harbored more blaTEM and ermAgenes than subgroup

A (Figure 2).
Relationship between AMR genotype and
AMR phenotype

Four types of relationships between the phenotypes and

genotypes of the five classes of antimicrobials were examined:

resistant phenotype vs presence of ARG (+/+), sensitive

phenotype vs presence of ARG (-/+), resistant phenotype vs

absence of ARG (+/-), and sensitive phenotype vs absence of

ARG (-/-). The pattern in which resistant phenotype vs absence

of ARG (+/-) was dominant in the b-lactam, lincosamide,

tetracycline, and macrolide groups, accounting for 95% (n=133),

73.57% (n=103), 19.29% (n=27), and 75% (n=105), respectively. In
Frontiers in Cellular and Infection Microbiology 04
the tetracycline group, 80% of the isolates (n=112) were positive in

AMR genes harboring AMR. Only 4.29% (n=6), 9.29% (n=13), and

10.71% (n=15) of the isolates were resistant phenotype and

harboring AMR genes in the b- lactam, l incosamide,

and macrolide groups. 0.71% (n=1), 15.71% (n=22), 0.71% (n=1),

and 14.29% (n=20) of the isolates exhibited sensitive phenotype and

absence of ARG in the b-lactam, lincosamide, tetracycline, and

macrolide groups. In the lincosamides group, two isolates,

accounting for 1.43%, did not harbor any AMR genes but

exhibited resistance to clindamycin (Table 3).
Discussion

A total of 140 Strep. agalactiae isolates were collected from 12

large dairy farms in north China. The percentages of isolates

harboring the virulence genes of adhesion(fbsA/B, lmb, pavA),

invasion(cfb, cylE, hylB, spbI), immune evasion(bac, bca, bibA,

cspA, rib, scpB), and metabolism(gapC, dltA, LacI/II/III/IV). were

99.29%, 100%, 47.86%, and 100%, respectively. The percentages of
TABLE 1 Prevalence of virulence genes of 140 Strep.agalactiae.

Function Genes No. of isolates Prevalence 95% CI

Adhesion fbsA 139 99.29% 96.07%_99.88%

fbsB 0 0.00% 0%_2.67%

lmb 0 0.00% 0%_2.67%

pavA 35 25.00% 18.56%_32.78%

Total 139 99.29% 96.07%_99.88%

Invasion cfb 139 99.29% 96.07%_99.88%

cylE 136 97.14% 92.88%_98.88%

hylB 139 99.29% 96.07%_99.88%

spbI 0 0.00% 0%_2.67%

Total 140 100.00% 97.33%_100%

Immune evasion bac 0 0.00% 0%_2.67%

bca 3 2.14% 0.73%_6.11%

bibA 137 97.86% 93.89%_99.27%

cspA 73 52.14% 43.92%_60.25%

rib 0 0.00% 0%_2.67%

scpB 1 0.71% 0.12%_3.93%

Total 137 97.86% 93.89%_99.27%

Metabolism gapC 140 100.00% 97.33%_100%

dItA 140 100.00% 97.33%_100%

LacI 138 98.57% 94.94%_99.61%

LacII 129 92.14% 86.48%_95.55%

LacIII 139 99.29% 96.07%_99.88%

LacIV 140 100.00% 97.33%_100%

Total 140 100.00% 97.33%_100%
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the isolates harboring antimicrobial resistance genes of b-lactams,

lincosamides, tetracyclines, and macrolides were 99.29%, 82.86%,

99.29%, and 85.71%, respectively. 95%, 73.57%, and 75% of the

isolates harbored the antimicrobial resistance genes of b-lactams,

lincosamides, but macrolides, and they did not show resistance to

the corresponding antimicrobials.

Bovine mastitis induced by Streptococcus can be divided into

four steps: adhesion and colonization on bovine mammary

epithelium cells (bMECs), invasion across or into bMECs,

immune evasion, and metabolism (Keefe, 2012). The virulence
Frontiers in Cellular and Infection Microbiology 05
genes of Strep. agalactiae can be categorized into four clusters:

adhesion, invasion, immune evasion, and metabolism. In this study,

the prevalence of adhesion, invasion, and metabolism clusters were

relatively high, and the virulence gene of immune evasion

accounted for 47.86% of the isolates. The adhesion genes fbsA

and bibA accounted for 99.29% and 97.86% of the isolates,

respectively. The main invasion genes were gapC (100%), hylB

(99.29%), cfb (99.29%), and cylE (97.14%). The metabolism genes

were conservative, and their detection rate were relatively high

(dltA, 100%; LacI, 98.57%; LacII, 92.14%; LacIII, 99.29%; and LacIV,
FIGURE 1

Pattern of virulence genes of 140 Strep.agalactiae. white square means absence of virulence genes, red square means presence of virulence genes.
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100%). The results were consistent with those in previous research

(Keefe, 2012; Morach et al., 2018). The high detection rate of these

genes indicated that these genes are essential for the development of

bovine mastitis.

The virulence genes fbsA/B encode fibrinogen-binding proteins,

allowing Strep. agalactiae to bind to bMECs and extracellular

proteins (Gutekunst and Eikmanns, 2004; Tenenbaum et al.,

2005; Pietrocola et al., 2006; Buscetta et al., 2014). In a previous

study, lmb was found to be associated with the adherence of Strep.

agalactiae, but it was rarely harbored by bovine mastitis isolates

(Duarte et al., 2005; Wu et al., 2016). Our results showed that the

major virulence gene in charge of adhesion was fbsA, accounting for

99.29% (139/140). The low frequency or absence of pavA, fbsB, and

lmb indicated that these genes are not essential to the pathogenesis

of bovine mastitis. cfb encodes the CAMP factor involved in

hemolytic activation (Lasagno et al., 2011). The cspA gene
Frontiers in Cellular and Infection Microbiology 06
encoding serine protease and hemolysin encoded by cylE play

crucial roles in the virulence of Strep. agalactiae (Chou et al.,

2019). Hyaluronidase encoded by hylB promotes Strep. agalactiae

invasion in host cells and promotes its host tissue-spreading ability

(Oviedo et al., 2013; Coleman et al., 2023). Our study was consistent

with the studies of Whist and Osterås (2007) and Pang et al. (2017),

who indicated that cfb, cylE, and hylB were the main virulence genes

of Strep. agalactiae (Whist and Osterås, 2007; Keefe, 2012). The

high frequencies of virulence genes associated with invasion

indicated that these genes were essential to induce clinical bovine

mastitis for Strep. agalactiae (Keefe, 2012).

Immune evasion enables Strep. agalactiae to escape from host

immunity killing. The a/b-C protein, as a surface protein, facilitates

the invasion of Strep. agalactiae in cells and resistance to the

clearance of phagocyte; the protein is encoded by bac and bca

(Oviedo et al., 2013; Pulido-Colina et al., 2021). bac and bca usually
TABLE 2 Prevalence of antimicrobials resistant genes of 140 Strep.agalactiae.

Antimicrobials Genes No. of isolates Prevalence 95% CI

b_lactams blaTEM 36 25.71% 19.19%_33.53%

blaZ 69 49.29% 41.14%_57.48%

pbplA/ponA 136 97.14% 92.88%_98.88%

pbp2b 0 0.00% 0%_2.67%

mecA1 0 0.00% 0%_2.67%

mecC 0 0.00% 0%_2.67%

Total 139 99.29% 96.07%_99.88%

Lincosamides lnu(A) 113 80.71% 73.39%_86.39%

lnu(D) 0 0.00% 0%_2.67%

linB 4 2.86% 1.12%_7.12%

Total 116 82.86% 75.76%_88.2%

Tetracyclines tet(O) 101 72.14% 64.2%_78.9%

tet(M) 133 95.00% 90.04%_97.56%

tet(L) 15 10.71% 6.6%_16.92%

tet(S) 41 29.29% 22.39%_37.3%

Total 139 99.29% 96.07%_99.88%

Macrolides erm(A) 24 17.14% 11.8%_24.24%

erm(B) 105 75.00% 67.22%_81.44%

erm(C) 19 13.57% 8.86%_20.22%

erm(F) 0 0.00% 0%_2.67%

erm(G) 0 0.00% 0%_2.67%

erm(Q) 0 0.00% 0%_2.67%

erm(TR) 4 2.86% 1.12%_7.12%

mef(A) 0 0.00% 0%_2.67%

Total 120 85.71% 78.96%_90.55%
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appear together (Delannoy et al., 2013). The detection rate of bac is

low in bovine isolates (Duarte et al., 2005). Our results showed the

low detection rate of bac and bca, indicating they were not essential

to bovine mastitis pathogenicity. C5a peptidase cleaving human

C5a and BibA known as the C4-binding protein are encoded by

scpB and bibA, respectively. Both proteins hamper the complement

system, thereby reducing immune killing (Manne et al., 2020;

Cullen et al., 2024). Our result indicated that bibA is the main

virulence gene involved in the immune evasion of Strep. agalactiae.

However, Duarte et al. (2005) revealed that 66% of Strep. agalactiae

isolates from bovine harbor scpB (Duarte et al., 2005). Rib encoded
Frontiers in Cellular and Infection Microbiology 07
by rib confers the ability of immune evasion and has been found in

most isolates that caused invasive infections (Pulido-Colina et al.,

2021). Consistent with our study, previous research indicated that

only a small part of Strep. agalactiae isolated from bovine (20% and

26%) harbors the rib gene (B. Jain et al., 2012).

Rohmer et al. (2011) assumed that bacteria evolved to access

specific nutrients that hosts provided and develop pathogenicity

(Rohmer et al., 2011). Lac encodes lactose operon, and dItA encodes

D-alanylation of lipoteichoic acid, which is involved in the

completion of the cell wall of Gram-positive bacteria. The genes

were conserved in all Strep. agalactiae isolates. Glyceraldehyde-3-
FIGURE 2

Pattern of antimicrobials resistant genes of 140 Strep.agalactiae. Note: white square means absence of antimicrobials resistant genes, red square
means presence of antimicrobials resistant genes.
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phosphate dehydrogenase encoded by gapC is involved in

carbohydrate metabolism. Our results indicated the ability of

Strep. agalactiae to use milk as a nutrient resource due to these

metabolism genes (Keefe, 2012). Overall, the results of our research

indicated that the integrity of the parts of the virulence genes

(adhesion, invasion, immune evasion, and metabolism) mediates

the pathogenesis of Strep. agalactiae.

Isolates were sensitive to most of the tested antimicrobials:

penicillin, ceftiofur, amoxi/clav, cefquinome, and vancomycin

(100%); cefalexin (97.9%); oxacillin (96.4%); enrofloxacin (95.7%);

erythromycin (89.3%); and clindamycin (88.6%). However, only

19.3% of the isolates were sensitive to tetracycline, and 0.7% were

sensitive to daptomycin (Liu et al., 2022).

The percentage of the isolates resistant to tetracycline was 80%,

in line with the results of Gao et al. (2012) and Tomazi et al. (2018),

who reported that the percentages of resistance were 72.5% in China

and 68.6% in Brazil, respectively (Gao et al., 2012; Tomazi et al.,

2018). The low efficacy of tetracycline in treating mastitis has been

reported worldwide, and one of the reasons is its excessive use in

treatment and growth promotion (Kaczorek et al., 2017). This

antimicrobial should be used prudently in the treatment of mastitis.

In addition to the AMR profiles of Strep. agalactiae under in

vitro conditions, genotypic AMR detection was performed for the

selected AMR genes encoding different resistance mechanisms.

The results of our research were consistent with those of Kannika

et al. (2017) (Kannika et al., 2017). pbplA/ponA (penicillin-binding

protein 1A) was the dominant gene encoding resistance to b-lactams

and accounted for 97.14%, followed by blaZ (49.29%).
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The lincosamides resistant genes we detected are the lnu A/D and

linB genes, nucleotidyl transferases are encoded by lnu genes,

resulting in enzymatic inactivation of lincosamides. The lnu gene

was first identified in Enterococcus faecium and then observed in

Strep. agalactiae (Arana et al., 2014; Kaczorek et al., 2017). Our results

indicated that the detection rate of lnu(A) was 80.71%, which may

raise concerns about the spreading of AMR genes among bacteria.

We detected four genes responsible for resistance to tetracyclines:

tet(M), tet(O), tet(S). and tet(L), which encodes resistance through

ribosomal protection and efflux pump (Poyart et al., 2003; Dogan

et al., 2005; Gao et al., 2012). In our research, the tet(M) and tet(O)

genes were predominant, which is consistent with previous study

(Gao et al., 2012; Rato et al., 2013). The high detection rate of these

genes can be attributed to horizontal gene transfer in the same genus

of bacteria (Gao et al., 2012; Ruegg et al., 2015).

Eight genes encoding macrolide resistance were detected. erm

(B) was predominant, consistent with previous reports (Loch et al.,

2005; Gao et al., 2012; Rato et al., 2013). erm(B) can encode

methylase, reducing the number of macrolides binding to Strep.

agalactiae (Denamiel et al., 2005). erm(B) can transfer among

bacteria in the same genus (Loch et al., 2005), and this feature

explains the high detection rate of the gene. mef(A), harbored by

only 2.86% of isolates, was examined as well. The results were

consistent with those of previous research (Rato et al., 2013).

There were two isolates that exhibited resistance to lincosamides

but did not harbor the examined AMR genes, the possible reason for

which is that we failed to detect other resistance genes that encoding

lincosamides resistance. Nevertheless, some isolates exhibited AMR
TABLE 3 Relationship between AMR genotype and AMR phenotype of 140 Strep.agalactiae.

Antimicrobials
AMR genotype/
AMR phenotype

No. Prevalence 95% CI
Concordance

(k) 1

b-lactams +/+ 6 4.29% 1.98%_9.04% 0.383

-/+ 0 0 0_2.67%

+/- 133 95% 90.04%_97.56%

-/- 1 0.71% 0.12%_3.93%

Lincosamides +/+ 13 9.29% 5.51%_15.24% 0.726

-/+ 2 1.43% 0.39%_5.06%

+/- 103 73.57% 65.71%_80.17%

-/- 22 15.71% 10.61%_22.64%

Tetracyclines +/+ 112 80% 72.61%_85.78% 0.998

-/+ 0 0 0_2.67%

+/- 27 19.29% 13.61%_26.61%

-/- 1 0.71% 0.12%_3.93%

Macrolides +/+ 15 10.71% 6.6%_16.92% 0.684

-/+ 0 0 0_2.67%

+/- 105 75% 67.22%_81.44%

-/- 20 14.29% 9.45%_21.04%
Interpretation:k<0 represents poor agreement; 0 <k<0.20 represents slight agreement; 0.21<k<0.40 represents fair agreement; 0.41<k<0.60 represents moderate agreement; 0.61<k<0.80
represents substantial agreement; 0.81<k<1.0 represents almost perfect agreement.
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genes carrying but negative in AMR phenotype. The reasons were as

follows: (1) AMR genes may not transcribe nor translate because the

corresponding antimicrobials were not used in bovine mastitis

treatment, so they were far from a promoter or associated with a

weak promoter; (2) mutations or lack of promoters induce the

silencing of the AMR genes of the isolates. Advanced research is

essential to discover the mechanisms of the insufficient correlation

between the genotype and phenotype of AMR (Gao et al., 2012).

For the reason of insufficient controls (positive controls for each

AMR or virulence genes) were used in our research, the genes that

did not be detected may due to the following situations: (1) the

isolates did not harbor corresponding genes, (2) the primers failed

to combine to template on account of gene mutation.
Conclusion

Some isolates resistant to lincosamides did not necessarily carry

any tested gene. Conversely, a large part of b-lactams, lincosamides,

and macrolides sensitive isolates contained corresponding AMR

genes, which may not be expressed in these isolates. Furthermore,

based on almost all isolates harbored virulence genes encoded the

ability of adhesion, invasion, immune evasion and metabolism, we

inferred that intact combination of virulence genes is essential to the

pathogenesis of Strep. agalactiae inducing bovine mastitis.
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