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Introduction: Herpes simplex keratitis (HSK) is a blinding disease caused by

corneal infection of Herpes simplex virus type 1 (HSV-1). Effective clearance of

HSV-1 from the infected cornea is crucial for HSK management. Macrophages

play an important part in the innate immune defense against viral infections. This

study investigates the immunomodulatory role of NLRP12 in macrophage

immune response during HSV-1 infection.

Methods: NLRP12 expression post-infection was assessed in various

macrophage cell lines. Overexpression of NLRP12 was achieved by lentiviral

transfection, and its effect on HSV-1 replication and immune responses were

examined. Mechanistic insights into the role of NLRP12 were explored using

immunofluorescence and Western Blot. For in vivo studies, ocular adoptive

transfer of NLRP12-overexpressing bone marrow derived macrophages

(BMDMs) was performed. HSV-1 viral loads, HSK symptoms, and macrophage-

mediated immune responses were investigated.

Results: A significant decrease in NLRP12 expression post-infection was observed

in various macrophage cell lines. Overexpression of NLRP12 in macrophages

reduced HSV-1 replication. Mechanistically, overexpression of NLRP12 triggered

early and robust pyroptosis in response to HSV-1 infection, inducing interleukin

(IL)-18 production and activating downstream antiviral responses through the

JAK-STAT signaling pathway. In vivo, ocular adoptive transfer of NLRP12-

overexpressing BMDMs to mouse corneas alleviated HSK damage and reduced

HSV-1 viral loads. NLRP12-overexpressing BMDMs improved antiviral responses in

the cornea and promoted thematuration of corneal-infiltratingmacrophages and

dendritic cells. Additionally, NLRP12-overexpressing BMDMs amplified the

adaptive immune response in the submandibular draining lymph nodes.

Discussion: These findings highlight the role of NLRP12 in macrophage-

mediated immune response against HSV-1 infection and suggest its potential

for possible immunotherapy for HSK.
KEYWORDS

herpes simplex keratitis, herpes simplex virus type 1, NLRP12, macrophage,
antiviral, pyroptosis
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1 Introduction

Herpes simplex keratitis (HSK), caused by corneal infection

with herpes simplex virus type 1 (HSV-1), is a leading cause of

infectious blindness worldwide (Hazlett et al., 2023). The

replication of the virus within the corneal tissue and its

subsequent transmission lead to severe tissue damage and

pathological injury. Therefore, rapid and effective clearance of the

virus is crucial for HSK management (Koganti et al., 2021). Current

therapeutic strategies of antiviral pharmacotherapy have shown

limited success (Hoffman, 2020), highlighting a demand for the

development of immunomodulatory targets for the clearance of

HSV-1 and the treatment of HSK.

The pathogenesis of HSK involves complex interactions

between the virus and the host’s immune defenses. The innate

immune response to HSV-1 is particularly critical in containing the

infection (Zhu and Viejo-Borbolla, 2021). Macrophages play an

important role in the innate immune system and serve as one of the

first leukocytes to infiltrate the corneas following HSV-1 infection

(Lobo et al., 2019). Upon recognition of HSV-1, macrophages

phagocytose infected cells or viral particles for degradation. After

phagocytosis, macrophages can also present processed viral

antigens on the surface via Major Histocompatibility Complex

class II (MHC II) molecules, which is essential for the activation

of CD4+ T cells, CD8+ T cells and other immune effectors in the

draining lymph nodes (dLNs). Additionally, activated macrophages

secrete a number of cytokines and chemokines, notably interferons

(IFNs), to regulate immune cells and amplify the immune response

(Koujah et al., 2019). Following the containment of the virus,

macrophages also play an essential role in restoring homeostasis

in the cornea and facilitating tissue repair (Mu et al., 2021).

Research has demonstrated that the depletion of ocular

macrophage populations via dichloromethylene diphosphonate

exacerbates HSK lesions (Mott et al., 2007), indicating the

therapeutic potential of bolstering macrophage-mediated

immunity in HSK intervention.

Nucleotide-binding oligomerization domain (NOD)-like

receptors (NLRs) are a family of cytoplasmic pattern recognition

receptors that are mainly expressed within immune cells, particularly

those of myeloid lineage such as macrophages, dendritic cells, and

neutrophils (Babamale and Chen, 2021). NLRs play a crucial role in

sensing intracellular pathogens and danger signals, triggering a

specialized form of cell death known as pyroptosis. Activation of

NLRs leads to oligomerization and recruitment of the adaptor protein

apoptosis-associated speck-like protein containing a CARD (ASC),

leading to the formation of the inflammasome complex. The

inflammasome then activates caspase-1 (CASP1), which in turn

cleaves interleukin-1b (IL-1b) and interleukin-18 (IL-18) into their

mature forms and also cleaves gasdermin D (GSDMD) for

membrane pore formation and the release of intracellular contents

(Rao et al., 2022; Huston et al., 2023). The NLR signaling pathway

and the resultant pyroptosis represent important mechanisms by

which the innate immune system responds to intracellular infections.
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NLRs are involved in antiviral immune response through

inflammasome assembly that recognizes viral components or

cellular stress signals induced by viral infections (Babamale and

Chen, 2021). In the context of HSV-1 infection, in THP-1 cells the

immune response against the virus is dependent on NLR family

pyrin domain containing 3 (NLRP3), ASC, and CASP1 (Karaba

et al., 2020). In murine microglia, activation of the NLRP3

inflammasome by HSV-1 triggers GSDMD-dependent pyroptosis,

leading to the generation of active CASP1 and the release of mature

IL-1b (Hu et al., 2022). Furthermore, the stimulator of interferon

genes (STING) has been shown to interact with NLRP3 to promote

inflammasome activation for the host defense against HSV-1

(Wang et al., 2020). Research by Coulon et al. has revealed that

virulent HSV-1 strains induced early expression of NLRP3,

NLRP12 and IFI16 inflammasomes (Coulon et al., 2019). While

NLRP3 is the most studied NLR concerning viral infections (Zhao

and Zhao, 2020), the roles of other NLR family members, such as

NLRP12, in the immune response to HSV-1 are less defined and

warrant further investigation.

The NLR family pyrin domain containing 12 (NLRP12) is a

member of the NLRs family, and plays a key role in modulating

inflammation and innate immune response (Tuncer et al., 2014).

Beyond its regulatory role in the production of pro-inflammatory

cytokines, studies have also highlighted the potential of NLRP12 to

inhibit pathogen replication within host cells via pyroptosis

(Tuladhar and Kanneganti, 2020). As an inflammasome sensor,

NLRP12 initiates pyroptosis in response to infections by Yersinia

pestis (Vladimer et al., 2012), Plasmodium chabaudi (Ataide et al.,

2014), and Toxoplasma gondii (Znalesniak et al., 2017; Rajabi et al.,

2022), which results in the secretion of IL-1b and IL-18 and a

reduction in the pathogen burden. As mentioned above, Coulon

et al. have reported that virulent HSV-1 strains triggered early

induction of NLRP3, NLRP12, and IFI16 inflammasomes, which

were associated with inflammatory stromal keratitis (Coulon et al.,

2019). However, the specific role of NLRP12 in the antiviral

immune responses beyond the inflammatory processes, remains

to be fully clarified.

Given the importance of macrophages in the frontline defense

against HSV-1 and the emerging significance of NLRP12 in

immune regulation, our study aimed to explore the role of

NLRP12 in macrophage-mediated antiviral defense during HSV-1

infection and its implications for HSK. We first observed a

significant downregulation of NLRP12 across different

macrophage cell lines post-infection. Overexpression of NLRP12

in RAW264.7 macrophages significantly decreased HSV-1 levels.

Mechanistically, NLRP12 overexpression induced early and robust

cell pyroptosis, leading to increased IL-18 production and activating

the JAK-STAT signaling pathway. In vivo, adoptive transfer of

NLRP12-overexpressing macrophages to HSK mice reduced HSV-1

viral load and ameliorated the clinical symptoms of HSK,

promoting a stronger immune response within the cornea and

draining lymph nodes. Our research offers novel insights into the

management of HSK and other viral infectious diseases.
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2 Materials and methods

2.1 RNA Sequencing Analysis

RNA-sequencing analysis was performed by Annoroad Gene

Tech. (Beijing) Co., Ltd. Total RNA was isolated from mock-

infected and HSV-1-infected BMDMs using TRIzol reagent

(T9108, Takara, Japan). The quality and quantity of RNA were

evaluated using the Agilent 2100 Bioanalyzer with the RNA Nano

6000 Assay Kit (Agilent Technologies, California, USA). Poly-A-

tailed RNA libraries were constructed using MGIEasy RNA Library

Prep Kit V3.0 and sequenced on the DNBSEQ-T7 platform.
2.2 Cell culture, infection, and
inhibition treatment

Bone marrow-derived macrophages (BMDMs) were isolated

according to previously established protocols (Mendoza et al., 2022)

and characterized as shown in Supplementary Figure S1. BMDMs,

mouse monocyte-macrophage (RAW264.7) cells (TCM-C766, Haixing

Biosciences, China), and Vero cells (TCO-C022, Haixing Biosciences,

China) were cultured in Dulbecco’s modified Eagle medium (DMEM,

11965092, Gibco, USA). Human monocytic (THP-1) cells (ZQ0086,

Shanghai Zhong Qiao Xin Zhou Biotechnology, China) were cultured

in RPMI 1640medium (11875093, Gibco, USA). All complete medium

were supplemented with 10% fetal bovine serum (FBS, 10091148,

Gibco, USA) and 1mM penicillin-streptomycin (15140122, Gibco,

USA). THP-1 cells were differentiated into macrophages with 100ng/

ml Phorbol 12-myristate 13-acetate (PMA, TQ0198, TargetMol,

China). HSV-1 strain McKrae was used for infection at a multiplicity

of infection (MOI) of 1. RAW264.7 cells were pre-treated with 20 µM

VX-765 (T6090, TargetMol, China) to inhibit pyroptosis and with 50

ng/ml IL-18 binding protein (IL-18BP) (HY-P75841, MCE, China) to

inhibit IL-18 activity.
2.3 Lentiviral transfection

Lentiviral vectors were produced by GENECHEM Biotechnology

(Shanghai, China). RAW264.7 cells or BMDMs were seeded at a

density suitable for reaching 50–70% confluence at the time of

transfection. The next day, Control-Lentivirus (LV-Ctrl) or

Lentivirus expressing NLRP12 (LV-NLRP12) was added (MOI=30

for RAW264.7 cells, MOI=30 for BMDMs) in the presence of

HistransG A (REVG004, GENECHEM Biotechnology, China) to

enhance transduction efficiency. After 16 hours, the medium was

replaced with fresh complete growth medium.
2.4 Animal model and assessment

The Animal Research Ethics Committee of Nanjing Drum

Tower Hospital granted approval all animal experiments,
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adhering to the guidelines of the Vision and Ophthalmology

Research Society. Female C57BL/6 mice, 6–8 weeks old, were

purchased from the Animal Center of Yangzhou University and

housed in the Animal Experimental Center of Nanjing Drum Tower

Hospital (Nanjing, China) under controlled conditions (25°C, 40–

60% humidity) . For adoptive transfer , mice received

subconjunctival injections of BMDMs transfected with control or

NLRP12-expressing lentivirus (104 cells/eye) as depicted in

Supplementary Figure S2A. One day later, corneal scratching and

HSV-1 strain McKrae (1 × 106 PFU/ml) inoculation were

performed as previously described (He et al., 2022; Wang et al.,

2022; Shen et al., 2024) (Supplementary Figure S2B).

The grading of keratitis severity was conducted using a 0–4 scale

HSK score: 0 = normal, no epithelial or punctate lesions and no edema

or stromal opacity; 1 = stellate epithelial lesions or mild edema and

stromal opacity, the iris is visible; 2 = dendritic or atlas-like epithelial

lesions occupying <25% of the cornea, or stromal edema, cloudy lesions

less than half the diameter of the cornea, the iris is visible; 3 = epithelial

dendritic or atlas-like lesions occupying 25% to 50% of the cornea, or

stromal edema, cloudy lesions greater than half the diameter of the

cornea, iris partially invisible; 4 = epithelial dendritic or atlas-like

lesions occupying >50% of the cornea, or severe stromal edema and

opacity with completely invisible iris.

For assessing corneal fluorescein score (CFS), a small amount of

1% fluorescein sodium dye (Jingming, Tianjin, China) was applied

to the inferior fornix of the mice’s conjunctiva. The corneal

epithelial lesions, when observed under cobalt blue light, appeared

yellow-green. 0–3 points were graded for each of the divided four

regions of the cornea according to positive staining area. The final

CFS score is the sum of the scores from the four regions (He et al.,

2022; Wang et al., 2022; Shen et al., 2024).
2.5 Plaque assays and 50% tissue culture
infectious dose (TCID50) assay

Tear samples were collected using eye swabs and stored in

DMEM. Cell culture supernatant samples were collected at specified

time points. For plaque assay, Vero cells were seeded into 12-well

plates and infected with serial dilutions of the samples. The

monolayers were overlaid with agarose, and after 48–72h, fixed

with 4% paraformaldehyde and stained with crystal violet. For

TCID50 assay, Vero cells were seeded in 96-well plates. After 24

hours, the supernatants were replaced with DMEM containing 2%

FBS. Vero cells were then infected with 10-fold serial dilutions of

the samples for 48–72h. The cytopathic effects in each dilution

gradient were counted under a light microscope to calculate

TCID50 by the Reed-Muench method (Capelli et al., 2020).
2.6 Western blot analysis

Cells were lysed using RIPA buffer (R0010, Solarbio, Beijing,

China), and proteins were separated by SDS-PAGE and transferred
frontiersin.or
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to PVDFmembranes (IPVH0010,Millipore, USA). HSV-gB andHSV-

gD proteins were separated on 8% gels. NLRP12, CASP1, N-GSDMD,

STAT1, STAT1 (Phospho-S727), STAT4, Phospho-STAT4 (Tyr693)

and b-actin proteins were separated on 10% gels. Clv-CASP1, IL-18

and IL-1b proteins were separated on 12.5% gels. Themembranes were

then blocked with Y-Tec 5min Rapid Blocking Buffer (YWB0501,

Yoche, China) and incubated overnight with primary antibodies

against NLRP12 (1:1000, YT7568, Immunoway, USA), HSV-gB

(1:500, sc-56987, Santa Cruz, USA), HSV-gD (1:500, sc-21719, Santa

Cruz, USA), CASP1 (1:2000, 81482–1-RR, Proteintech, China), N-

GSDMD (1:2000, ab215203, Abcam, UK), clv-CASP1 (1:500, AY0406,

Abways, China), IL-18 (1:500, A1115, ABclonal, China), IL-1b (1:1000,
ab254360, Abcam, UK), STAT1 (1:1000, CY5227, Abways, China),

STAT1 (Phospho-S727) (1:1000, BM4541, Boster, USA), STAT4

(1:1000, BA0622–2, Boster, USA), Phospho-STAT4 (Tyr693) (1:1000,

CY6503, Abways, China), and b-actin (1:20000, 81115–1-RR,

Proteintech, China). After incubating with HRP-conjugated

secondary antibodies (SA00001–1, SA00001–2, Proteintech, China),

signals were detected using an ECL kit (BMU102-CN, Abbkine,

China). Band density was quantified with ImageJ software.
2.7 RNA extraction and real-time
quantitative PCR (RT-qPCR)

Total RNA was extracted using FreeZol Reagent (R711, Vazyme

Biotech Co., Ltd., Nanjing, China). cDNA was synthesized using

HiFiScript gDNA Removal RT MasterMix (CW2020, CWBIO,

China). RT-qPCR was performed using MagicSYBR Mixture

(CW3008, CWBIO, China) on Applied Biosystems QuantStudio 5

Real-Time PCR System (Thermo Fisher Scientific, USA). Gene

expression was normalized to b-actin and analyzed by the 2−DDCT

method. Primer sequences are listed in Table 1.
2.8 Apoptosis analysis and cell vitality assay

Apoptosis was assessed using the Apoptosis Detection Kit

(KGA1109–20, KeyGEN BioTECH, China). Cells from different

treatment groups were collected and resuspended in binding buffer.
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Annexin V- Alexa Fluor® 647 and propidium iodide (PI) were

added to the cell suspension, followed by a 15-minute incubation at

room temperature (RT) in the dark. Apoptotic cells were quantified

by flow cytometry. Cell vitality was measured using a Cell Counting

Kit-8 (CCK8, C0005, TargetMol, China). Cells subjected to different

treatments were seeded into 96-well plates and incubated with 100

µl of culture medium containing 10 µl of CCK-8 solution for 4

hours. Absorbance values were recorded at 450 nm using anMRX II

microplate reader (Dynex, Chantilly, VA, United States).
2.9 Immunofluorescence (IF) analysis

For immunofluorescence, cells were fixed with 4%

paraformaldehyde for 30min, treated by 0.5% Triton X-100

(P0096, Beyotime, China) for 15min and blocked by 5% BSA

(ST023, Beyotime, China) for 1h. The cells were then incubated

with primary antibodies overnight at 4 °C followed by incubation

with corresponding secondary antibodies for 2 hours at RT. Nuclei

were stained with DAPI by mounting the slides with a DAPI-

containing mounting medium (ab104139, Abcam, UK). The

antibodies used include: anti-NLRP12 (1:200, YT7568,

Immunoway, USA), anti-HSV-gD (1:200, sc-21719, Santa Cruz,

USA), Alexa Flour® 488 secondary antibody (1:500, SA00003–2,

Proteintech, China), Donkey Anti-Mouse IgG H&L (Alexa Fluor®

647) (1:500, ab150107, Abcam, UK), PE-conjugated anti-MHC II

antibody (1:200, 12–5321-82, eBioscience, USA), and Alexa Fluor®

647 Anti-TMS1/ASC antibody (1:200, ab300732, Abcam, UK). The

corneas of mice were excised, fixed with 4% paraformaldehyde and

incubated in 20mM EDTA for 30min at RT. The corneas were then

treated with 0.5% Triton-X 100 for 30min at RT and incubated in

5% donkey serum (SL050, Solarbio, Beijing, China) for 1h at RT.

Subsequently, the corneas were incubated overnight at 4°C with

antibodies against Alexa Fluor® 488-conjugated anti-F4/80 (1:200,

123120, Biolegend, USA), PerCP-Cyanine5.5-conjugated anti-

MHC II (1:200, 107625, Biolegend, USA) and APC-conjugated

anti-CD11c (1:200, 117309, Biolegend, USA). After washing, the

corneas were radially cut and flat-mounted using DAPI-containing

medium. The IF staining was observed using the Leica Thunder

system (Leica, Wetzlar, Germany).
TABLE 1 Primers for RT-qPCR.

Gene Forward Primer Reverse Primer

TNF-a TGATGACATCAAGAAGGTGGTGAAG TCCTTGGAGGCCATGTGGGCCAT

IL-1b GAAATGCCACCTTTTGACAGTG TGGATGCTCTCATCAGGACAG

IL-6 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTCCTTC

IL-10 GCTCTTACTGACTGGCATGAG CGCAGCTCTAGGAGCATGTG

IFN-g ATGAACGCTACACACTGCATC CCATCCTTTTGCCAGTTCCTC

HSV-gB AACGCGACGCACATCAAG CTGGTACGCGATCAGAAAGC

HSV-
gD

GGAGCTGTCCGAGGAATTCAACGCCAC CATGTTGTTCGGGGTCTCGAGGGGATGGTAAGGCG

b-actin GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT
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2.10 Flow cytometry analysis

Single-cell suspensions from mouse submandibular dLNs were

obtained by grinding the tissues and filtering through 70mm cell

strainers. Staining was performed using PerCP-Cyanine5.5-

conjugated anti-CD11b (45–0112-80, eBioscience, USA), Alexa

Fluor® 488-conjugated anti-F4/80 (123120, Biolegend, USA),

APC-conjugated anti-CD86 (17–0862-82, eBioscience, USA),

APC-conjugated anti-CD11c (117309, Biolegend, USA), PE-

conjugated anti-MHC II (12–5321-82, eBioscience, USA), Alexa

Fluor® 488-conjugated anti-CD4 (100423, Biolegend, USA) and

APC-conjugated anti-CD8 (17–0081-81, eBioscience, USA). Flow

cytometry analysis was conducted on a BD Accuri C6+ instrument

(BD Biosciences, USA). Data analysis was performed using FlowJo

V10.4 (FlowJo, LLC, Ashland, OR).
2.11 Statistical analysis

All experiments were conducted a minimum of three times.

Animals subjects were randomly assigned to experiment groups. No

exclusion criteria were pre-established. Statistical analysis was

carried out with GraphPad Prism 10.0 (GraphPad, San Diego,

CA, USA). Results are presented as mean ± standard error of the

mean (SEM). Statistical differences between two groups were

determined using a two-tailed unpaired t-test, and one-way or

two-way ANOVA was applied for comparisons involving more

than two groups. Normal distribution and homogeneity of variance

were assessed using the Kolmogorov-Smirnov and Levene’s test,

respectively. A p-value < 0.05 denoted statistical significance.
3 Results

3.1 NOD-like receptors participate in the
immune response of macrophage
following HSV-1 infection

To uncover the immune response triggered by HSV-1 infection

in macrophages, we conducted RNA-sequencing analysis of mouse

bone marrow-derived macrophages (BMDMs) from both mock-

infected and HSV-1-infected groups at 24h post-infection

(Figure 1A). Gene Ontology (GO) analysis indicated that

biological processes related to innate immune response and

defense response to virus were significantly altered (Figure 1B).

Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG)

analysis identified the NOD-like receptor signaling pathway as one

of the most significantly enriched pathways, suggesting a pivotal

role for the NOD-like receptors in the defense of BMDMs against

HSV-1 infection. We further investigated the expression of NLRP12

in BMDMs, RAW264.7, and THP-1 cells post HSV-1 infection.

Western blot results (Figures 1D-F) and qRT-PCR results

(supplementary Figure S3A-C) revealed that NLRP12 expression

was notably reduced in all three macrophage cell lines post-

infection, indicating that NLRP12 expression is regulated upon
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HSV-1 infection and likely plays a role in the immune response of

macrophages following HSV-1 infection.
3.2 Overexpression of NLRP12 enhances
viral clearance of macrophage against
HSV-1

Lentiviral transfection was employed to overexpress NLRP12 in

RAW264.7 macrophages (Figures 2A, B). Western blot analysis at

24h post HSV-1 infection revealed significantly lower levels of HSV

glycoproteins B (HSV-gB) and D (HSV-gD) in the LV-NLRP12

group compared to the LV-Ctrl group, suggesting that

overexpression of NLRP12 strengthened viral clearance in

macrophages. Plaque assays (Figures 2C, D) and TCID50

measurements (Figure 2E) of cell culture supernatants also

confirmed the reduced levels of HSV-1 in LV-NLRP12

macrophages. Immunofluorescence staining for HSV-gD

(Figure 2F) further verified the reduced levels of HSV-1 in the

LV-NLRP12 group, suggesting that NLRP12 enhances the antiviral

functions of macrophages and improves viral clearance of HSV-1.
3.3 NLRP12 enhances macrophage antiviral
functions through pyroptosis and
downstream signaling

To investigate the mechanisms by which NLRP12 enhances the

antiviral functions of macrophages, we initially conducted a series

of protein detections of the cell pyroptosis pathway (Figures 3A, B).

Post-HSV-1 infection, macrophages in the LV-NLRP12 group

exhibited earlier and more robust cell pyroptosis. At 4h post-

infection, LV-NLRP12 cells showed elevated CASP1 and GSDMD

cleavage, followed by higher levels of active IL−1b and IL-18.

Immunofluorescence staining of cells either mock-infected or

HSV-1-infected at 8h (Figure 3C) suggested that, in the mock

condition, NLRP12 and ASC were distributed in the cytoplasm

without colocalization. Post HSV-1 infection, the LV-NLRP12

group displayed more specks and a higher level of colocalization,

indicating increased formation of inflammasomes and a higher

degree of cell pyroptosis. Furthermore, the use of the caspase-1

inhibitor VX-765 or the IL-18 antagonist IL-18BP in LV-NLRP12

macrophages reduced the enhanced antiviral function by inhibiting

Caspase-1 activity or the key effector molecule IL-18 (Figure 3D).

This indicated the important role of pyroptosis-induced IL-18 in

the enhanced antiviral response.

Consequently, we focused on IL-18, the important downstream

molecule of cell pyroptosis to further explore the link between

NLRP12-mediated cell pyroptosis and subsequent antiviral immune

response. IL-18, also known as IFN-g inducing factor, has been

reported to stimulate the production and release of IFN−g via the

JAK/STAT4 signaling pathway (Wu et al., 2019). IFN−g, in turn,

can exert antiviral immune functions through the JAK/STAT1

signaling pathway, including upregulating the production of

MHC II (Thelemann et al., 2014; Liu et al., 2020). Thus, we

detected the activation of STAT1 and STAT4 at 8, 12, and 24
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hours post-infection as possible downstream signaling of the

induced pyroptosis. Western blot analysis (Figure 4A) indicated

the presence of elevated phosphorylated-STAT4 (pSTAT4) and

phosphorylated-STAT1 (pSTAT1) levels at 8, 12, and 24 hours

post-infection. These findings suggest that HSV-1 infection

triggered an early pyroptotic response in LV-NLRP12

macrophages, and the resultant release of IL-18 could induce

antiviral immune cascade in neighboring cells, ultimately

enhancing the overall clearance of HSV-1.

Additionally, immunofluorescence staining showed that LV-

NLRP12 macrophages expressed higher levels of MHC II post-

infection (Figure 4B), indicating enhanced antigen-presenting

functions and antiviral immune responses. The expression levels

of MHC II were low in both groups under mock-infection.

However, the LV-NLRP12 group showed an increase in MHC II+

cells post-infection, as well as signs of heightened polarization

characterized by an increase in cell size and the presence of more

dendrites and extensions. This indicated immunomodulatory role
Frontiers in Cellular and Infection Microbiology 06
of LV-NLRP12 macrophages requires further validation in the in

vivo environment.
3.4 Overexpression of NLRP12 protects cell
vitality and balances macrophage functions

The above results showed that overexpression of NLRP12

enhanced antiviral functions and significantly reduced the viral

load at 24h post-infection. We further performed cell apoptosis

analysis and CCK-8 test to assess the effects of NLRP12

overexpression at later post-infection stage. At 48h post-infection,

analysis of the cell apoptosis rate (Figures 5A, B) showed a

significant decrease in the LV-NLRP12 group, and cell vitality

assay using CCK-8 test (Figure 5B) indicated improved cell

vitality in the LV-NLRP12 group compared to the control group.

These results suggest that NLRP12 overexpression could diminish

virus-induced cytotoxicity at later post-infection stage. We also
frontiersin.or
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FIGURE 1

Critical role of NLR signaling pathway in macrophage immune response against HSV-1. (A) Volcano plot illustrating the differential expression of 3411
genes, with 1588 upregulated and 1823 were downregulated. A fold change >2 or <0.5 was deemed statistically significant (n=3 per group). (B) Gene
Ontology (GO) enrichment analysis comparing HSV-1-infected to Mock-infected groups (n=3 per group). (C) Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis comparing HSV-1-infected to Mock-infected groups (n=3 per group). (D-F) NLRP12 protein
expression levels were evaluated by Western blot in bone marrow-derived macrophages (BMDMs), THP-1 cells, and RAW264.7 cells after mock
infection and at 12h, 24h, and 48h post-infection. Western blot bands were normalized to b-actin and set against mock-infected as controls (n=3
per group). All of the data are representative of at least three independent experiments. Data are presented as the mean ± SEM. Statistical differences
were determined using one-way ANOVA (D-F). ns, not significnat, *P <0.05, ***P <0.001, ****P <0.0001.
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examined the mRNA expression of cytokines in both groups at 48h

post-infection (Figure 5C). The levels of pro-inflammatory

cytokines TNF-a, IL-6 and IL-1b were significantly reduced by 3–

5-fold in the LV-NLRP12 group compared to the control group,

whereas the level of anti-inflammatory cytokine IL-10 was

significantly elevated by 2-fold. These findings suggest that after

rapid clearance of the virus, NLRP12 could attenuate virus-induced

inflammatory response and potentially balance macrophage

functions to favor the repair of infected tissues.
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3.5 Adoptive transfer of NLRP12-
overexpressing macrophages enhances
antiviral immune response in herpes
simplex keratitis mice

To corroborate the in vivo role of NLRP12-overexpressing

macrophages, we conducted ocular adoptive transfer of NLRP12-

overexpressing BMDMs. Lentiviral transfection was employed to

induce NLRP12 overexpression in BMDMs, as demonstrated in
A B

D E

F

C

FIGURE 2

Overexpression of NLRP12 significantly reduces HSV-1 viral load in macrophages. (A) Macrophages were transfected with control lentivirus (LV-Ctrl) and
lentivirus expressing NLRP12 (LV-NLRP12) were infected with either mock or HSV-1, and protein levels of NLRP12, HSV-gB and HSV-gD were assessed at
24h post-infection. (B) Western blot bands were normalized to b-actin and compared against controls (n=3 per group). (C) A representative result and (D)
statistical analysis of plaque assays measuring viral titers in cell culture supernatants at 24h post-infection (n=4 per group). (E) TCID50 assay results
comparing viral titers in cell culture supernatants between groups at 24h post-infection (n=4 per group). (F) Representative immunofluorescence images
highlighting HSV-gD in infected cells. All of the data are representative of at least three independent experiments. Data are presented as the mean ± SEM.
Statistical differences were determined using two-way ANOVA (B) and unpaired t-test (B, D, E). **P< 0.01, ***P < 0.001, ****P < 0.0001.
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Figures 6A, B. According to the schematic timeline (Figure 6C),

mice received subconjunctival injections of LV-Ctrl or LV-NLRP12

BMDMs one day before corneal HSV-1 inoculation. Specified

evaluations were conducted at designated post-infection intervals.

Results in Figures 6D, E showed that adoptive transfer of LV-

NLRP12 BMDMs alleviated HSK clinical symptoms. The corneas of

HSK mice treated with LV-NLRP12 BMDMs maintained

transparency and exhibited fewer instances of cloudiness and

neovascularization. Fluorescein sodium staining demonstrated less

corneal epithelial damage in the LV-NLRP12 group, with notable

recovery by the seventh day post-infection. Plaque assay and

TCID50 results from tear swabs indicated a significant reduction
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of HSV-1 viral load in the tears of mice from the LV-NLRP12 group

compared to the LV-Ctrl group (Figures 6F–H). Additionally, levels

of HSV-gB and HSV-gD in corneas from the LV-NLRP12 group

were markedly decreased (Figure 6I), indicating effective viral

clearance through adoptive transfer of LV-NLRP12 BMDMs.

Concurrently, the levels of IFN−g in the corneas of the LV-

NLRP12 group showed a significant increase, suggesting an

improved antiviral immune status.

Further analysis using immunofluorescent staining of whole-

mount mouse corneas revealed that corneal-infiltrating

macrophages expressed heightened levels of MHC II and

exhibited increased branching in the LV-NLRP12 group
A B

D

C

FIGURE 3

NLRP12 mediates pyroptosis and promotes IL-18 following HSV-1 infection. LV-Ctrl and LV-NLRP12 macrophages were either mock or HSV-1
infected and assessed at specified time points. (A) Proteins within the pyroptosis pathway were detected after mock infection and 4h and 8h post-
infection. (B) Western blot bands were normalized to b-actin and compared against controls (n=3 per group). (C) Immunofluorescence images
showing NLRP12 (green), ASC (red) and their co-localization (yellow) post mock infection and at 8h post-infection. (D) LV-NLRP12 cells were treated
with caspase-1 inhibitor VX-765 to inhibit pyroptosis and IL-18 binding protein (IL-18BP) to block active IL-18. Protein levels of HSV-gB and HSV-gD
were measured at 8h post-infection. All of the data are representative of at least three independent experiments. Data are presented as the mean ±
SEM. Statistical differences were determined using two-way ANOVA (B). ns, not significnat, *P <0.05, **P <0.01, ***P <0.001, ****P <0.0001.
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(Figure 7A). Dendritic cells (DCs) infiltrating the corneas similarly

manifested greater maturity in the LV-NLRP12 group, as evidenced

by augmented size, branching complexity, and dendritic tips

(Figure 7B), which likely aligned with the elevated IFN-g levels

within the corneas of these mice. The immunological responses in

the submandibular draining lymph nodes were further examined

using flow cytometry analysis. On the third day post-infection,

while the number of macrophages in the dLNs did not differ
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significantly, those from the LV-NLRP12 group had a higher

proportion of CD86+ and MHC II+ cells (Figures 8A, B). On the

seventh day post-infection, the LV-NLRP12 group sustained an

increased macrophage count in the dLNs but with a reduced

percentage of CD86 positivity, indicating a potential shift towards

promoting corneal repair functions. Analysis of DCs revealed that

on the third day post-infection, DC counts in the dLNs did not

differ significantly, but those from the LV-NLRP12 group exhibited
A

B

FIGURE 4

NLRP12 enhances antiviral functions through IL-18 downstream JAK-STAT signaling. (A) Protein levels of STAT1, p-STAT1, STAT4, pSTAT4 were assessed at
8h, 12h and 24h post-infection in both groups. Western blot bands were normalized to b-actin and compared against controls (n=3 per group). (B)
Immunofluorescence images demonstrating MHC II+ cell staining. All of the data are representative of at least three independent experiments. Data are
presented as the mean ± SEM. Statistical differences were determined using two-way ANOVA (A). ns, not significnat, *P <0.05, ***P <0.001, ****P <0.0001.
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a higher MHC II positivity proportion (Figures 8C, D). This was

consistent with the above findings of macrophages, indicating an

enhanced antigen-presenting response in both cell types. On the

seventh day post-infection, the LV-NLRP12 group also maintained

a higher DC count. Analysis of adaptive immune cells in the dLNs

revealed that the LV-NLRP12 group exhibited a significantly higher

count of both CD4+ T cells (Figures 8E, F) and CD8+ T cells

(Figures 8G, H) on the third and seventh days post-infection. These

findings suggest that corneal adoptive transfer of LV-NLRP12

BMDMs also regulated the antiviral immune response in the

draining lymph nodes through a cascade of immunological

reactions, effectively enhancing the clearance of HSV-1 in vivo.
4 Discussion

This study provides novel insights into the immunomodulatory

role of NLRP12 against HSV-1 infection. The results from in vitro

and in vivo experiments demonstrate that NLRP12 modulated the

antiviral functions of macrophages and the subsequent immune
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response cascade through pyroptosis and downstream

signaling (Figure 9).

RNA-sequencing analysis of BMDMs has established the innate

immune response and defense against the virus as significantly

altered biological processes upon HSV-1 infection. This supports

the established role of macrophages as first responders of the innate

immune system to pathogen invasion (Mu et al., 2021). The

significant alteration in the NOD-like receptor signaling pathway

further emphasizes the importance of these receptors in recognizing

pathogens and initiating immune response. Our observation of

decreased NLRP12 expression in various macrophage cell lines

post-HSV-1 infection prompts questions about potential immune

evasion strategies employed by HSV-1 (Greenan et al., 2021). It is

plausible that HSV-1 may actively suppress NLRP12 to dampen the

immune response, as the restoration of NLRP12 by overexpression

appears to counteract this effect and promote viral elimination. This

reflects similar strategies of HSV-1 to evade other inflammasomes,

such as inhibiting the AIM2 inflammasome via the VP22 protein

(Maruzuru et al., 2018) and disrupting NLRP3 and IFI16

inflammasome activation through ICP0 and proteasome pathways
A B

C

FIGURE 5

Overexpression of NLRP12 attenuates virus-induced cytotoxicity and inflammation in macrophages. LV-Ctrl and LV-NLRP12 macrophages were
either mock or HSV-1 infected and analyzed at 48h post-infection. (A) Apoptosis rates were examined by flow cytometry using Annexin-V - Alexa
Fluor® 647/PI staining. (B) Quantification analysis of Annexin-V+/PI+ apoptosis rates (double Annexin-V + PI positive) and cell vitality using CCK-8
assay across different groups (n=4 per group). (C) qRT-PCR analysis measuring expression levels of TNF-a, IL-6, IL-1b, and IL-10 in different groups
(n=3 per group). All of the data are representative of at least three independent experiments. Data are presented as the mean ± SEM. Statistical
differences were determined using two-way ANOVA (B, C). ns, not significnat, *P <0.05, **P <0.01, ***P <0.001, ****P <0.0001.
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(Johnson et al., 2013). The inverse correlation between NLRP12

expression and HSV-1 replication necessitates further investigation

to understand this dynamic and its implications.

The overexpression of NLRP12 in RAW264.7 macrophages led

to a significant reduction in viral loads, suggesting that NLRP12

maybe a crucial link between innate detection and the enhancement

of immune functions (Tuladhar and Kanneganti, 2020). NLRP12’s

role in promoting cell pyroptosis and subsequent IL-18 production

highlights a distinct immunological pathway. The finding that

antiviral functions were compromised when pyroptosis or IL-18
Frontiers in Cellular and Infection Microbiology 11
signaling was inhibited underscores the significance of these

processes in the NLRP12-mediated antiviral response. It is

noteworthy that antiviral immune responses engage not only the

NLR signaling pathway but also various other pathways, including

the RIG-I-like receptor (RLR) pathway, the Toll-like receptor (TLR)

pathway, and the cGAS-STING pathway (Seth et al., 2006). These

pathways interact closely, potentially enhancing or modulating the

NLRP12-mediated immune response to viruses. NLRP12 may also

protect against HSV-1 infection through mechanisms beyond

pyroptosis. NLRP12 has been reported to regulate the function of
A B

D E F

G
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C

FIGURE 6

Adoptive transfer of macrophages overexpressing NLRP12 alleviates HSK and reduces viral load. (A) BMDMs were transfected with LV-Ctrl or LV-NLRP12.
Protein levels of NLRP12 were detected and (B) western blot bands were normalized to b-actin and compared against controls (n=3 per group). (C) Diagram
of adoptive transfer procedure and HSK animal model timeline. (D) Representative images of corneal lesions in HSK mice from LV-Ctrl and LV-NLRP12
groups, observed under natural light (top) and under cobalt blue lights after fluorescein sodium staining (bottom). (E) Clinical assessment of HSK scores and
corneal fluorescein staining (CFS) scores (n=5 per group). (F) Representative result and (G) statistical analysis of viral titers from plaque assays of tear swabs at
3 and 7 days post-infection (n=5 per group). (H) TCID50 assay results of tear swabs at 3 and 7 days post-infection (n=5 per group). (I) qRT-PCR analysis
detecting expression of HSV-1 gB, HSV-1 gD, and IFN-g in corneas at 3 and 7 days post-infection (n=5 per group). All of the data are representative of at
least three independent experiments. Data are presented as the mean ± SEM. Statistical differences were determined using two-way ANOVA (E, G–I). ns, not
significnat, *P <0.05, **P <0.01, ***P <0.001, ****P <0.0001.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1416105
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Jiang et al. 10.3389/fcimb.2024.1416105
A B

FIGURE 7

Macrophages overexpressing NLRP12 improves immune response in the corneas of HSK mice. (A) Immunofluorescence staining images of whole-
mount mouse corneas at 3 days post-infection showing F4/80 (green), MHC II (red) and their co-localization (yellow). (B) Immunofluorescence
staining images of whole-mount mouse corneas at 3 days post-infection highlighting CD11c. All of the data are representative of at least three
independent experiments.
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FIGURE 8

Macrophages overexpressing NLRP12 promotes a comprehensive immune response in the dLNs during HSK. (A) Representative flow cytometry plots of
CD11b+ cells in the dLNs at 3 and 7 days post-infection. (B) Bar charts indicating the percentage of CD11b+cells in the dLNs, CD86+/CD11b+ cells and MHC
II+/CD11b+ cells (n=5 per group). (C) Representative flow cytometry plots of CD11c+ cells in the dLNs at 3 and 7 days post-infection. (D) Bar charts indicating
the percentage of CD11c+cells in the dLNs and MHC II+/CD11b+ cells (n=5 per group). (E) Representative flow cytometry plots of CD4+ cells and (G) CD8+

cells in the dLNs at 3 and 7 days post-infection. (F) Bar charts representing the percentage of CD4+ cells and CD8+ cells H) in the dLNs (n=5 per group).
Gating strategy of flow cytometry analysis of dLNs is shown in Supplementary Figure 4. All of the data are representative of at least three independent
experiments. Data are presented as the mean ± SEM. Statistical differences were determined using two-way ANOVA (B, D, F, H). ns, not significnat, *P <0.05,
**P <0.01, ***P <0.001.
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TRIM25 via RIG-I K63-linked ubiquitylation (Chen et al., 2019).

NLRP12 also facilitates type I IFNs production by interacting with

heat shock protein 90 (HSP90) and inhibit dengue virus replication

(Li et al., 2021). Further research is needed to explore the potential

signaling events both upstream and downstream of NLRP12

activation and the interplay of NLRP12 with other critical

antiviral pathways.

Unlike most other NLRs, the regulatory role of NLRP12 appears

to be context-dependent and may involve both inflammasome-

dependent and inflammasome-independent pathways (Tuladhar

and Kanneganti, 2020). This study augments the growing body of

research investigating the role of NLRP12 inflammasome in

infectious diseases (Vladimer et al., 2012; Ataide et al., 2014; Zaki

et al., 2014; Znalesniak et al., 2017; Rajabi et al., 2022). Additionally,

NLRP12 has also been shown to downregulate both the canonical

and non-canonical NF-kB pathways by impeding downstream

signa l ing of TLRs and dimini sh ing ERK act iva t ion

(Zamoshnikova et al., 2016; Chang et al., 2017). The full scope of

NLRP12’s regulatory abilities in maintaining immune homeostasis

remains further clarification.
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Moreover, the antiviral functions and mechanisms of

macrophages are multifaceted (Yu et al., 2022), involving various

processes and pathways essential for HSV-1 defense that warrant

additional exploration. Beyond its expression in macrophages,

NLRP12 is associated with dendritic cells (Valadares et al., 2023)

and neutrophils (Ulland et al., 2016; Hornick et al., 2018; Wang

et al., 2018), which also participate in combating HSV-1 infection

and HSK. Further research is required to elucidate the significant

roles of NLRP12 in other innate immune cells and to confirm the in

vitro findings within the intricate in vivo environment.

In vivo, the adoptive transfer of NLRP12-overexpressing

BMDMs reduced HSK clinical symptoms and HSV-1 viral load,

which is a strong support of the therapeutic potential of

manipulating NLRP12 expression in macrophages. The elevated

IFN-g levels and increased antigen presentation capacity of

infiltrating macrophages and DCs is indicative of a more effective

antiviral immune environment in the cornea. The altered dynamics

in the dLNs with increased numbers of macrophages and DCs as

well as CD4+ and CD8+ T cells also align with the established role of

the dLNs as sites for orchestrating systemic immune response (He
FIGURE 9

Graphic Abstract. NLRP12 modulates the antiviral immune response of macrophages through pyroptosis and downstream signaling, and enhances
the subsequent immune response cascade.
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et al., 2022; Shen et al., 2024). The enhancement of these immune

cells suggests improved antigen presentation and T cell activation,

which leads to a robust and efficient adaptive immune response to

clear the virus (Zhu and Viejo-Borbolla, 2021). Future

investigations should aim to validate these findings in human

cells and other animal models, and extend the findings to

encompass all strains of HSV-1 and other herpesviruses.

The present study has several limitations that should also be

considered when interpreting the results. Firstly, the fluorescence

channels of the FACS instrument restricted the number of markers

that could be analyzed simultaneously. Future analyses of the

immune cells would benefit from the inclusion of a viability stain

and additional indicators. Secondly, only female mice were used in

this study, and the sex of the animals may influence the study

results. Therefore, the findings should be verified in studies

involving both male and female mice.

Overall, our findings demonstrate the role of NLRP12 in

mediating the immune response of macrophages to HSV-1, with

implications for in vivo management of HSK. These findings open

up avenues for the development of therapeutic strategies to

capitalize on the antiviral and immunomodulatory properties

of NLRP12.
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