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Toxoplasma-induced behavior
changes - is microbial dysbiosis
the missing link?
Emese Prandovszky*, Emily G. Severance, Victor W. Splan,
Hua Liu, Jianchun Xiao and Robert H. Yolken

Stanley Division of Developmental Neurovirology, Department of Pediatrics, School of Medicine,
Johns Hopkins University, Baltimore, MD, United States
Toxoplasma gondii (T. gondii) is one of themost successful intracellular protozoa

in that it can infect the majority of mammalian cell types during the acute phase

of infection. Furthermore, it is able to establish a chronic infection for the host’s

entire lifespan by developing an encysted parasite form, primarily in the muscles

and brain of the host, to avoid the host immune system. The infection affects one

third of the world population and poses an increased risk for people with a

suppressed immune system. Despite the dormant characteristics of chronic T.

gondii infection, there is much evidence suggesting that this infection leads to

specific behavior changes in both humans and rodents. Although numerous

hypotheses have been put forth, the exact mechanisms underlying these

behavior changes have yet to be understood. In recent years, several studies

revealed a strong connection between the gut microbiome and the different

organ systems that are affected in T. gondii infection. While it is widely studied

and accepted that acute T. gondii infection can lead to a dramatic disruption of

the host’s normal, well-balanced microbial ecosystem (microbial dysbiosis),

changes in the gut microbiome during the chronic stage of infection has not

been well characterized. This review is intended to briefly inspect the different

hypotheses that attempt to explain the behavior changes during T. gondii

infection. Furthermore, this review proposes to consider the potential link

between gut microbial dysbiosis, and behavior changes in T. gondii infection as

a novel way to describe the underlying mechanism.
KEYWORDS
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1 Introduction

Toxoplasmosis, caused by T. gondii, presents a significant global health concern,

impacting approximately one-third of the world’s population (Pappas et al., 2009).

While often asymptomatic, with an estimated 80 to 90% of acquired infections going

unrecognized (Mittal and Ichhpujani, 2011), individuals with weakened immune systems,
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as well as the offspring of pregnant women, face an increased risk of

severe toxoplasmosis (Wong and Remington, 1994; Wang et al.,

2017). As a result, manifestations of toxoplasmosis range from mild

symptoms to more severe outcomes, including congenital infection,

miscarriage, chorioretinitis, and encephalitis (Dubey and Beattie,

1988; Halonen andWeiss, 2013), as well as associations with mental

health conditions, such as anxiety (Markovitz et al., 2015), fear

(Boillat, 2020), and schizophrenia (Torrey and Yolken, 2003;

Yolken et al., 2009; Fuglewicz et al., 2017). Transmission of T.

gondii occurs through congenital means, foodborne routes,

zoonotic transmission, and, rarely, through organ transplant or

blood transfusion from an infected donor (Hill and Dubey, 2002).

The parasite’s ability to persist for extended periods, potentially

throughout a lifetime, contributes to its widespread presence.

T. gondii, taxonomically classified as a coccidian, is a spore-

forming, single-celled obligate intracellular organism. It undergoes

both asexual and sexual reproduction, with asexual reproduction

occurring in various host cells through cell division (Dubey and

Beattie, 1988). Sexual reproduction is confined to the intestinal

epithelium of Felidae family members, leading to the shedding of

unsporulated oocysts in their feces (Dubey and Beattie, 1988).

Genotyping data showed very limited sexual recombination

between predominant T. gondii clonal lineages, namely Types I, II

and III (Howe and Sibley, 1995), as well as non-clonal lineages, also

called atypical strains (Shwab et al., 2014). Different T. gondii strains

lead to different manifestations of the pathophysiology of the

infection (Xiao and Yolken, 2015).

The tachyzoites, key players in acute infection, undergo rapid

replication every 6 to 8 hours through endodyogeny. In the rodent

host, T. gondii infection leads to severe inflammation of the small

intestine, resulting in necrosis of mucosal villi and tissue destruction

(Liesenfeld et al., 1996; Denkers, 2009). The parasite load correlates

with the severity of this inflammation in the intestine (Dias et al.,

2014). Chronic toxoplasmosis unfolds as a continuum (Cerutti

et al., 2020) from acute toxoplasmosis into a persistent and latent

state within immune competent individuals due to the host immune

response (Dubey, 1998). During this transition from acute to

chronic infectious stages, a slower replicating form (bradyzoites)

of the T. gondii organism dominates. The bradyzoites are distinct in

behavior and unlike tachyzoites, do not rupture host cells; instead,

they form cysts, featuring a robust protective mechanism (Dubey

et al., 1998). Cysts develop intracellularly and can persist for

extended periods, potentially for the life of the host (Ferguson

and Hutchison, 1987; Dubey et al., 1998). Brain, eyes, and muscles

emerge as the primary sites for chronic, latent infection, although

cysts have also been identified in various visceral organs, such as the

kidney, liver, heart and lungs (Dubey et al., 1998), but parasite

frequency is incredibly low. While maintaining ostensible

dormancy in the host, there is a higher risk of reactivation in

immunocompromised individuals (Daher et al., 2021). Despite their

slow replication, bradyzoites exert a profound impact on neuronal

structure and connectivity (Daher et al., 2021), as well as provoke

brain-related immune responses (Xiao et al., 2016a; Li et al., 2019).

Furthermore, T. gondii can directly affect host gene expression

(Carruthers and Suzuki, 2007; Müller and Howard, 2016; Abo-Al-

Ela, 2019) by influencing various host signal transduction pathways
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(Coppens and Joiner, 2001), neurotransmission (Stibbs, 1985;

Adamec et al., 1998), host immune response (Hunter and Sibley,

2012; Yarovinsky, 2014; Sasai et al., 2018; Sasai and Yamamoto,

2019), and host behavior (da Silva and Langoni, 2009; Webster and

McConkey, 2010; Pittman and Knoll, 2015; Vyas, 2015; Abdulai-

Saiku et al., 2021; Tong et al., 2021). This intricate interplay defines

the multifaceted nature of toxoplasmosis, revealing a dynamic,

complex and enduring relationship between the parasite and its

host. The most intriguing interplay between the parasite and host is

the parasite manipulation of the host behavior. Despite numerous

studies linking toxoplasmosis with behavior changes, no satisfactory

stand-alone mechanism(s) responsible for these changes has been

identified. In recent years the intestinal microflora has been

receiving significant attention. Following a brief discussion of

previous mechanistic hypotheses, we review the evidence that gut

microbial dysbiosis, immune activation, neurotransmission,

endocrine signaling, and behavior changes in T. gondii infection

are linked and represent key features of a conceivable new

underlying mechanism (Figure 1).
2 Previous hypotheses to explain
chronic T. gondii-induced
behavior changes

T. gondii has emerged as a significant focus of investigation due

to its long-recognized capacity to manipulate the behavior of its

hosts. Extensive research spanning decades has illuminated the

intricate relationship between toxoplasmosis and behavioral

alterations in a number of rodent (Berdoy et al., 2000; Gonzalez

et al., 2007; Webster, 2007) and human studies (Flegr and Hrdy,

1994; Flegr et al., 1996). The behavioral manipulation hypothesis

posits that T. gondii possess the ability to modify host behavior to

their advantage (da Silva and Langoni, 2009; Webster and

McConkey, 2010; Pittman and Knoll, 2015; Vyas, 2015; Abdulai-

Saiku et al., 2021; Tong et al., 2021). The parasite’s manipulation of

its host promotes the evolutionarily more advantageous sexual

reproduction by enhancing the predation rates (Webster, 2007;

Webster and McConkey, 2010). The most well-known behavior

change induced by chronic T. gondii infection is the aversion to cat

odors but no other predator odors (Berdoy et al., 2000). Despite

rodents’ typical avoidance of areas with signs of cat presence, those

infected with T. gondii exhibit a lack of fear, and in many instances,

even show attraction to such areas (Berdoy et al., 2000). In mouse

models, Torres et al. found that T. gondii infection induces anxiety-

like behavior, alters spatial memory, and affects recognition of social

novelty (Torres et al., 2018). Xiao et al. reported that infected mice

exhibited reduced general locomotor activity, impaired object

recognition memory, and lack of response to amphetamine

trigger (Xiao et al., 2016b). All of the above cited works

highlighted a different behavioral domain being affected in

chronic T. gondii infection, suggesting that T. gondii-induced

behavior changes may be variable and depends on both the host

and parasite genetical background (Carruthers and Suzuki, 2007;

Kannan et al., 2010; Xiao et al., 2012; Behnke et al., 2016).
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The spectrum of behavioral changes associated with T. gondii

infection extends beyond rodents to humans. Wong et al. reported

that acute toxoplasmosis in immunocompetent adults may lead to

moderately severe neurological symptoms (Wong et al., 2013).

Congenital toxoplasmosis has been associated with diminished

brain function and intellectual disability in humans (da Silva and

Langoni, 2009). Chronic infection in men correlates with emotional

instability and a disregard for social norms, while both infected men

and women exhibit elevated anxiety levels (Flegr and Hrdy, 1994;

Flegr et al., 1996; Flegr et al., 2000; Flegr et al., 2002; Flegr, 2007).

Hinze-Selch et al. demonstrated in a study involving over 1000

subjects that toxoplasmosis can influence behavior and personality

traits, particularly in psychiatric conditions (Hinze-Selch et al.,

2010). The longstanding connection between toxoplasmosis and

schizophrenia has been extensively documented (Torrey and

Yolken, 2003; Mortensen et al., 2007; Henriquez et al., 2009;

Yolken et al., 2009).

Despite numerous studies linking toxoplasmosis with behavior

changes, no satisfactory explanation has been provided that can

completely explain the mechanism(s) responsible for these changes.

Below, we discuss the preexisting hypotheses in detail.
2.1 Immune activation hypothesis

The immune activation hypothesis emerged from the fact that

T. gondii can induce an arsenal of immune responses upon infection
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(Yarovinsky, 2014; Sasai and Yamamoto, 2019). Briefly (Hunter and

Sibley, 2012), at an early stage of the infection, the first responder

host cells, in particular, dendritic cells (DCs), monocytes and

macrophages, release proinflammatory cytokines. Toll-like

receptors (TLRs) on these first responder cell types, have been

described to have a central role in T. gondii antigen sensing. TLRs

signal through myeloid differentiation primary-response gene 88

(MyD88), which is a central mediator of IL-12 secretion and the

protective Th1 response to T. gondii in dendritic cells (Scanga et al.,

2002). During the adaptive and innate immune response phases, IL-

12 recruit interferon-g (IFN-g)-producing natural killer (NK) cells

through the innate response, and CD4+ and CD8+ T cells through

the adaptive response. The production of IFN-g is responsible for

activating cells to control parasite infection. For example, IFN-g
induces the production of nitric oxide (NO) and reactive oxygen

species (ROS), both of which contribute to the control of

intracellular parasite load in monocytes and macrophages. It also

leads to a depletion of tryptophan and arginine, two amino acids,

that are essential for T. gondii growth (Yarovinsky, 2014).

In acute infection, T. gondii induce monocytes and dendritic cell

migration (Lambert et al., 2006) as well as promote the interruption

of the blood-brain barrier, which allows the hijacked monocytes and

dendritic cells to enter into the brain, carrying the parasite in a

manner characterized as that of as a “Trojan horse” (Bierly et al.,

2008; Lachenmaier et al., 2011). During acute infection parasites are

observed infecting neurons, astrocytes, microglia, and infiltrating

immune cells. Within the intricate landscape of the brain’s immune
FIGURE 1

Working hypothesis - could the microbiome offer a precise piece of the puzzle to connect the different aspects of T. gondii infection that contribute
to altered behavior? T. gondii infection (regardless of the infection route) affects the immune system, the nervous system, the endocrine system
along with the gut microbiome. T. gondii infection leads to microbial dysbiosis in the intestine, depicted as red epithelial cells and microbes in the
figure, as well as systemic immune activation, altered neurotransmission and endocrine signaling. Throughout the infection these organ systems
interact with each other through the gut brain axis (GBA) which is bidirectional communication pathways. Created with BioRender.com.
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response, these resident cells play pivotal roles. Their contributions,

marked by the production of chemokines, cytokines, and the

expression of immune-regulatory cell surface molecules,

collectively influence the dynamics of chronic toxoplasmosis

(Daher et al., 2021). Astrocytes and microglia as well as

peripheral monocytes can clear parasites through cell-

autonomous immune pathways (Hunter and Sibley, 2012;

Yarovinsky, 2014). Hence, as chronic infection progresses, cysts

are primarily present within neurons. While immune cells in the

brain contribute to T. gondii restriction, the role of cell-autonomous

immunity in neurons is restricted by default to promote survival of

neurons, which have an extremely limited regenerative ability. The

immune response to T. gondii is sustained throughout chronic

infection, resulting in elevated T. gondii–specific IgG and IFN-g in
the sera, both of which are essential to constrain the parasite growth

and promote tachyzoite to bradyzoite conversion (Sturge and

Yarovinsky, 2014; Zhao and Ewald, 2020).

Notably, the route of infection (intraperitoneal (IP) vs. oral)

influences the sequential immune activation in rodents (French

et al., 2022). The interaction of T. gondii antigens such as profilin

with Toll-like receptor 11 (TLR11) on dendritic cells is important

for host production of IL-12, especially in IP infection. For example,

in mice that are infected IP with T. gondii, the parasite protein

profilin directly binds and activates TLR11, contributing to IL-12

production and parasite restriction (Yarovinsky et al., 2005).

However, profilin is an intracellular cytoskeletal protein that is

crucial for movement and invasion of T. gondii. The fact that TLR11

receptors samples from endosomal compartments, implies that this

pathway may be mostly activated by phagocytosed, dead, or

dysfunctional parasites. In contrast, after oral infection in a

TLR11-deficient mouse model, there were minimal defects in

their Th1 response compared with mice deficient in MyD88 or

other TLRs (Minns et al., 2006; Debierre-Grockiego et al., 2007;

Denkers, 2009; Foureau et al., 2010; Zhao and Ewald, 2020). Of

note, both IP and oral infection produce comparable

behavior outcomes.

As described above, T. gondii is able to activate the immune

system and induce a substantial immune response. Activating a

robust immune response is critical to both host and parasite

survival. Interestingly, an activated immune system during

chronic toxoplasmosis may present as a low-grade, constant

inflammatory comorbidity that can manifest in neurological

symptoms and behavior changes in both rodents (Boillat, 2020)

and humans (Yirmiya, 1997; Schmidt et al., 2010).
2.2 Neurotransmitter hypotheses

In this section, we provide an overview of the rationale

supporting that altered neurotransmitter abundances and

activities could explain T. gondii-induced host behavioral changes.

In this context, we focus on dopamine (Prandovszky et al., 2011),

glutamate (David et al., 2016; Kannan et al., 2016; Lang et al., 2018;

Li et al., 2018), and GABA (Brooks et al., 2015; Kannan et al., 2016).

Furthermore, there are reports that neurotransmitter release upon

T. gondii infection happens in sex-dependent fashion in mice, thus
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adding another variable to consider (Gatkowska et al., 2013). We

expand on the sex differences in the following section.

2.2.1 Dopamine
The discovery of two T. gondii enzymes (TgAAH1 & TgAAH2)

that closely resemble mammalian tyrosine hydroxylases, enzymes

that catalyze the rate limiting step in dopamine synthesis, shook the

scientific community (Gaskell et al., 2009). Elevated dopamine

signaling has been linked to T. gondii-induced behavior changes,

where haloperidol (dopamine antagonist) rescued the predator

aversion behavioral phenotype in rodents (Webster et al., 2006).

Higher dopamine concentrations were detected in vitro in T. gondii

infected neuronal cells, as well as in vivo in T. gondii infected mice

brains (Prandovszky et al., 2011). Moreover, the host enzyme,

dopamine decarboxylase (DDC), that converts L-DOPA to

dopamine was also colocalized with the parasite cyst in this

model (Martin et al., 2015). However, reports on the impact of T.

gondii infection on dopamine metabolism have been subject to

disagreement. The field was hoping to get a definitive answer by

utilizing a knockout T. gondii strain. However, knocking out one of

the tyrosine hydroxylase genes (TgAAH2), which is highly active in

the bradyzoite stage, did not eliminate the T. gondii-induced

behavioral effect (Wang et al., 2015; McFarland et al., 2018).

Notably, since no double knockdown mutant has yet been

created, having at least one of these two enzymes expressed seems

to be crucial for the parasite’s survival (McConkey et al., 2015;

Wang et al., 2015) and cannot completely rule out the role of the

TgAAH genes in T. gondii-induced dopamine escalation. The

inability of other groups to replicate these findings with different

mouse and parasite strains suggests that the genetic background of

the host and parasite strain needs to be considered (Carruthers and

Suzuki, 2007; Kannan et al., 2010; Xiao et al., 2012; Behnke et al.,

2016). Remarkably, McConkey’s group found that in parallel with

dopamine increase, there is a decrease in noradrenaline due to a T.

gondii-induced downregulation in dopamine ß-hydroxylase (DBH),

which is the key enzyme catalyzing the dopamine to noradrenalin

conversion (Alsaady et al., 2019). Specifically, T. gondii infected cells

release extracellular vesicles containing a DBH antisense lncRNA,

which is complementary to the DBH gene’s promoter region and

crosses the transcription start site (Tedford et al., 2023), preventing

DBH transcription and subsequently contributing to dopamine

increase. Interestingly, DBH regulation takes place in a sex

specific fashion caused by an estrogen receptor binding response

element at the 5’ flanking region of the DBH gene (Alsaady

et al., 2019).

2.2.2 Glutamate
Glutamate is the main excitatory neurotransmitter in the brain,

and its receptor (N-methyl-D-aspartate receptor (NMDAR)) plays

a crucial role in synaptic plasticity and cognition, including learning

and memory progression. This receptor system also plays a pivotal

role in glutamate excitotoxicity, when excessive glutamate causes

neuronal dysfunction and degeneration (Lau and Tymianski, 2010).

Several groups reported an excess of glutamate and compromised

NMDAR signaling in T. gondii infection (David et al., 2016; Kannan

et al., 2016; Lang et al., 2018; Li et al., 2018), suggesting an increased
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risk for excitotoxicity and contribution to cognitive impairment.

Interestingly, NMDA receptors have been implicated in anxiety-like

behavior (Adamec et al., 1998).

2.2.3 GABA
On the other hand, gamma-aminobutyric acid (GABA) is the

main inhibitory neurotransmitter in the human brain and derives

from glutamate (Schousboe et al., 2014). Through GABAergic

signaling, T. gondii can modify the motility of host cells, in

particular dendritic cells and microglia cells, thus potentially

increasing the systemic propagation of the parasite (Fuks et al.,

2012; Kanatani et al., 2017; Bhandage et al., 2019). In addition, T.

gondii infection appears to alter the inhibitory function of

GABAergic signaling in mice through changes in the distribution

of an enzyme (GAD67) that catalyzes GABA synthesis in the brain

(Brooks et al., 2015; Kannan et al., 2016). GABA hypofunction

could decrease GABAergic activity, and consequently, reduce

neuronal inhibitory control and contribute to excitotoxicity.

Neurotransmitter alteration exerts a more localized effect on T.

gondii-infected host brains. Regions in the brain crucial for fear and

anxiety responses, such as the medial amygdala, basolateral

amygdala, and ventral hippocampus, according to some groups,

exhibit higher cyst density, highlighting their role in behavioral

alterations (da Silva and Langoni, 2009; McConkey et al., 2013),

while others have not found a correlation between cyst location and

these particular areas (Berenreiterová et al., 2011; McConkey et al.,

2013). Furthermore, behavioral changes persist even after parasite

cysts are cleared from the brain, hinting that tropism alone may not

wholly account for these alterations (Ingram et al., 2013), and the

effect is more systemic than local (Abdulai-Saiku et al., 2021).
2.3 Endocrine hypothesis

In addition to rapid acting neurotransmitters, long-acting

hormones also affect the brain (Tong et al., 2021). Tong et al.

proposed that T. gondii’s presence in rat ejaculate, coupled with

increased testosterone synthesis, contributes to behavioral changes

(Tong et al., 2021). Arousal naturally deters innate fear, and a shift

towards attraction potentially favors T. gondii’s transmission.

Additionally, the involvement of dopamine and arginine

vasopressin in inducing impulsivity and recklessness is suggested

(Tong et al., 2021). Even though sex differences in behavior changes

are well documented in T. gondii infection (Flegr et al., 2008; Xiao

et al., 2012), testosterone increase cannot easily explain changes in

female behavior. Female mice show reduced survival rates and

lower cytokine levels in comparison to male mice during acute T.

gondii infection (Roberts et al., 1995). With respect to female

hormones, treatment with estradiol and estrogen increase the

number of tissue cysts in brain of both male and female mice

(Pung and Luster, 1986). While greater resistance to T. gondii

infection was found in the gonadectomized mice than sham-

operated controls of both sexes (Kittas and Henry, 1980). Overall,

sex hormones may have a complex vital role in the manifestation of

T. gondii infection including T. gondii-induced behavior changes.
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While the above listed hypotheses address certain aspects of these

behavioral changes, the exact mechanism is still yet to be elucidated.

Interestingly, these previously examined hypotheses involving

T. gondii-associated immune activation, neurotransmitter functions

and endocrine dysregulation, are consistent with an increasingly

scrutinized role of the microbiome and its resident microbiota in

shaping these very same processes. Could this burgeoning field of

microbiome research offer a potential novel link to consider between

T. gondii infection and altered behavior?
3 T. gondii-induced microbial
dysbiosis in acute and
chronic infection

The metagenome, otherwise known as the microbiome,

includes the entire genetic content of all microorganisms,

including bacteria, fungi, and viruses, that live inside or on the

surface of the host (Marchesi and Ravel, 2015). The potential role of

the microbiome in health and disease has been receiving increasing

attention in recent years (Pflughoeft and Versalovic, 2012; Jovel

et al., 2018; Gomaa, 2020). Due to the extensive impact of the

microbiome on host physiology, it is considered to be the newest

organ system in the body (Baquero and Nombela, 2012). The

microbiome exhibits species/strain-specific and sex-specific

differences, both of which are frequently encountered in studies

of T. gondii infection. Since the primary infection route of T. gondii

is likely to be ingestion, among the different microbiome sites, the

gut microbiome is the most involved. The mammalian intestine

contains 5 major anatomical areas starting from the stomach and

extending distally: the duodenum, jejunum, ileum, cecum, and

colon. The first three areas make up the small intestine, while the

last two make up the large intestine. These individual sections of the

intestine differ in pH (Evans et al., 1988) and oxygen saturation

(Zheng et al., 2015), as well as cell surface receptors (Hickey et al.,

2023), thus providing a series of unique niches, for the

resident microorganisms.

The gut microbiome interacts with the nervous system through

the gut-brain axis (GBA). The GBA can be envisioned as a

bidirectional multilane highway, where the lanes represent the

different routes of communication, via nerves, hormones, and

microbial metabolites (e.g., short-chain fatty acids) (Carabotti

et al., 2015; Clapp et al., 2017; Dinan and Cryan, 2017; Silva et al.,

2020a). Evidence of microbiota-GBA interactions comes from the

association of gastrointestinal (GI) dysbiosis with central nervous

system (CNS) disorders, including autism and anxiety-depressive

behaviors (Carabotti et al., 2015; Clapp et al., 2017). Due to the

robust interactions between the gut microbiome and the immune

system, infection-induced immune activation can also lead to

intestinal dysbiosis which can manifest as functional GI disorders

(French et al., 2019; Tomal et al., 2023). While it is widely studied

and accepted that acute T. gondii infection leads to substantial

microbial dysbiosis in the gut, changes in the gut microbiome

during the chronic stage of infection is poorly characterized and

often debated by the scientific community (Taggart et al., 2022).
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3.1 T. gondii-induced bacterial dysbiosis in
the gut during the acute phase of infection

T. gondii invasion of the epithelium in the small intestine leads

to intense inflammation, dysbiosis, and tissue necrosis followed by

the spread of gut bacteria to peripheral organs and subsequent

sepsis (Wang et al., 2019). Paneth cells, in the small intestine

constitutively produce antimicrobial peptides and growth factors

that help maintain the status quo between the host and the

microbiota. Araujo et al. and Raetz et al. demonstrated that IFN-g
acts directly on murine Paneth cells via the m-TOR pathway,

resulting in subsequent cell death (Raetz et al., 2013; Araujo et al.,

2021). Since natural T. gondii infection mainly affects the small

intestine and causes severe ileitis in susceptible mice, acute T. gondii

infection has become a widely utilized model to study the type 1

(Th1) immune response in functional GI diseases like irritable

bowel syndrome (IBS) and Crohn’s disease (Frank et al., 2007;

Rolhion and Darfeuille-Michaud, 2007; Cohen and Denkers, 2015).

Thus, the effect of acute T. gondii infection on the intestinal

bacteriome has been well described (Heimesaat et al., 2006;

Benson et al., 2009; McKnite et al., 2012; Raetz et al., 2013;

Burger et al., 2018).

Altered taxonomical composition in the gut microbiome

during acute T. gondii infection is marked by elevated

abundance of Gram positive Bacteroidetes at the expense of

decreased Firmicutes. Several studies have reported on the

outgrowth of Gram negative Proteobacteria, such as E. coli,

during acute T. gondii infection (Heimesaat et al., 2006; Craven

et al., 2012; Molloy et al., 2013). Although Proteobacteria ssp.

contribute to the development of ileitis (Heimesaat et al., 2006),

their presence also magnifies the parasite-induced IFN-g driven

immune response in the gut. In so doing, the bacteria prevent a

faster systemic dissemination of T. gondii which protects the host

in the long run (Benson et al., 2009). In germ-free mice, where

commensal bacteria are not present, T. gondii infection resulted in

systematic inflammation that was not constrained to the intestine

(Nascimento et al., 2017).

The effect of acute T. gondii infection on the gut microbiome

can have varying outcomes. The results highly depend on the

following: 1) the genetic background of the host and the parasite,

2) the host age and gender, 3) the route of infection, and 4) the

anatomical location of where the samples were collected from

within the intestine (Table 1). For example, Lv et al. reported

significantly higher bacterial diversity (species richness) in the

fecal pellet of Wistar rats infected with a PSY strain of T. gondii

(Lv et al., 2022), whereas utilization of the PRU strain instead of

PYS showed a lower trend, but no significant differences in

bacterial diversity compared to uninfected animals in

concordance with others (Prandovszky et al., 2018; Shao et al.,

2020; Lv et al., 2022; Meng et al., 2023). The plausible explanation

of this difference might be the use of an atypical strain (PYS) in

Lv’s study that produced a more robust infection, compared to

the other studies where more common T. gondii strains

were utilized.
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3.2 T. gondii-induced bacterial dysbiosis in
the gut during the chronic phase
of infection

While it is widely studied and accepted that acute T. gondii

infection leads to substantial microbial dysbiosis in the gut, changes

in the gut microbiome during the chronic stage of infection are not

well characterized. Some groups reported that as inflammation

resolved in the ileum, and the infection progressed from the acute

to the chronic stage, Firmicutes became the most abundant phylum,

accompanied by a decrease in the abundance of Proteobacteria, the

Gram negative taxa that led to substantial dysbiosis and intestinal

pathology (Shao et al., 2020; French et al., 2022; Yan et al., 2022).

Even if changes between IP and per oral infection in bacterial

composition were similar, meaning the same bacterial phyla were

affected but in different ratios, the route of infection can leave a

distinctive imprint on the microbial community (French et al.,

2022). As inflammation resolves in the ileum, the infection

progresses from the acute to the chronic stage, giving the

impression that the bacterial microflora in the intestine is

restored. Yet, Hatter et al. found that changes in the commensal

populations, notably an outgrowth of Clostridia spp., were

sustained in T. gondii chronic infection (Hatter et al., 2018).

Several studies also reported an enrichment in the taxa

Verrucomicrobia (Akkermansiaceae) in animals with chronic T.

gondii infection (McConkey et al., 2015; Prandovszky et al., 2018;

Shao et al., 2020; Yan et al., 2022; Meng et al., 2023). This finding

was universally present regardless of the sex and genetic

background of the host, the route of infection, or the type of

parasite strain; however, noticeable individual differences between

animals were also observed. These findings suggest that changes in

the composition of the gut microflora are not limited to the acute

phase of T. gondii infection when the parasite induced pathology

mainly localizes to the intestinal tract.

Interestingly, in numerous studies, bacterial diversity in the gut

during chronic T. gondii infection was similar to acute infection,

where infected animals showed lower bacterial diversity compared

to uninfected controls (Shao et al., 2020; French et al., 2022; Lv et al.,

2022; Meng et al., 2023). On the other hand, Prandovszky et al.

showed significantly higher bacterial diversity in infected animals

(Prandovszky et al., 2018). It’s of note that Prandovszky et al. used

males in the experiment while all of the other groups used females.

The aforementioned studies collectively indicate that chronic T.

gondii infection does indeed induce long-term microbiome changes

in the gut, which are different from the acute stage of T. gondii

infection. Although, in many instances, there is no clear concordance

in changes affecting the bacterial microbiome, the variances likely

depend on 1) the genetic background and sex of the host, 2) the host

age, 3) the route of infection, and 4) the anatomical location of where

the samples were collected from within the intestine (Table 2).

Furthermore, understanding the microorganisms role are ultimately

more important than simply running a taxonomical inventory.

Gaining a truly meaningful insight to the function of the gut

microbiome calls for species/strain level metagenomics sequencing
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of the intestinal content accompanied by metabolomics analysis of

the gut and blood of the host.

Due to the pathological impact of T. gondii infection on the gut,

microbiome studies are mainly profiling the ileum, and very few

studies are assessing the large intestine (Table 2), where microbial

metabolites, such as short chain fatty acids (Silva et al., 2020b), and

dopamine as well as other neurotransmitters (Eisenhofer et al., 1997;

Asano et al., 2012) are being produced. These microbial metabolites

can have a critical influence on the brain (Needham et al., 2020).

More research is needed to systematically examine and sample each

section of the gut in a longitudinal fashion to reveal common trends

and differences. Furthermore, this sampling should be implemented

across multiple hosts with different genetic backgrounds and sexes as

well as utilizing different parasite strains so that the effects of chronic

T. gondii infection on the gut microbiome can be fully characterized.

Studies utilizing different infection routes, will help in the

understanding of the interplay between gut commensals and the

immune activation in the behavioral outcomes.
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The above-mentioned studies collectively underscore the

complexity of microbiota-GBA interactions and shed light on the

dynamic interplay between infectious agents, gut microbiome

composition, and neurological outcomes in chronic infection.

Further exploration of these relationships holds promise for

advancing our understanding of the intricate mechanisms governing

gut-brain communication in underlying T. gondii-induced behavioral

traits (O'Mahony et al., 2009; Cryan and Dinan, 2012).
4 Connecting the dots between the
different mechanistic approaches of T.
gondii induced behavior and
bacterial dysbiosis

The behavioral changes induced by T. gondii have been a focal

point of research, with rodents and humans showing altered behavior
TABLE 1 Acute dysbiosis.

T. gondii Strain
Rodent Strain*

and Sex
Age at

infection
Infection
Route

Sample Origin Acute Dysbiosis Citation

GT1 (Type I)
CD1
♂

6–8 weeks IP jejunal-ileal contents
↑ Bacteroidetes
Beta diversity – significant
community dissimilarities

(Prandovszky
et al., 2018)

ME49 (Type II)
C57BL/6
♂/♀?

2-4 months Oral ileal contents

↑ Enterobacteriaceae/E.coli
↑ Bacteroides/Prevotella spp.
↓ Lactobacilli
↓ Clostridia
↓ Alpha diversity

(Heimesaat
et al., 2006)

ME49 (Type II)
C57BL/6

♀
12 weeks Oral ileal contents

↑ g-Proteobacteria (E.coli)
↓ Firmicutes
↓ Alpha diversity

(Craven
et al., 2012)

ME49 (Type II)
C57BL/6J ♀
BALB/cJ ♀

9-10 weeks Oral ileal contents

Only in C57BL/6J mice:
↑ g-Proteobacteria/
Enterobacteriaceae
↓ Fusobacteria
↓ Alpha diversity

(Wang
et al., 2019)

ME49/C1 (Type II)
C57BL/6
♀/♂?

8-12 weeks Oral
colon content & small
intestinal mucosa
associated bacteria

↑ g-Proteobacteria/
Enterobacteriaceae
↓ Firmicutes/Clostridia

(Molloy
et al., 2013)

ME49 (Type II)
C57BL/6

♀
3 weeks Oral ileum

↑ Enterobacteriaceae (E.coli)
↑ Bacteroides/Prevotella spp.
↑ Enterococci
↓ Lactobacilli

(Haag
et al., 2012)

ME49 (Type II)
C57BL/6

♀
3 months Oral small intestine

↑ Enterobacteria,
↑ Enterococci,
↑ Bacteroides/
Prevotella spp.,

(Bereswill
et al., 2014)

PRU (Type II)
C57BL/6

♀
8-10 weeks Oral cecum

↑ Acutalibacteraceae,
↑ Bacteroidaceae,
↑ CAG-465 (Clostridia),
↑ Gastranaerophilaceae
↓ Burkholderiaceae
↓ Clostridiaceae
↓ Alpha diversity
Beta diversity – significant
community dissimilarities

(Meng
et al., 2023)
*Mice, unless otherwise indicated. ♀ indicates female, ♂ indicates male; ↑ indicates an increase in relative abundance, ↓ indicates a decrease in relative abundance.
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TABLE 2 Chronic Dysbiosis.

T. gondii Strain
Rodent Strain*

and Sex
Age at infection

Infection
Route

Sample
Origin

Chronic Dysbiosis Citation

GT1
(Type I)

CD1
♂

6–8 weeks
IP

small
intestine

Lactobacillales (Cohort2)
Bacteroidales (Cohort 2)
↑ Verrucomicrobia/Akkermansia
(Cohort 1)
↑ Bacteroidetes (Cohort 1)
↑ Alpha diversity
Beta diversity – significant
community dissimilarities

(Prandovszky
et al., 2018)

ME49
(Type II)

BALB/c
♀

6 weeks
Oral cecum

↑ Lactobacillus
↑ Rikenella
↑ Odoribacter
↓ S24-7,
↓ Clostridiales,
↓ Desulfovibrio,
↓ Lachnospiraceae
↑ Alpha diversity
Beta diversity – significant
community dissimilarities

(Shao
et al., 2020)

MeE9-GFP/luc
(Type II)

C57BL/6J
♂

8-10 weeks Oral fecal pellet
↑Clostridia spp.
Beta diversity – significant
community dissimilarities

(Hatter
et al., 2018)

ME49
(Type II)

C57BL/6J
♀

8-10 weeks
Oral (p.o.)
vs. IP

ileum

↓ Bacteroides/Prevotellaceae
↑ Lactobacilliaceae (p.o.)
↓ Clostridiaceae
↓ Ruminococcaceae
↑ Erysipelotrichaceae (i.p.)
↑ Lachnospiraceae (i.p.)
↓ Alpha diversity (in p.o.)
Beta diversity – significant
community dissimilarities (in
p.o. & i.p.)

(French
et al., 2022)

PYS
(Atypical)
PRU
(Type II)

Fischer/344 rats, ♀ 4-6 weeks IP fecal pellet

↑ Verrucomicrobiaceae/
Akkermansia
↓ Muribaculaceae
↓ Lachnospiraceae
↓Alpha Diversity
Beta diversity – significant
community dissimilarities

(Lv et al., 2022)

PRU
(Type II)

BALB/c
♀

6 weeks Oral fecal pellet

↑Firmicutes
↓ Fusobacteria
↓ Bacteroidetes
↑ Alpha diversity
Beta diversity – significant
community dissimilarities

(Yan et al., 2022)

PRU
(Type II)

Wistar Hannover rats
♂&♀

8 weeks IP cecum
No effect on alpha or beta
diversity
No differentially abundant taxon.

(Taggart
et al., 2022)

PRU
(Type II)

C57BL/6
♀

8-10 weeks Oral cecum

↑ Atopobiaceae
↑ Burkholderiaceae
↑ Enterobacteriaceae
↑ Erysipelotrichaceae
↑ Muribaculaceae
↑ Pasteurellceae
↓ Desulfovibrionaceae
↓ Lachnospiraceae
↓Marinifilaceae
↓ Oscillospiraceae
↓ Anaeroplasmataceae
↑ Alpha diversity
Beta diversity – significant
community dissimilarities

(Meng
et al., 2023)
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*Mice unless otherwise indicated. ♀ indicates female, ♂ indicates male; ↑ indicates an increase in relative abundance, ↓ indicates a decrease in relative abundance.
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that put the host at risk and provide survival advantages for the

parasite. While the direct infection of the CNS and the parasite’s

tropism to immune-privileged organs are notable considerations, the

underlying mechanisms driving these changes remain unclear.

Neuroinflammation, changes in neurotransmission, and endocrine

signaling stand as pieces of the puzzle, awaiting precise connections,

connections that the gut microbiome and GBAmay be able to clarify.

The GBA serves as a vital conduit for communication between the

microbiome, gut, and brain, orchestrating an array of interactions

through immune, neural and endocrine routes.
4.1 Bacterial dysbiosis impact on the
immune activation

There is a well-established relationship between the immune

system and the gut microbiota (Hooper et al., 2012). We described

earlier the immune response to T. gondii in acute and chronic

infection, focusing on MyD88 and TLR11, the main TLR that

expressed on rodent dendritic cells, but not present in human

macrophages. We pointed out, that in TLR11-deficient mice, the

Th1 was not affected as significantly compared with mice deficient

in MyD88 or other TLRs. What we haven’t mentioned, treating

TLR11-deficient mice with antibiotics showed the same phenotype

as MyD88-deficient mice (Flegr et al., 2000; Flegr et al., 2002)

suggesting that commensals have a pivotal role in inducing Th1

immune response.

The immune response to toxoplasmosis involves a complex

interplay of cytokines, chemokines, and lymphoid cells, with IFN-g
playing a central role in activating the host’s defense mechanisms,

which involves a parasite-induced dysbiosis in the gut bacterial

microflora, in particular Proteobacteria outgrowth, to combat T.

gondii infection at the early stage (Benson et al., 2009). In germ-free

mice, where commensal bacteria is not present, T. gondii infection

resulted in systematic inflammation that was not constrained to the

intestine (Nascimento et al., 2017).

Due to an intricate and continuous communication between the

gut microbiota and the immune system, the outcome of this

conversation does not leave the neurosystem unaffected and

chronic changes in this communication can manifest in

behavior traits.
4.2 Bacterial dysbiosis impact
on neurotransmission

GBA profoundly influences central processes such as

neurotransmission and behavior (Sherwin et al., 2016). Gut

bacteria contribute to this dialogue by releasing an array of

neuroactive compounds such as dopamine, glutamate, GABA

(Lyte, 2011). These neurotransmitters seem to play an important

role in microbial ecology (Lyte, 2013; Wall et al., 2014; Hulme et al.,

2022), adding complexity when it comes to understanding the exact

mechanisms by which intestinal microbes communicate with the

CNS during T. gondii infection. Nevertheless, the evidence does

strongly support that gut symbionts are key to CNS function, and
Frontiers in Cellular and Infection Microbiology 09
therefore, alterations in their composition, diversity, and richness

may play a role in the pathophysiology of the CNS during T.

gondii infection.

4.2.1 Dopamine
Alterations in dopaminergic transmission have been related to

severe CNS disorders, such as anxiety (Zweifel et al., 2011;

Zarrindast and Khakpai, 2015). Alteration of the gut microbiota

impact dopamine signaling in the hippocampus and the amygdala

(González-Arancibia et al., 2019). The dorsal hippocampus is a

center of learning, memory, and spatial navigation in the brain,

while the ventral hippocampus is associated with the emotional and

motivational consequences of stress, including depression and

anxiety (Bagot et al., 2015). The hippocampus communicates with

subcortical structures, like the amygdala and the striatum. The

amygdala is also involved in emotional behavior, participates in fear

modulation, fear-associated memory, and attention (Phelps, 2004;

Roozendaal et al., 2009), behavior traits that are associated with T.

gondii infection.

In the absence of intestinal microbes, Heijtz et al. observed

higher dopamine metabolism (increased dopamine turnover) in the

striatum of adult germ free mice compared to specific pathogen-free

(SPF) controls (Heijtz et al., 2011). Furthermore, they found that

germ-free mice had higher expression of D1 mRNA expression in

the hippocampus, while lower levels of expression of this receptor

were found in the striatum when compared to SPF controls (Heijtz

et al., 2011). In addition, germ-free mice showed fewer anxiety-like

behaviors in comparison to their respective controls (Heijtz et al.,

2011), while Nishino et al. observed the reversal of these outcomes

perhaps due to the use of different mice strains in each study

(Nishino et al., 2013).

Among several bacteria, E. coli has been reported to produce

dopamine in the gut (Cryan and Dinan, 2012). It is known that

acute T. gondii infection leads to Proteobacteria outgrowth, which

in oral infection is likely to be E. coli. Excess of E. coli could

contribute to the production of excess of dopamine in the gut.

Excess dopamine can go through autooxidation that leads to the

generation of reactive oxygen or nitrogen species (Meiser et al.,

2013) which in turn might contribute to the necrotic pathology of

the small intestine during acute toxoplasmosis (Liesenfeld et al.,

1996; Denkers, 2009; French et al., 2022). Excess of dopamine can

also signal the CNS through the gut-brain axis (González-Arancibia

et al., 2019). On the other hand, Hatter et al. reported Clostridia

outgrowth during chronic T. gondii infection (Hatter et al., 2018).

Notably, metabolites produced by pathogenic Clostridia spp. can

inhibit the conversion of dopamine to norepinephrine (Shaw, 2004;

Shaw, 2017) resulting in elevated dopamine levels (Hamamah

et al., 2022).

Other evidence for a complementary role of gut microbes in T.

gondii infection comes from studies of probiotics such as

Lactobacillus rhamnosus JB-1, Bifidobacterium longum NCC3001

in mice, and Lactobacillus helveticus R0052 and B. longum R0175 in

rats. These probiotic cocktails were found to reduce anxiety-like

behavior in both models (Bercik et al., 2011; Bravo et al., 2011;

Messaoudi et al., 2011). Moreover, administration of Lactobacillus

plantarum PS128 to germ-free mice decreases anxiety-like
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behaviors, and these changes were accompanied by an increase in

dopamine and homovanilicacid, as well as an increase in 5-HT in

the striatum (Liu et al., 2016). Many groups have also detected

Akkermansia enrichment in the gut of chronically infected mice

(McConkey et al., 2015; Prandovszky et al., 2018; Shao et al., 2020;

Yan et al., 2022; Meng et al., 2023). Akkermansia has been

considered a next generation probiotic (Zhai et al., 2019), one

that may have significant impact on the brain (Xu et al., 2023). If

chronic T. gondii infection leads to an outgrowth of a bacteria with

probiotic potential in the gut that would probably affect the brain.

4.2.2 Glutamate
In the GI tract, dietary glutamate not only serves as a major

source for glutamate, but it is also the most abundant (8%–10%)

among dietary amino acids (Tomé, 2018). Several Lactobacillus

strains have the ability to produce glutamate, with many of these

Lactobacillus strains representing environmental bacteria or strains

used in food fermentation (Sanchez et al., 2018). Interestingly,

chronic T. gondii infection has also been linked to Lactobacilli

overgrowth in mice (Prandovszky et al., 2018). About 75%–96% of

enteral glutamate is removed during portal circulation in both

humans and rodents for the production of energy (Haÿs et al.,

2007). The brain is not exposed to an excess of glutamate due to low

concentrations of glutamate reaching systemic circulation (Tomé,

2018). While dietary glutamate does not cross the blood brain

barrier under normal conditions (Brosnan et al., 2014), an altered

gut microbiota can cause changes in barrier permeability, as we saw

with T. gondii infection, which can compromise the barrier and lead

to the transfer of luminal glutamate into the CNS (Braniste et al.,

2014; Kelly et al., 2015; Mazzoli and Pessione, 2016). The

concentration of glutamate in neuronal cytoplasm is about 5 mM.

However, the concentration of glutamate in astrocytes is lower

(around 2–3 mM), and this is due to the function of an intact blood

brain barrier. Excitatory amino acid transporters (EAAT) actively

remove glutamate from the synaptic cleft and transport glutamate

into the cytosol. Among these EAAT are GLAST and GLT-1, which

are both expressed readily by astrocytes and are also both expressed

by neurons and endothelial cells in the brain, although to a lesser

extent. The homeostatic control of extracellular glutamate prevents

its accumulation, as excess extracellular glutamate results in

excitotoxicity (Pál, 2018), including excessive postsynaptic

excitation (Brassai et al., 2015; Miladinovic et al., 2015), which

has been linked to chronic inflammation (Kaszaki et al., 2012;

Miladinovic et al., 2015). In addition, several groups have reported

that there is an excess of glutamate, attributable to an impaired

GLT-1 transport, and compromised glutamate receptor signaling

during T. gondii infection (David et al., 2016; Kannan et al., 2016;

Lang et al., 2018; Li et al., 2018). This suggests that there is an

increased risk for glutamate-mediated excitotoxicity during T.

gondii infection, which can potential ly contribute to

cognitive impairment.

Permeability to glutamate has been shown to increase in

pathological conditions, such as in irritable bowel syndrome (IBS)

and in inflammatory bowel disease (IBD). This increase in

glutamate permeability has been shown to result in altered
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neuronal responses that are not only local in the enteric nervous

system, but also remotely in the CNS by utilizing the microbiota-

gut-brain axis. Elevated psychiatric co-morbidity in the

development of IBS and IBD may be explained by impaired

glutamate metabolism across the microbiota-gut brain axis

(Holtmann et al., 2016; Mikocka-Walus et al., 2016). Notably

both of these functional GI disorders have been modeled by T.

gondii infection.

4.2.3 GABA
GABA is the main inhibitory neurotransmitter in the CNS, and

its imbalance has been associated with a number of disorders,

including anxiety (Nuss, 2015).

Some gut commensal bacteria produce GABA including

Bacteroides, Bifidobacterium, Lactobacillus species (Strandwitz

et al., 2019; Barrett et al., 2012). Most bacteria, including

Lactobacillus and Bifidobacterium genera producing GABA use

the glutamate decarboxylase (GAD) pathways, while others such

as E. coli can utilize both putrescine glutamate decarboxylase

pathways (Diez-Gutiérrez et al., 2020). T. gondii infection appears

to alter the inhibitory function of GABAergic signaling in mice

through changes in the distribution of an enzyme (GAD67) that

catalyzes GABA synthesis in the brain (Brooks et al., 2015; Kannan

et al., 2016). GABA hypofunction could decrease GABAergic

activity, and consequently, reduce neuronal inhibitory control and

contribute to excitotoxicity. Yet, GABA-producing Bifidobacterium

adolescentis strain reduced serum glutamate levels in mice (Royo

et al., 2023).

Some experimental evidence indicates that the gut microbiome

affects the level of GABA and subsequently influences mental

health. For instance, Bravo et al. reported that L. rhamnosus

elevated the abundance of GABAB1b mRNA while decreasing the

level of GABAAa2 mRNA in the cortex of mice, leading to the

inhibition of anxiety (Bravo et al., 2011; Terunuma, 2018).

The tenth cranial nerve (n. vagus), with its afferent fibers

diligently detects metabolites, including neurotransmitters,

produced by the microbiome in the gut, and conveys this critical

information towards the CNS (Bonaz et al., 2018). Exploring the

role of the vagus nerve during T. gondii infection holds potential

opportunity for understanding how T. gondii utilize this neural

materialization of the gut brain axis to influence behavior.

Experimental vagotomy could offer crucial insights into the

mechanisms linking toxoplasmosis to behavior changes. This

exploration may not only illuminate the pathophysiology of

toxoplasmosis but also underscore the role of the microbiome in

mediating these complex interactions.
4.3 Bacterial dysbiosis impact on the
hormone system

The neuroendocrine system and microbiome interact to

influence social behaviors (Sylvia and Demas, 2018). Males and

females exhibit distinct patterns in energy and nutritional

requirements across the lifespan. Differences in sex hormones can
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contribute to differences in microbial diversity and gut microbial

composition (Neuman et al., 2015). Collden et al. found higher

levels of glucuronidated testosterone and dihydrotestosterone but

lower levels of free dihydrotestosterone in the large intestine of

germ-free mice compared with conventional mice that have a

normal gut microflora, which suggests that the gut microbiome

plays a crucial role in testosterone metabolism in mice (Colldén

et al., 2019). Shin et al. reported that sex steroid hormone levels

were correlated with diversity and gut microbial composition in

humans, suggesting a robust communication between the two

organ systems (Shin et al., 2019). Because it is a bidirectional

communication, not only do sex hormones influence the

intestinal microbiome, but the gut microbiota itself also

influences hormone levels. Consistent with this activity

researchers have observed a decline in estrogen levels during

antibiotics treatment (Adlercreutz et al., 1984). Recently it has

been shown that sex differences in the microbiome present an

increased risk for developing autoimmune disorders in female mice,

whereby fecal transfer of male intestinal microbiota to recipient

females delayed onset and lessened severity of disease (Markle et al.,

2013; Yurkovetskiy et al., 2013).

These findings suggest that epigenetic factors, such as infection,

may induce sex-specific alterations in the composition of the gut

microbiome, that contribute to sex differences in disease risk, since

these epigenetic factors are known to lead to sex-specific alterations

in immune function, metabolism, stress responsiveness and

behaviors (O'Mahony et al., 2009; Cryan and Dinan, 2012).

As we explore the mechanisms by which acute and chronic T.

gondii infection might lead to dysfunctional neural and glial

circuitries, a role for the gut microbiome in the context of the

gut-brain axis becomes apparent. The collective, balanced gut

microbiome provides a variety of benefits and functions integral

to human health and physiology (El Aidy et al., 2014; Dinan and

Cryan, 2017). When awry, however, a pathological cycle mediated

by ongoing, low-level inflammation fuels imbalances and produces

a chronic state of translocated microbial communities that can

impact the CNS (Martel et al., 2022; Jensen et al., 2023). Up to this

point, we focused on the bacterial kingdom of the indigenous

microbiota, but we cannot forget about the presence of others.
5 T. gondii-induced mycobial
dysbiosis (Candida)

The microbiome is composed of many microbial taxa (bacteria,

fungi, viruses, Archaea, protozoa), yet most studies still largely focus

on measures of bacteria. Surprisingly, the fungi, which are taxonomic

powerhouses and potent instigators of dysbiosis, are often overlooked

(Severance, 2023). During times of good health, the body’s fungal

residents, known as the mycobiome, exist in harmony with other

microbial taxa. Many fungal species, however, are opportunistic, and

as pathogens, will take over when the bacterial microbiome becomes

dysbiotic (Kim and Sudbery, 2011; Forbes et al., 2018; CDC, 2019;

MacAlpine et al., 2022; Underhill and Braun, 2022).

A role for opportunistic fungal species, such asCandida albicans, as

drivers of T. gondii-controlled altered behavior and brain biochemistry
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has not been extensively studied. It seems logical that not only would

an acute infection with T. gondii introduce a pro-inflammatory

intestinal environment primed for bacterial dysbiosis and dominance

by fungal pathogens, but that this dysbiotic state and related functional

deficits would be maintained chronically until the dysbiosis was

reversed (Saraav et al., 2021). In studies of fungal translocation in

human neuropsychiatric disorders, levels of antibodies to the fungal

species, Saccharomyces cerevisiae and C. albicans, were consistently

elevated versus those from comparison groups (Severance et al., 2012;

Severance et al., 2014; Severance et al., 2016; Hughes and Ashwood,

2018). In fact, S. cerevisiae antibodies have been routinely referred to as

indices of GI inflammation and have been used to aid in the diagnosis

of Crohn’s disease and to better understand the mycobiome of

ulcerative colitis and other inflammatory diseases of the bowel

(Torres et al., 2020; Gao and Zhang, 2021; Cimická et al., 2022).

The routes to the brain for fungal and parasitic taxa,

independently or synergistically, have not been well defined.

Numerous fungal species have been found in post-mortem brain

tissue from individuals with amyotrophic lateral sclerosis,

Alzheimer’s Disease, and Parkinson’s Disease (Alonso et al.,

2015b; Alonso et al., 2015a; Pisa et al., 2015; Phuna and

Madhavan, 2022). Microbial translocation generated locally in the

GI tract has been hypothesized to lead to systemic, low-grade

inflammation and a loss of integrity, not only of the blood-gut

barrier, but also of the blood-brain barrier, thereby exposing the

brain to access by microbes (Severance and Yolken, 2020a).

Another means by which gut microbes, including fungi, might

travel to the brain more directly is via microbial translocation and

neuroinflammation along the vagus nerve (Thapa et al., 2023).

The concept of polymicrobial invasions of the brain, and a

susceptibility of certain individuals to multiple neuropathogens, thus

becomes a very relevant hypothesis (Carter, 2017). T. gondii and C.

albicans are known to co-occur in individuals who are immune-

suppressed, such as those with HIV (Bongomin et al., 2023).

Immunosuppression or immune-modulation could also be gene-

based, as a common hypothesis regarding the etiologies of psychiatric

disorders, such as schizophrenia, is that these disorders are products of

gene-by-environmental interactions (Severance and Yolken, 2020b). A

genetic predisposition involving complement immune genes, combined

with environmental exposures such as T. gondii and C. albicans

infections, are hypothesized to elevate one’s risk of developing

schizophrenia (Severance et al., 2021; Severance et al., 2023). It is also

possible that previous infections may damage specific tissues and render

them especially susceptible to future infections, as demonstrated in a

mouse model of T. gondii chronic infection (Saraav et al., 2021).

Furthermore, viral, fungal, and parasitic pathogens including T.

gondii, can infect the same cell, together inactivate the immune

system, and establish themselves as latent or chronic infections.

Subsequent infections can lead to reactivation of the latent pathogens

and T-cell exhaustion for the newly invading pathogens (Roe, 2022).

In conclusion, gut microbiome studies are currently flourishing,

although we are still very much in the beginning stages of fully

appreciating the complexities of this developing field. Studies to date

have underestimated the potential role of fungi, which can quickly

displace bacteria, create pro-inflammatory GI environments, and

generate deleterious consequences on brain function and behavior.
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Acute and chronic infections of T. gondii very likely accelerate the

deterioration of microbial balances, implicating a partnership with

fungi that is mutually beneficial. Empirical studies to test for co-

occurrences and functional co-associations of these exposures could

help determine the extent that these infections are related.
6 Discussion

Toxoplasmosis poses a significant global health challenge

affecting a substantial portion of the world’s population. The

spectrum of its impact, from asymptomatic cases to severe

neurological outcomes, underscores the complexity of this parasitic

infection. In the intricacies of T. gondii infection and its consequential

impact on behavior and neurological conditions, the gut microbiome

emerges as a potentially vital piece, contributing to the complexity of

this parasitic relationship (Figure 1).

The competency of T. gondii to infect any warm-blooded

animals, including humans, and its ability to alter the host behavior

for its own evolutionary advantages gained significant attention in the

scientific community. Over the last 25 years, T. gondii-induced

behavior changes captivated many scientists studying host-parasite

relationships. Numerous studies investigated this sophisticated bond

and revealed the involvement of different organ systems, including

the nervous, immune, and endocrine systems. However, the exact

mechanism is still waiting to be unveiled. Neuroinflammation,

hormonal alterations, and modulation of neurotransmission stand

as pieces of the puzzle, awaiting precise connections, connections that

the gut microbiome and GBAmay be able to clarify. Further research

is needed utilizing germ free, antibiotic treated as well as probiotic

treated host to assess the relationship of these individual domains to

the microbiome during T. gondii infection. Mediation analysis has yet

to be performed in order to disentangle the role of the microbiome in

T. gondii induced behavior in the presence of the above discussed

contributing domains. As mentioned, the genetic background and sex

of the host as well as the genetic back ground of the parasite needs to

be considered as potential cofounders along with infection route and

the part of the intestine which was sampled.

As we delve into the gut-microbiome connection, the complexity

of microbiota-gut-brain axis interactions adds a new layer to our

understanding. Changes in microbiome composition during T. gondii

infection, both acute and chronic, highlight the dynamic nature of

these relationships. The gut-brain axis, facilitating communication

between the central and enteric nervous systems, presents a

previously underexplored dimension in the T. gondii saga.
Frontiers in Cellular and Infection Microbiology 12
The gut microbiome stands as a frontier for further exploration

in the intricate web of T. gondii infection, behavioral alterations,

and neurological consequences. Continued research in this field has

the potential to unveil missing links, providing insights into

potential therapeutic interventions and preventive strategies. The

holistic comprehension of the interplay between parasites, host

responses, and the microbiome opens new avenues for

understanding the complex mechanisms governing the impact of

T. gondii on both behavior and neurological health.
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Sotomayor-Zárate, R., Julio-Pieper, M., et al. (2019). Do your gut microbes affect your
brain dopamine? Psychopharmacology 236, 1611–1622. doi: 10.1007/s00213-019-05265-5

Haag, L. M., Fischer, A., Otto, B., Plickert, R., Kuhl, A. A., Gobel, U. B., et al. (2012).
Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate
colonization resistance against Campylobacter jejuni in mice. PloS One 7, e35988.
doi: 10.1371/journal.pone.0035988

Halonen, S. K., and Weiss, L. M. (2013). Toxoplasmosis. Neuroparasitology Trop.
Neurol. 114, 125–145. doi: 10.1016/B978-0-444-53490-3.00008-X

Hamamah, S., Aghazarian, A., Nazaryan, A., Hajnal, A., and Covasa, M. (2022). Role
of microbiota-gut-brain axis in regulating dopaminergic signaling. Biomedicines 10,
436. doi: 10.3390/biomedicines10020436

Hatter, J. A., Kouche, Y. M., Melchor, S. J., Ng, K., Bouley, D. M., Boothroyd, J. C.,
et al. (2018). Toxoplasma gondii infection triggers chronic cachexia and sustained
commensal dysbiosis in mice. PloS One 13 (10), e0204895. doi: 10.1371/
journal.pone.0204895

Haÿs, S. P., Ordonez, J. M., Burrin, D. G., and Sunehag, A. L. (2007). Dietary
glutamate is almost entirely removed in its first pass through the splanchnic bed in
premature infants. Pediatr. Res. 62, 353–356. doi: 10.1203/PDR.0b013e318123f719

Heijtz, R. D., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., et al.
(2011). Normal gut microbiota modulates brain development and behavior. Proc. Natl.
Acad. Sci. 108, 3047–3052. doi: 10.1073/pnas.1010529108

Heimesaat, M. M., Bereswill, S., Fischer, A., Fuchs, D., Struck, D., Niebergall, J., et al.
(2006). Gram-Negative Bacteria Aggravate Murine Small Intestinal Th1-Type
Immunopathology following Oral Infection with Toxoplasma gondii. J. Immunol.
177, 8785–8795. doi: 10.4049/jimmunol.177.12.8785

Henriquez, S., Brett, R., Alexander, J., Pratt, J., and Roberts, C. (2009). Neuropsychiatric
disease and Toxoplasma gondii infection. Neuroimmunomodulation 16, 122–133.
doi: 10.1159/000180267
Frontiers in Cellular and Infection Microbiology 14
Hickey, J. W., Becker, W. R., Nevins, S. A., Horning, A., Perez, A. E., Zhu, C., et al.
(2023). Organization of the human intestine at single-cell resolution. Nature 619, 572–
584. doi: 10.1038/s41586-023-05915-x

Hill, D., and Dubey, J. P. (2002). Toxoplasma gondii: transmission, diagnosis and
prevention. Clin. Microbiol. Infection 8 (10), 634–640. doi: 10.1046/j.1469-
0691.2002.00485.x

Hinze-Selch, D., Däubener, W., Erdag, S., and Wilms, S. (2010). The diagnosis of a
personality disorder increases the likelihood for seropositivity to Toxoplasma gondii in
psychiatric patients. Folia parasitologica 57, 129. doi: 10.14411/fp.2010.016

Holtmann, G. J., Ford, A. C., and Talley, N. J. (2016). Pathophysiology of irritable
bowel syndrome. Lancet Gastroenterol. Hepatol. 1, 133–146. doi: 10.1016/S2468-1253
(16)30023-1

Hooper, L. V., Littman, D. R., andMacpherson, A. J. (2012). Interactions between the
microbiota and the immune system. science 336, 1268–1273. doi: 10.1126/
science.1223490

Howe, D. K., and Sibley, L. D. (1995). Toxoplasma gondii comprises three clonal
lineages: correlation of parasite genotype with human disease. J. Infect. Dis. 172 (6),
1561–1566. doi: 10.1093/infdis/172.6.1561

Hughes, H. K., and Ashwood, P. (2018). Anti-candida albicans IgG antibodies in
children with autism spectrum disorders. Front. Psychiatry 9. doi: 10.3389/
fpsyt.2018.00627

Hulme, H., Meikle, L. M., Strittmatter, N., Swales, J., Hamm, G., Brown, S. L., et al.
(2022). Mapping the influence of the gut microbiota on small molecules across the
microbiome gut brain axis. J. Am. Soc. Mass Spectrometry 33, 649–659. doi: 10.1021/
jasms.1c00298

Hunter, C. A., and Sibley, L. D. (2012). Modulation of innate immunity by
Toxoplasma gondii virulence effectors. Nat. Rev. Microbiol. 10 (11), 766–778.
doi: 10.1038/nrmicro2858

Ingram, W. M., Goodrich, L. M., Robey, E. A., and Eisen, M. B. (2013). Mice infected
with low-virulence strains of Toxoplasma gondii lose their innate aversion to cat urine,
even after extensive parasite clearance. PloS One 8, e75246. doi: 10.1371/
journal.pone.0075246

Jensen, S. B., Sheikh, M. A., Akkouh, I. A., Szabo, A., O'Connell, K. S., Lekva, T., et al.
(2023). Elevated systemic levels of markers reflecting intestinal barrier dysfunction and
inflammasome activation are correlated in severe mental illness. Schizophr. Bull. 49,
635–645. doi: 10.1093/schbul/sbac191

Jovel, J., Dieleman, L. A., Kao, D., Mason, A. L., and Wine, E. (2018). The human gut
microbiome in health and disease. Metagenomics, 197–213. doi: 10.1016/B978-0-08-
102268-9.00010-0

Kanatani, S., Fuks, J. M., Olafsson, E. B., Westermark, L., Chambers, B., Varas-
Godoy, M., et al. (2017). Voltage-dependent calcium channel signaling mediates
GABAA receptor-induced migratory activation of dendritic cells infected by
Toxoplasma gondii. PloS Pathog. 13, e1006739. doi: 10.1371/journal.ppat.1006739

Kannan, G., Crawford, J. A., Yang, C., Gressitt, K. L., Ihenatu, C., Krasnova, I. N.,
et al. (2016). Anti-NMDA receptor autoantibodies and associated neurobehavioral
pathology in mice are dependent on age of first exposure to Toxoplasma gondii.
Neurobiol. Dis. 91, 307–314. doi: 10.1016/j.nbd.2016.03.005

Kannan, G., Moldovan, K., Xiao, J.-C., Yolken, R. H., Jones-Brando, L., and
Pletnikov, M. V. (2010). Toxoplasma gondii strain-dependent effects on mouse
behaviour. Folia parasitologica 57, 151. doi: 10.14411/fp.2010.019

Kaszaki, J., Érces, D., Varga, G., Szabó, A., Vécsei, L., and Boros, M. (2012).
Kynurenines and intestinal neurotransmission: the role of N-methyl-D-aspartate
receptors. J. Neural Transm. 119, 211–223. doi: 10.1007/s00702-011-0658-x

Kelly, J. R., Kennedy, P. J., Cryan, J. F., Dinan, T. G., Clarke, G., and Hyland, N. P.
(2015). Breaking down the barriers: the gut microbiome, intestinal permeability and
stress-related psychiatric disorders. Front. Cell. Neurosci. 9, 166028. doi: 10.3389/
fncel.2015.00392

Kim, J., and Sudbery, P. (2011). Candida albicans, a major human fungal pathogen. J.
Microbiol. 49, 171–177. doi: 10.1007/s12275-011-1064-7

Kittas, C., and Henry, L. (1980). Effect of sex hormones on the response of mice to
infection with Toxoplasma gondii. Br. J. Exp. Pathol. 61, 590.

Lachenmaier, S. M., Deli, M. A., Meissner, M., and Liesenfeld, O. (2011). Intracellular
transport of Toxoplasma gondii through the blood–brain barrier. J. neuroimmunology
232, 119–130. doi: 10.1016/j.jneuroim.2010.10.029

Lambert, H., Hitziger, N., Dellacasa, I., Svensson,M., and Barragan, A. (2006). Induction of
dendritic cell migration upon Toxoplasma gondii infection potentiates parasite
dissemination. Cell. Microbiol. 8, 1611–1623. doi: 10.1111/j.1462-5822.2006.00735.x

Lang, D., Schott, B. H., van Ham, M., Morton, L., Kulikovskaja, L., Herrera-Molina,
R., et al. (2018). Chronic Toxoplasma infection is associated with distinct alterations in
the synaptic protein composition. J. Neuroinflamm. 15 (1), 216. doi: 10.1186/s12974-
018-1242-1

Lau, A., and Tymianski, M. (2010). Glutamate receptors, neurotoxicity and
neurodegeneration. Pflügers Archiv-European J. Physiol. 460, 525–542. doi: 10.1007/
s00424-010-0809-1

Li, Y., Severance, E. G., Viscidi, R. P., Yolken, R. H., and Xiao, J. (2019). Persistent
Toxoplasma infection of the brain induced neurodegeneration associated with
activation of complement and microglia. Infection Immun. 87 (8), e00139–19.
doi: 10.1128/iai.00139-19
frontiersin.org

https://doi.org/10.1016/S0301-0511(00)00034-X
https://doi.org/10.1017/S0031182007004064
https://doi.org/10.1017/S0031182000066269
https://doi.org/10.3389/fmicb.2018.03249
https://doi.org/10.4049/jimmunol.0901642
https://doi.org/10.1073/pnas.0706625104
https://doi.org/10.1186/s12974-019-1539-8
https://doi.org/10.3389/fimmu.2022.920658
https://doi.org/10.17219/acem/61435
https://doi.org/10.1371/journal.ppat.1003051
https://doi.org/10.1371/journal.ppat.1003051
https://doi.org/10.1080/00325481.2021.1873649
https://doi.org/10.1371/journal.pone.0004801
https://doi.org/10.1016/j.exppara.2012.10.005
https://doi.org/10.1007/s10482-020-01474-7
https://doi.org/10.1016/j.bbr.2006.11.012
https://doi.org/10.1007/s00213-019-05265-5
https://doi.org/10.1371/journal.pone.0035988
https://doi.org/10.1016/B978-0-444-53490-3.00008-X
https://doi.org/10.3390/biomedicines10020436
https://doi.org/10.1371/journal.pone.0204895
https://doi.org/10.1371/journal.pone.0204895
https://doi.org/10.1203/PDR.0b013e318123f719
https://doi.org/10.1073/pnas.1010529108
https://doi.org/10.4049/jimmunol.177.12.8785
https://doi.org/10.1159/000180267
https://doi.org/10.1038/s41586-023-05915-x
https://doi.org/10.1046/j.1469-0691.2002.00485.x
https://doi.org/10.1046/j.1469-0691.2002.00485.x
https://doi.org/10.14411/fp.2010.016
https://doi.org/10.1016/S2468-1253(16)30023-1
https://doi.org/10.1016/S2468-1253(16)30023-1
https://doi.org/10.1126/science.1223490
https://doi.org/10.1126/science.1223490
https://doi.org/10.1093/infdis/172.6.1561
https://doi.org/10.3389/fpsyt.2018.00627
https://doi.org/10.3389/fpsyt.2018.00627
https://doi.org/10.1021/jasms.1c00298
https://doi.org/10.1021/jasms.1c00298
https://doi.org/10.1038/nrmicro2858
https://doi.org/10.1371/journal.pone.0075246
https://doi.org/10.1371/journal.pone.0075246
https://doi.org/10.1093/schbul/sbac191
https://doi.org/10.1016/B978-0-08-102268-9.00010-0
https://doi.org/10.1016/B978-0-08-102268-9.00010-0
https://doi.org/10.1371/journal.ppat.1006739
https://doi.org/10.1016/j.nbd.2016.03.005
https://doi.org/10.14411/fp.2010.019
https://doi.org/10.1007/s00702-011-0658-x
https://doi.org/10.3389/fncel.2015.00392
https://doi.org/10.3389/fncel.2015.00392
https://doi.org/10.1007/s12275-011-1064-7
https://doi.org/10.1016/j.jneuroim.2010.10.029
https://doi.org/10.1111/j.1462-5822.2006.00735.x
https://doi.org/10.1186/s12974-018-1242-1
https://doi.org/10.1186/s12974-018-1242-1
https://doi.org/10.1007/s00424-010-0809-1
https://doi.org/10.1007/s00424-010-0809-1
https://doi.org/10.1128/iai.00139-19
https://doi.org/10.3389/fcimb.2024.1415079
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Prandovszky et al. 10.3389/fcimb.2024.1415079
Li, Y., Viscidi, R. P., Kannan, G., McFarland, R., Pletnikov, M. V., Severance, E. G.,
et al. (2018). Chronic Toxoplasma gondii infection induces anti-N-methyl-d-aspartate
receptor autoantibodies and associated behavioral changes and neuropathology.
Infection Immun. 86 (10), e00398–18. doi: 10.1128/iai.00398-18

Liesenfeld, O., Kosek, J., Remington, J. S., and Suzuki, Y. (1996). Association of CD4+
T cell-dependent, interferon-gamma-mediated necrosis of the small intestine with
genetic susceptibility of mice to peroral infection with Toxoplasma gondii. J. Exp. Med.
184, 597–607. doi: 10.1084/jem.184.2.597

Liu, Y.-W., Liu, W.-H., Wu, C.-C., Juan, Y.-C., Wu, Y.-C., Tsai, H.-P., et al. (2016).
Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naïve
adult mice. Brain Res. 1631, 1–12. doi: 10.1016/j.brainres.2015.11.018

Lv, Q.-B., Ma, H., Wei, J., Qin, Y.-F., Qiu, H.-Y., Ni, H.-B., et al. (2022). Changes of
gut microbiota structure in rats infected with Toxoplasma gondii. Front. Cell. Infection
Microbiol. 12. doi: 10.3389/fcimb.2022.969832

Lyte, M. (2011). Probiotics function mechanistically as delivery vehicles for
neuroactive compounds: microbial endocrinology in the design and use of
probiotics. Bioessays 33, 574–581. doi: 10.1002/bies.201100024

Lyte, M. (2013). Microbial endocrinology in the microbiome-gut-brain axis: how
bacterial production and utilization of neurochemicals influence behavior. PloS Pathog.
9, e1003726. doi: 10.1371/journal.ppat.1003726

MacAlpine, J., Robbins, N., and Cowen, L. E. (2022). Bacterial-fungal interactions
and their impact on microbial pathogenesis. Mol. Ecol. 32 (10), 2565–2581.
doi: 10.1111/mec.16411

Marchesi, J. R., and Ravel, J. (2015). The vocabulary of microbiome research: a
proposal. Microbiome 3, 31. doi: 10.1186/s40168-015-0094-5

Markle, J. G., Frank, D. N., Mortin-Toth, S., Robertson, C. E., Feazel, L. M., Rolle-
Kampczyk, U., et al. (2013). Sex differences in the gut microbiome drive hormone-
dependent regulation of autoimmunity. Science 339, 1084–1088. doi: 10.1126/
science.1233521

Markovitz, A. A., Simanek, A. M., Yolken, R. H., Galea, S., Koenen, K. C., Chen, S.,
et al. (2015). Toxoplasma gondii and anxiety disorders in a community-based sample.
Brain behavior Immun. 43, 192–197. doi: 10.1016/j.bbi.2014.08.001

Martel, J., Chang, S. H., Ko, Y. F., Hwang, T. L., Young, J. D., and Ojcius, D. M.
(2022). Gut barrier disruption and chronic disease. Trends Endocrinol. Metab. 33, 247–
265. doi: 10.1016/j.tem.2022.01.002

Martin, H. L., Alsaady, I., Howell, G., Prandovszky, E., Peers, C., Robinson, P., et al.
(2015). Effect of parasitic infection on dopamine biosynthesis in dopaminergic cells.
Neuroscience 306, 50–62. doi: 10.1016/j.neuroscience.2015.08.005

Mazzoli, R., and Pessione, E. (2016). The neuro-endocrinological role of microbial
glutamate and GABA signaling. Front. Microbiol. 7, 210784. doi: 10.3389/fmicb.2016.01934

McConkey, G. A., Martin, H. L., Bristow, G. C., and Webster, J. P. (2013).
Toxoplasma gondii infection and behaviour–location, location, location? J. Exp. Biol.
216, 113–119. doi: 10.1242/jeb.074153

McConkey, G. A., Peers, C., and Prandovszky, E. (2015). Reproducing increased
dopamine with infection to evaluate the role of parasite-encoded tyrosine hydroxylase
activity. Infection Immun. 83 (8), 3334–3335. doi: 10.1128/iai.00605-15

McFarland, R., Wang, Z. T., Jouroukhin, Y., Li, Y., Mychko, O., Coppens, I., et al.
(2018). AAH2 gene is not required for dopamine-dependent neurochemical and
behavioral abnormalities produced by Toxoplasma infection in mouse. Behav. Brain
Res. 347, 193–200. doi: 10.1016/j.bbr.2018.03.023

McKnite, A. M., Perez-Munoz, M. E., Lu, L., Williams, E. G., Brewer, S., Andreux, P.
A., et al. (2012). Murine gut microbiota is defined by host genetics and modulates
variation of metabolic traits. PloS One 7 (6), e39191. doi: 10.1371/journal.pone.0039191

Meiser, J., Weindl, D., and Hiller, K. (2013). Complexity of dopamine metabolism.
Cell Communication Signaling 11, 34. doi: 10.1186/1478-811X-11-34

Meng, J. X., Wei, X. Y., Guo, H., Chen, Y., Wang, W., Geng, H. L., et al. (2023).
Metagenomic insights into the composition and function of the gut microbiota of mice
infected with Toxoplasma gondii. Front. Immunol. 14. doi : 10.3389/
fimmu.2023.1156397

Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., et al. (2011).
Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus
helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J.
Nutr. 105, 755–764. doi: 10.1017/S0007114510004319

Mikocka-Walus, A., Knowles, S. R., Keefer, L., and Graff, L. (2016). Controversies
revisited: a systematic review of the comorbidity of depression and anxiety with
inflammatory bowel diseases. Inflammatory bowel Dis. 22, 752–762. doi: 10.1097/
MIB.0000000000000620

Miladinovic, T., Nashed, M. G., and Singh, G. (2015). Overview of glutamatergic
dysregulation in central pathologies. Biomolecules 5, 3112–3141. doi: 10.3390/biom5043112

Minns, L. A., Menard, L. C., Foureau, D. M., Darche, S., Ronet, C., Mielcarz, D. W.,
et al. (2006). TLR9 is required for the gut-associated lymphoid tissue response
following oral infection of Toxoplasma gondii. J. Immunol. 176, 7589–7597.
doi: 10.4049/jimmunol.176.12.7589

Mittal, V., and Ichhpujani, R. L. (2011). Toxoplasmosis – an update. Trop. Parasitol.
1 (1), 9–14. doi: 10.4103/2229-5070.72109

Molloy, M. J., Grainger, J. R., Bouladoux, N., Hand, T. W., Koo, L. Y., Naik, S., et al.
(2013). Intraluminal containment of commensal outgrowth in the gut during infection-
induced dysbiosis. Cell Host Microbe 14, 318–328. doi: 10.1016/j.chom.2013.08.003
Frontiers in Cellular and Infection Microbiology 15
Mortensen, P. B., Nørgaard-Pedersen, B., Waltoft, B. L., Sørensen, T. L., Hougaard, D.,
and Yolken, R. H. (2007). Early infections of Toxoplasma gondii and the later
development of schizophrenia. Schizophr. Bull. 33, 741–744. doi: 10.1093/schbul/sbm009

Müller, U. B., and Howard, J. C. (2016). The impact of Toxoplasma gondii on the
mammalian genome. Curr. Opin. Microbiol. 32, 19–25. doi: 10.1016/j.mib.2016.04.009

Nascimento, B. B., Cartelle, C. T., d. L. Noviello, M., Pinheiro, B. V., de Almeida
Vitor, R. W., d. G. Souza, D., et al. (2017). Influence of indigenous microbiota on
experimental toxoplasmosis in conventional and germ-free mice. Int. J. Exp. Pathol. 98,
191–202. doi: 10.1111/iep.12236

Needham, B. D., Kaddurah-Daouk, R., and Mazmanian, S. K. (2020). Gut microbial
molecules in behavioural and neurodegenerative conditions. Nat. Rev. Neurosci. 21,
717–731. doi: 10.1038/s41583-020-00381-0

Neuman, H., Debelius, J. W., Knight, R., and Koren, O. (2015). Microbial
endocrinology: the interplay between the microbiota and the endocrine system.
FEMS Microbiol. Rev. 39, 509–521. doi: 10.1093/femsre/fuu010

Nishino, R., Mikami, K., Takahashi, H., Tomonaga, S., Furuse, M., Hiramoto, T.,
et al. (2013). Commensal microbiota modulate murine behaviors in a strictly
contamination-free environment confirmed by culture-based methods.
Neurogastroenterol. Motil. 25, 521–e371. doi: 10.1111/nmo.12110

Nuss, P. (2015). Anxiety disorders and GABA neurotransmission: a disturbance of
modulation. Neuropsychiatr. Dis. treatment 11, 165–175. doi: 10.2147/NDT.S58841

O'Mahony, S. M., Marchesi, J. R., Scully, P., Codling, C., Ceolho, A.-M., Quigley, E.
M., et al. (2009). Early life stress alters behavior, immunity, and microbiota in rats:
implications for irritable bowel syndrome and psychiatric illnesses. Biol. Psychiatry 65,
263–267. doi: 10.1016/j.biopsych.2008.06.026

Pál, B. (2018). Involvement of extrasynaptic glutamate in physiological and
pathophysiological changes of neuronal excitability. Cell. Mol. Life Sci. 75, 2917–
2949. doi: 10.1007/s00018-018-2837-5

Pappas, G., Roussos, N., and Falagas, M. E. (2009). Toxoplasmosis snapshots: Global status
of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital
toxoplasmosis. Int. J. Parasitol. 39 (12), 1385–1394. doi: 10.1016/j.ijpara.2009.04.003

Pflughoeft, K. J., and Versalovic, J. (2012). Human microbiome in health and disease.
Annu. Rev. Pathology: Mech. Dis. 7, 99–122. doi: 10.1146/annurev-pathol-011811-
132421

Phelps, E. A. (2004). Human emotion and memory: interactions of the amygdala and
hippocampal complex. Curr. Opin. Neurobiol. 14, 198–202. doi: 10.1016/j.conb.2004.03.015

Phuna, Z. X., and Madhavan, P. (2022). A closer look at the mycobiome in
Alzheimer's disease: Fungal species, pathogenesis and transmission. Eur. J. Neurosci.
55 (5), 1291–1321. doi: 10.1111/ejn.15599

Pisa, D., Alonso, R., Rabano, A., Rodal, I., and Carrasco, L. (2015). Different brain
regions are infected with fungi in Alzheimer's disease. Sci. Rep. 5, 15015. doi: 10.1038/
srep15015

Pittman, K. J., and Knoll, L. J. (2015). Long-Term Relationships: the Complicated
Interplay between the Host and the Developmental Stages of Toxoplasma gondii during
Acute and Chronic Infections. Microbiol. Mol. Biol. Rev. 79 (4), 387–401. doi: 10.1128/
mmbr.00027-15

Prandovszky, E., Gaskell, E., Martin, H., Dubey, J. P., Webster, J. P., and McConkey,
G. A. (2011). The neurotropic parasite Toxoplasma gondii increases dopamine
metabolism. PloS One 6, e23866. doi: 10.1371/journal.pone.0023866

Prandovszky, E., Li, Y., Sabunciyan, S., Steinfeldt, C. B., Avalos, L. N., Gressitt, K. L.,
et al. (2018). Toxoplasma gondii-Induced Long-Term Changes in the Upper Intestinal
Microflora during the Chronic Stage of Infection. Scientifica 2018, 2308619.
doi: 10.1155/2018/2308619

Pung, O. J., and Luster, M. I. (1986). Toxoplasma gondii: decreased resistance to
infection in mice due to estrogen. Exp. Parasitol. 61, 48–56. doi: 10.1016/0014-4894(86)
90134-7

Raetz, M., S.-h. Hwang, C. L., Kirkland, D., Benson, A., Sturge, C. R., Mirpuri, J., et al.
(2013). DeFranco: Parasite-induced TH1 cells and intestinal dysbiosis cooperate in
IFN-g-dependent elimination of Paneth cells. Nat. Immunol. 14, 136–142. doi: 10.1038/
ni.2508

Roberts, C. W., Cruickshank, S. M., and Alexander, J. (1995). Sex-determined
resistance to Toxoplasma gondii is associated with temporal differences in cytokine
production. Infection Immun. 63, 2549–2555. doi: 10.1128/iai.63.7.2549-2555.1995

Roe, K. (2022). Concurrent infections of cells by two pathogens can enable a
reactivation of the first pathogen and the second pathogen's accelerated T-cell
exhaustion. Heliyon 8, e11371. doi: 10.1016/j.heliyon.2022.e11371

Rolhion, N., and Darfeuille-Michaud, A. (2007). Adherent-invasive Escherichia coli
in inflammatory bowel disease. Inflammatory bowel Dis. 13, 1277–1283. doi: 10.1002/
ibd.20176

Roozendaal, B., McEwen, B. S., and Chattarji, S. (2009). Stress, memory and the
amygdala. Nat. Rev. Neurosci. 10, 423–433. doi: 10.1038/nrn2651

Royo, F., Tames, H., Bordanaba-Florit, G., Cabrera, D., Azparren-Angulo, M.,
Garcia-Vallicrosa, C., et al. (2023). Orally administered Bifidobacterium adolescentis
diminishes serum glutamate concentration in mice. Microbiol. Spectr. 11, e05063–
e05022. doi: 10.1128/spectrum.05063-22
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