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Research progress in isolation
and identification of
rumen probiotics
Runmin Wu, Peng Ji*, Yongli Hua, Hongya Li,
Wenfei Zhang and Yanming Wei*

College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
With the increasing research on the exploitation of rumen microbial resources,

rumen probiotics have attractedmuch attention for their positive contributions in

promoting nutrient digestion, inhibiting pathogenic bacteria, and improving

production performance. In the past two decades, macrogenomics has

provided a rich source of new-generation probiotic candidates, but most of

these “dark substances” have not been successfully cultured due to the restrictive

growth conditions. However, fueled by high-throughput culture and sorting

technologies, it is expected that the potential probiotics in the rumen can be

exploited on a large scale, and their potential applications in medicine and

agriculture can be explored. In this paper, we review and summarize the

classical techniques for isolation and identification of rumen probiotics,

introduce the development of droplet-based high-throughput cell culture and

single-cell sequencing for microbial culture and identification, and finally

introduce promising cultureomics techniques. The aim is to provide technical

references for the development of related technologies and microbiological

research to promote the further development of the field of rumen

microbiology research.
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1 Introduction

The Food and Agriculture Organization of the United Nations and the World Health

Organization defines probiotics as live microorganisms which provide a beneficial effect on

the host when ingested in moderation (FAO/WHO, 2001). This definition is widely accepted

by the International Scientific Association for Probiotics and Prebiotics (ISAPP) (Hill et al.,

2014). Probiotics perform many biological functions in the ecosystem, such as aiding in

digestion, inhibiting pathogenic bacteria, promoting growth and regulating immunity

(Dasriya et al., 2024). The efficacy of probiotics has been demonstrated through in vivo

experiments. Probiotics’ beneficial effects and safety are usually evaluated through in vivo

experiments, while their beneficial potential and safety are characterized through in vitro
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studies or animal models (Reid, 2006). Therefore, the first step in

evaluating probiotics for food use is in vitro studies, followed by

double-blind, randomized, placebo-controlled human trials (Fijan,

2014; de Melo Pereira et al., 2018).General in vitro study properties of

probiotics include resistance to gastric acid, bile acid resistance,

adhesion to mucus or human epithelial cells, antimicrobial activity

against potentially pathogenic bacteria or fungi, reduction of

pathogen adhesion, bile salt hydrolase activity and enhancement of

beneficial bacterial viability (Megur et al., 2023; Prakash et al., 2023;

Sreepathi et al., 2023).

The rumen is one of the vital nutrient digestive organs in the

digestive system of ruminants, and its internal microflora is very

rich, including bacteria, fungi, archaea and a small number of phage

viruses (Mizrahi et al., 2021). Rumen probiotics are probiotics that

grow and multiply in the rumen of ruminants (Kmet et al., 1993)

Rumen probiotics have specific functional roles in nutrition,

digestion, immunity and health of ruminants. Numerous studies

have shown that rumen probiotics can promote nitrite metabolism

(Latham et al., 2018; Deng et al., 2021) promote intestinal

development (Arshad et al., 2021) reduce methane production

(Maake et al., 2021; Pittaluga et al., 2023), Fibre degradation

(Chen et al., 2022), inhibition of pathogenic bacteria (Poothong

et al., 2024), immunomodulation (Varada et al., 2022) and

regulation of rumen acidosis (Lettat et al., 2012).

In recent years, high-throughput sequencing has provided a

wealth of information on the composition, host specificity, and

spatial and temporal dynamics of rumen-associated microbial

communities (Li et al., 2023c). With the development of non-
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targeted and new high-throughput culture methods, culture

genomics platforms using a range of media and high-throughput

screening methods offer the potential to bring more “dark matter”

into culture (Zhang et al., 2021). The genomics-based approach

provides additional insights and suggests new hypotheses for most

uncultured organisms (Gutleben et al., 2018). More importantly,

with the elucidation of the beneficial mechanisms of some new

strains, mining the next generation of candidate probiotics from the

gut has become a new research hotspot (Wan et al., 2023). This

paper provides an overview of the current applications of rumen

probiotics in production, the classical techniques for culturing and

identifying rumen probiotics, the culture strategies for cultivating

“dark matter” from the rumen, and the technological tools for

analyzing the diversity and dynamics of rumen bacteria (Figure 1).
2 Probiotic bacteria in livestock and
poultry breeding applications

With the current research background of “forbidden resistance”

on the feed side and “antibiotic reduction” and “substitute

antibiotic” on the breeding side, probiotics are often used in the

most common and widely used feed additives in the market because

they can effectively improve the growth performance of livestock,

enhance the immunity and regulate the gastrointestinal flora, and

they are safe and environmentally friendly (Li et al., 2019; Wang

et al., 2019a). Probiotic microecological preparations are prepared

by isolating, identifying, and screening probiotics and their
FIGURE 1

Sources, isolation and identification, functions and applications of rumen probiotics (Yuan et al., 2015; Noel et al., 2019; Xiong et al., 2020).
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metabolites from different ecosystems and evaluating their safety in

vitro, and through a series of technological treatments, they are

prepared into biological preparations containing rich active bacteria

(Xie et al., 2021). Current research has shown that enzyme

preparations of cellulolytic bacteria isolated from the rumen of

reindeer can increase average milk yield, enhance ciliate abundance,

and improve the natural resistance of newborn calves (Litonina

et al., 2021); The addition of Lactobacillus casei and Saccharomyces

cerevisiae to diets increased the growth performance and apparent

digestibility of nutrients, the relative abundance of short-chain fatty

acid-producing microbiota, and the total short-chain fatty acid

content of fattening pigs (Hassan et al., 2020). A strain of Bacillus

denitrificans 79R4 (Paenibacillus 79R4) isolated from the bovine

rumen enhanced rumen nitrite detoxification and reduced the risk

of methemoglobinemia in cattle due to nitrate addition (Latham

et al., 2019).

Other selected probiotic or potential probiotic application

studies are shown in Table 1.
3 Isolation of rumen probiotics

The growth of microorganisms depends on various nutrient

factors within the medium and various physicochemical factors in

the culture environment, which are the primary conditions for the

pure culture of microorganisms Ren et al. (2016). Therefore,

understanding the nutritional requirements and metabolic

properties is very important for the isolation and stable cultivation

of microorganisms. The pure culture of rumen microorganisms is an

important cornerstone for in-depth research on genes, proteins, and

metabolic pathways, as well as a valuable resource for experimental

research on microbial traits, enriching reference databases and

biological classification frameworks (Stewart et al., 2019). The

classical methods for isolation and culture of rumen probiotics

include selective isolation and culture and the Heinz rolling tube

method, which have inherent drawbacks such as low throughput,

labor-intensive and high cost. The development of emerging

technologies, such as microfluidic devices, offers great promise for

high-throughput cultures (Figure 2).
3.1 Selective isolation culture method

Selective isolation and culture method is to prepare the

corresponding selection medium to enrich the target probiotics,

which is essentially to eliminate the undesired microbial flora

(Bonnet et al., 2019).The media used can be undefined and

optimize the media using biochemical studies or one-factor

methods according to experimental needs, which can reduce the

complex effects between complex components and also allow easier

detection of target metabolites (Hayek et al., 2019; Lewis et al., 2021).

However, the number of rumen probiotics in the traditional culture

strategy is limited, and the growth and metabolic characteristics of

many rumen microorganisms are still unclear, which hinders the
Frontiers in Cellular and Infection Microbiology 03
TABLE 1 Research on the application of some probiotics in livestock
and poultry farming.

Probiotics Animals Functionality Reference

Bacillus
paralicheniformis

(SN-6)

Simmental
beef cattle

Increases body weight,
alters metabolomic

patterns in Simmental
beef cattle, and increases
the relative abundance
of beneficial bacteria.
Enriches intestinal

metabolites to maintain
intestinal homeostasis.
Enhances amino acid
metabolism and lipid
metabolism pathways

Yang
et al., 2022

Lactobacillus
plantarum

Ovine
Increased digestibility

and reduced
methane emissions

Zhang
et al., 2022

Lactobacillus
acidophilus

Ovine
Reducing Salmonella
carriage in sheep

Pepoyan
et al., 2020

Bacillus subtilis
Infected
computer
in a botnet

Improve broiler growth
performance and

enhance
intestinal immunity

Khalifa
et al., 2023

Bacillus
licheniformis

Ovine

Reducing methane
emissions from sheep
while increasing ration

conversion rates

Deng
et al., 2018

Lactobacillus
rhamnosus

Piglet

Improves the physical,
biological and immune
barrier of the intestinal
mucosa and benefits the
intestinal health of pre-

weaned piglets

Wang
et al., 2019b

Enterococcus
faecalis

Milk cow

Its secretion produces
the peptide AS-48,
which is used in the
prevention and
treatment of

mastitis in cows

Davidse
et al., 2004

Enterococcus
faecium

Pigeon

Improve antioxidant
performance and

immune function of
pigeon, promote growth

and improve
meat quality

Han
et al., 2022

Ruminococcus
flavefaciens

Lambs

Increases daily lamb
weight gain and nutrient
digestibility, reduces
NH3 -N and methane
production, and reduces

greenhouse
gas emissions

Kumar
et al., 2021

Clostridium
butyricum

Goats

Improving rumen
fermentation and

growth performance of
goats under heat stress

Cai et al., 2021

Bacillus
amyloliquefaciens

(H57)

Ovine
calf

Affects animal
behaviour, promotes

digestion and increases
body weight

Schofield
et al., 2018

(Continued)
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systematic study of rumen microorganisms. Currently, selective

culture media among probiotics include Bifidobacterium selective

medium, Lactobacillus selective medium, low carbon-resistant

selective medium, and sodium carboxymethylcellulose, etc (Kumar

et al., 2021; Jaglan et al., 2019; Kuppusamy et al., 2020). The addition

of antioxidants (ascorbic acid, glutathione, and uric acid in the culture

medium) enhances the culture of anaerobic bacteria (Tidjani Alou

et al., 2020); It can also use the rumen fluid to simulate the natural

environment of certain bacteria to promote their growth (Bonnet

et al., 2019). Recently, strategies combining classical microbiological

techniques with macro-barcoding methods have emerged to assess

the selective enrichment efficacy of media for specific rumen

microorganisms (Botero Rute et al., 2023). In addition,

pharmaceuticals can be added to the medium as screening

indicators according to experimental needs, e.g. Tyagi et al. (2020)

to obtain lactic acid bacteria with conjugated linoleic acid production

potential from the rumen fluid of lactating goats, linoleic acid was

added to MRS broth medium; Zhong et al. (2023) to isolate novel

urea-hydrolyzing bacteria from the rumen fluid of dairy cows, urea

and phenol red were used as the screening indexes.

3.2 Hungate’s roll-tube technique

This method was proposed by American microbiologist

Hungate in 1950 and applied to the isolation and culture of
Frontiers in Cellular and Infection Microbiology 04
anaerobic bacteria (Hungate and Macy, 1973). After years of

practice and improvement has been very mature. The basic steps

of this method4~5 mL of dissolved agar culture solution were

dispensed into Heinz tubes and inoculated when it cooled down

to 43°C, immediately, the tubes were rolled rapidly at low

temperatures to solidify the liquid agar. After agar curing,

microbial colonies will be produced after several days of

incubation under a constant temperature incubator at 39°C.

Then, under an anaerobic environment, single colonies on the

wall of the rolled tubes will be picked out by inoculation ring and

put into fresh medium, and purified strains will be obtained

through several times of rolling tubes and isolation of single

colonies and the number of viable bacteria in the bacterial liquid

will be measured, which will provide a basis for quantitative

determination (Cheng et al., 2006; Jing et al., 2011). The Heinz

tube rolling method can meet the growth requirements of different

cultures, and isolation, purification, and morphological

identification can be achieved in one tube. However, different

microorganisms have different needs for the optimal medium,

resulting in different growth rates, which has a greater impact on

quantitative analysis (Guo et al., 2009). Hu et al. (2022) used the

roll-tube technique to isolate Streptococcus equinus, Enterococcus

avium, and Streptococcus lutetiensis, which have inhibitory effects

on Escherichia coli and Staphylococcus aureus, from the rumen

juice of Holstein cows as potential probiotics or silage inoculants.

Kumar et al. (2021) screened three strains of cellulose-degrading

rumen-producing Ruminococcus flavefaciens from buffalo rumen

fluid by dispensing carboxymethylcellulose medium in Heinz tubes,

and subsequent animal experiments showed that Ruminococcus

flavefaciens significantly increased the number and activity of

beneficial gut microorganisms and enhanced the digestive

function of milk-producing buffaloes.
TABLE 1 Continued

Probiotics Animals Functionality Reference

Pichia
kudriavzevii

Mongolian
gazelle

Enhanced acetate-based
fermentation for fibre
and lipid digestion

Wang
et al., 2022
A B DC

FIGURE 2

Droplet-based high-throughput culture (Tan et al., 2020; Anggraini et al., 2022; Yin et al., 2022; Zhao et al., 2016). (A) Pre-treated bacterial
suspensions were injected into the microfluidic device to encapsulate the cells in the droplets; (B) Incubation under ideal conditions; (C);
Fluorescence Signal Dependent Droplet Sorting; and (D) collect.
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3.3 Droplet-based single-cell cultures

For microbial culture and screening, droplet-based microfluidic

methods offer the advantages of single-cell, high-throughput, high-

resolution, and low-cost, making them a promising approach for

isolating uncultured microorganisms (Huys and Raes, 2018).

Droplet-based microfluidics can provide a separate space for cells

to divide and block the influence of competitors or predators,

precisely control the microenvironment of single-cell cultures,

manipulate individual cells through external interventions, and

detect single-cell behaviors in real time for enzyme, antibody, or

rare-cell screenings, and recover cells from the microfluidic system

for a variety of downstream analyses, even after cultivation (Huys

and Raes, 2018; Li et al., 2023a).

Microfluidic Stripe Plate (MSP) and SlipChip are two

representative microfluidic methods for static droplets (Yu et al.,

2022). MSP builds on traditional streak plate technology for high-

throughput single-cell analysis and culture using nanolitre droplets

that can be manually or robotically streaked onto Petri dishes for

single-cell culture, as well as encoding chemical gradients in the

droplet array for comprehensive dose-response analysis (Jiang et al.,

2016). MSP can restore microbial diversity more than traditional

agar plates. Currently, there are examples of applications of the

MSP method in culturing and isolating Fastidous bacteria, such as

the successful isolation of fluoranthene-degrading Blastococcus

from the soil, studies of termite gut microbiota, and isolation of

rare deep-sea biosphere members in long cultures (Jiang et al., 2016;

Xu et al., 2018a; Zhou et al., 2019a). The SlipChip consists of two

glass plates with several pre-filled reagent holes, the top plate is pre-

filled with samples, and the bottom plate is pre-filled with reagents.

Fluorocarbon compounds act as a lubricant layer between the two

plates, and when the two plates slip, the complementary pattern of

holes in the plates overlap to form tens of thousands of closed

chambers or channels, the top plate sample-containing wells are

exposed to the bottom plate reagent wells for reaction (Du et al.,

2009). The enclosed microenvironment is particularly suitable

for the cultivation of anaerobic microorganisms (Yu et al., 2022).

Chen et al. (2019) A SlipChip device for chemotaxis sorting

and a microfluidic streak plate device for bacterial culture were

newly developed as new pipelines for screening and isolating

microbial species that can degrade imidazolidinone as an

imidazolidinone degrader.

Recently, Watterson et al. (2020) built a platform consisting of

an image processing system and a droplet microfluidic device

operating in an anaerobic chamber. This platform sorts slow-

growers in microorganisms in droplets by density, speeding up

their growth and enriching rare taxa in fecal microbiota samples,

and realize high-throughput single-cell cultivation. However, as the

vast majority of microorganisms colonizing the gastrointestinal

tract are almost exclusively anaerobic, integrating a single-cell

isolation platform into a standard anaerobic workstation is costly.

Yin et al. (2022) improved a simple droplet-based method for

isolation and enrichment of functional gut bacteria by

encapsulation of single-cell suspensions, which was accomplished
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by using diluted bacterial suspensions as the dispersed phase

mineral oil as the continuous phase and then transferring to agar

plates in an anaerobic chamber for incubation to form discrete

single-cell colonies. This method does not require sophisticated

instrumentation to sort droplets and therefore can easily be

operated in a conventional anaerobic chamber to successfully

isolate anaerobic Lactobacilli and Bifidobacteria.
3.4 Droplet-based co-culture techniques

Droplet-based co-culture systems are likewise a promising

approach for the discovery of natural microbial products and the

isolation of uncultured microorganisms (Jian et al., 2020; Park et al.,

2011). The system promotes continuous co-culture of colonies and

cells by adjusting the concentration of microbial communities,

developing microdroplets with different proportions of cells,

simulating microenvironments to meet microbial growth

requirements, and securing information exchange between strains

(Qi et al., 2023). This process is expected to solve the problem that

traditional pure culture methods can interrupt the ecological

interactions between microorganisms, and provide a promising

way to assess complex microbial communities in more detail

(Anggraini et al., 2022; Kim et al., 2023; Baichman-Kass et al.,

2023). Hua et al. (2022) created a rapid screening platform for

actinomycetes——the whole-cell biosensor and producer

co-cultivation-based microfluidic platform for screening

actinomycetes (WELCOME), By combining an MphR-based

Escherichia coli whole-cell biosensor sensitive to erythromycin

with Saccharopolyspora erythraea co-cultivation, they isolated six

high production erythromycin-producing strains from industrial

strains within a short time. Tan et al. (2020) Complex human faecal

samples were dissected into sub-communities for highly parallel co-

culture using a droplet microfluidic device. Twenty-two individual

droplets with strong bacterial symbiosis were then selected by

microfluidics, in which a partial genome of a representative of a

new genus of Neisseriaceae was found, highlighting the ability of

microfluidic co-cultures to access and study uncharacterized

microbial diversity.
4 Identification of rumen probiotics

In the early days, microbiological studies based on

morphological features and physiological and biochemical traits

provided insights into the microbial world, but today, they can only

provide limited resolution (Escobar-Zepeda et al., 2015). Advances

in molecular techniques have provided access to the “new

uncultured world” of microbial communities. Among these

techniques, polymerase chain reaction (PCR), denaturing gradient

gel electrophoresis (DGGE), terminal restriction fragment length

polymorphism (T-RFLP), fluorescence in-situ hybridization (FISH)

and rRNA gene cloning and sequencing have had a significant

impact (Escobar-Zepeda et al., 2015). However, while they describe
frontiersin.org
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the diversity of microorganisms, amplicon sequencing,

macrogenomics, and single-cell genomics are the most widely

used techniques for solving environmental microbiological

problems (Xu and Zhao, 2018b).
4.1 Morphological identification

Morphological features are the important references for the

classification and identification of microorganisms. Identification is

carried out by observing both colony morphology and microscopic

morphology. Colony morphology includes colony size, shape,

surface, texture, transparency, degree of elevation, and medium

color (Meruvu and Harsa, 2023). The bacterial morphology reflects

the survival value of bacteria for acquiring nutrients, moving, and

avoiding predators (Young, 2007). In microscopic morphology,

commonly used types of microscopes are ordinary optical

microscopes and phase contrast microscopes, for ultra-fine

structures and complex structures can use scanning electron

microscope and transmission electron microscope observation

(Sun and Lin, 2009). With the rapid development of

microimaging technologies and microfluidic chips, it becomes

feasible to observe microbial germination and growth in real time

(Zhou et al., 2019b). Zhang et al. (2019) used a gradient microfluidic

chip to observe the morphological changes of various bacteria under

the action of antibiotics. The rumen probiotics can also be classified

with the help of Gram staining, which provides a reference basis for

isolating rumen probiotics (Wang et al., 2021). Han et al. (2018) and

Li et al. (2017) used colony morphology and Gram staining

techniques for preliminary isolation and identification of

probiotic bacteria in the samples, followed by 16SrRNA gene

homology analysis to obtain probiotic strains of bovine origin.
4.2 Physiological and biochemical tests

The production and metabolic activities of microorganisms

depend on extracellular enzymes to degrade macromolecular

substances, the enzyme systems of different microorganisms will

show significant differences in metabolic activities, which are

confirmed by the changes in the substances in the vicinity of the

microbial colonies, providing a basis for the identification and

classification of microorganisms (Wu et al., 2018). At present, the

physiological and biochemical tests that are more frequently used in

identifying probiotics include the gelatin liquefaction test, methyl

red test, glycolysis test, indole test, and starch hydrolysis test for the

preliminary assessment of probiotics (Lin, 1999). The test is used for

the preliminary evaluation of probiotics. However, due to the slow

growth of some bacteria and the difficulty of cultivation, they

cannot meet the requirements of biochemical reactions for

microbial concentration and colony freshness, and the accuracy

of biochemical tests for identifying anaerobic microorganisms in

the rumen needs to be improved. Abid et al. (2022) in order to

screen probiotic strains favorable for milk fermentation, four strains
Frontiers in Cellular and Infection Microbiology 06
of Lactobacillus spp. were screened from 15 strains showing gas

production in Durham tubes. These four probiotic strains were

identified morphologically, identified by biochemical tests, and

evaluated for their probiotic potential. It was found that

Lactobacillus fermentum strains showed significant viability in the

presence of pepsin, trypsin, and lysozyme.
4.3 16SrRNA-based amplicon sequencing

The advantage of amplicon sequencing lies in the contrasting

biases generated by using only one phylogenetic marker (Escobar-

Zepeda et al., 2015). Because 16SrRNAs are ubiquitous in all species

and are functionally integral to the core genome, the composition

and relative abundance of microbial communities in environmental

samples are often investigated by amplifying and sequencing

specific regions of the 16SrRNA gene (Daubin et al., 2003;

Větrovský and Baldrian, 2013). The 16SrDNA gene sequence is

divided into constant and variable regions. The constant region

reflects the kinship between species (Head et al., 1998); The variable

region reflects the specificity of the species and is used to classify

them biologically (Chaudhary et al., 2015). Second-generation

sequencing platforms, such as Illumina, can sequence amplicons

of up to 600 bp with high precision (Bharti and Grimm, 2021).

Third-generation amplicon sequencing platforms such as PacBio

and Oxford Nanopore can sequence full-length 16S rRNA genes in

a short period of time at the single-molecule level, which reduces the

problems of amplification bias and short read lengths and makes it

possible to annotate the microbiome at the species and strain level

(Abellan-Schneyder et al., 2021). The 16SrRNA homology analysis

has been successfully used to construct a gene library of Holstein

cow rumen bacteria, which facilitates microbial species analysis

(Yang et al., 2010; King et al., 2011). Although the 16SrRNA

identification technique reflects the diversity of rumen microbes,

it does not have a sufficient resolution at the species level, resulting

in a loss of information on low-abundance members of the

microbiota and an inability to understand the function of the

community (Bowers et al., 2022). Abedini et al. (2023) reported

for the first time the isolation of probiotics from camel rumen,

preliminary screening of Gram-positive, catalase-negative colonies

with white-colored colonies from the contents of camel rumen,

identified as Enterococcus faecium96B4 by 16SrRNA, and

subsequent evaluation of the probiotic activity and safety

evaluation revealed good probiotic potential, reflecting the

potential research value of camel rumen as a pristine environment.
4.4 Denaturing gradient
gel electrophoresis

DGGE is an electrophoretic technique that separates DNA

fragments based on differences in the order of DNA bases and is

used to detect nucleic acid mutations and point mutations. Its basic

principle is that in DNA molecules under the influence of specific
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temperature conditions and chemical denaturants, a region of

double-stranded DNA starts to unlink, the unlinking region is

related to the order of the base arrangement, and the unlinking

can occur with the difference of only one base pair, and the

difference of the base sequence of the DNA fragments will be

denatured under the corresponding denaturing conditions in the

process of the denaturing gradient gel swimming. When the ends of

double-stranded DNA molecules are unstranded, their

electrophoretic resistance increases greatly and their speed

decreases significantly, which leads to the DNA fragments staying

in different parts of the gel to achieve separation (Li et al., 2008;

Ercolini, 2004). DGGE has the characteristics of good

reproducibility, high detection rate, convenience and quickness,

etc. It can be applied to the analysis of uncultured microorganisms

(McGenity et al., 2010). DGGE was first applied to the structural

analysis of rumen microorganisms by Kocherginskaya et al. (2001)

analyzed the effect of two diets, hay, and maize, on the structure of

the rumen bacterial community of castrated cows and showed that

the bacterial populations in the rumen were relatively more diverse

and numerous after feeding the maize diet. Through DGGE

technology, Yu et al. (2020) found that supplementing

Dihydropyridine (DHP) in the diet can promote the growth of

Xanthomonadaceae and Xanthomonas and enhance the diversity

of ruminal bacteria. Min et al. (2021) explored the effect of

supplementing Condensed Tannins (CT) on calf rumen bacterial

diversity and methane emissions. DGGE results showed that

Firmicutes and Bacteroidetes populations seemed to increase as

CT content increased., CT and can exert anti-methanogenic activity

by directly inhibiting methanogens or indirectly through rumen

fermentation, thereby reducing methane emissions.

4.5 Terminal restriction fragment
length polymorphism

T-RFLP is an extension of RFLP. T-RFLP allows culture-

independent assessment of subtle genetic differences between

strains and provides a molecular approach to the evaluation of

microbial community structure and function (Marsh, 1999). The

technique uses PCR to amplify small subunit rRNA genes from total

community DNA, where one or two primers are labeled with a

fluorescent dye, followed by digestion of the PCR product with a

restriction endonuclease with a four-base-pair recognition site and

determination of the size and relative abundance of fluorescently-

labeled T-RFs using a DNA sequencer. Because differences in T-RF

size reflect sequence polymorphism, phylogenetically distinct

populations of organisms can be resolved (Schütte et al., 2008).

Although the use of T-RFLP is declining, it is still the method of

choice for community dynamics studies (Prakash et al., 2014). Zhu

et al. (2018) combined T-RFLP and clone library analysis to

compare changes in rumen bacterial and archaeal communities in

response to dietary disturbances before and after low-grain and

high-grain production and found significant changes in the relative

abundance of methane-producing communities in cows during the

transi t ion period, as wel l as a clear shif t in rumen

fermentation patterns.
Frontiers in Cellular and Infection Microbiology 07
4.6 Fluorescence in situ hybridization

FISH was introduced in 1980 (Bauman et al., 1980). FISH uses

fluorescein oligonucleotide probes to bind complementarily to

specific target nucleic acid sequences and detects the

corresponding fluorescent signals for single-cell identification and

quantification by fluorescence microscopy, whole-slide images, or

flow cytometry (Amann and Fuchs, 2008). FISH has been widely

used for the diagnosis of chromosomal aberrations in medicine, the

identification of microorganisms in complex samples, and the

identification of microorganisms (Ratan et al., 2017)., also

provides a basis for in situ image-based spatial transcriptomics

(Wen et al., 2022; Zhou et al., 2023). With improvements in

fluorescence microscopy and fluorescent labeling of various

nucleic acid probes, FISH has evolved to be used with other

biotechnologies as a rapid and accurate biosensor system (Kuo

et al., 2020). FISH combined with Raman spectroscopy can rapidly

identify target microorganisms in complex samples by labeling the

DNA of specific species (Cui et al., 2022). FISH can also be

integrated into microfluidic microarray platforms to speed up the

process of colony identification, reduce reagent consumption, and

have the potential for automation (Rodrigues et al., 2021). Liu et al.

(2009) developed a microfluidic device that integrates FISH

identification and droplet-splitting modules for parallel high-

throughput single-cell culture and identification. The single-cell

droplet was split into two sub-droplets with the aid of a droplet-

splitting chip, one of which was added to an agar plate, and the

other was subjected to FISH identification, and the droplet that

encapsulated the target species was finally selected from the agar

plate based on the identification results. Liu et al. (2011) Seamlessly

integrated two components, FISH and fluorescence-activated cell

sorting (FACS), into a microfluidic device, which forms a

hybridization chamber between two photopolymeric membranes

in which cells and probes are electrophoretically loaded, incubated,

and washed; a downstream cross structure is used to electrically

focus the cells into a single flow for FACS analysis, providing a

quantitative detection of microbial cells in complex samples

automated platform. Batani et al. (2019) developed a new method

to isolate live bacteria based only on their 16S rRNA gene sequences

(Live-FISH), which combines FISH with FACS to enable the sorting

and culturing of live bacteria. With the development of highly

specific probes, Live-FISH has greater potential for targeted sorting

of target microorganisms. However, FISH requires the rRNA

content or the number of microorganisms in the probe target

organisms, otherwise the fluorescence signal cannot be detected

under the microscope (Hoshino et al., 2008). In addition, the FISH

technique suffers from the problem of crosstalk of organic

fluorescein excitation light (Waters, 2009). Meanwhile, FISH can

only identify a small number of microorganisms with a high degree

of certainty in a single experiment, and cannot elucidate the

distribution of microorganisms in the overall microecosystem.

The development of combinatorial labeling and spectroscopic

imaging can increase the microspatial relationships of different

species of microorganisms in a single field of view, but it is too

costly (Valm et al., 2011).
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4.7 Macrogenomics

Automated sequencing of DNA by Sanger sequencing in the late

1970s ushered in the era of genomics Sanger sequencing retrieves up

to 96 sequences per run at an average length of 650 bp, which may be

sufficient for phylogenetic marker analyses, but the emergence of

what is known as next-generation sequencing (NGS) technology has

enabled researchers to bypass the cultivation of parallel sequencing of

millions of DNA molecules with varying yields and sequence lengths

directly after extraction from highly diverse populations, i.e.,

macrogenome sequencing (Escobar-Zepeda et al., 2015; Hu et al.,

2021). It is usually performed using birdshot sequencing methods

that are non-discriminatory, allowing for the quantitative assignment

of taxonomy and organisms to the species level, and with the help of

databases of identified functional genes, such as KEGG, GO, COG,

and eggNOG, the understanding of microbial communities in terms

of their composition, function, evolution, and interactions in their

natural environments, which directly contributes to the flourishing of

microbial ecology (Tatusov et al., 1997; Kanehisa et al., 2008; Huerta-

Cepas et al., 2016). However, macrogenome sequencing uses

environmental DNA samples, which cannot link each functional

gene to a specific microbial individual, and for high-diversity samples

or low-abundance organisms, it is very difficult to assemble a single

discrete genome to capture strain-level variation (Kaster and Sobol,

2020; Daliri et al., 2021). Li et al. (2023c) studied changes in bovine

rumen microbes from pre-transport to 1-month post-transport by

macrogenomics and found that the abundance of rumen bacteria and

archaea was higher on day 16 post-transport than pre-transport, but

eukaryotic abundance was highest on day 30 post-transport. Before

transport, most bacteria were mainly involved in polysaccharide

digestion. On day 4 post-transport, KEGG pathway enrichment

was most notable for nucleotide metabolism. On day 16 post-

transhipment, energy metabolism and rumen content of MCPs and

VFAs increased significantly, but at the same time, energy loss due to

methane production (Methanobrevibacter) and pathogenic bacteria

(Saccharopolyspora rectivirgula) together induced inflammation and

oxidative stress in cattle, which is important for the establishment of

new management and nutritional specification strategies.
4.8 Single-cell genomics

Genomics for microorganisms in the environment, macro-

genome sequencing describes the full range of genetic

information, and single-cell genomics reveals individual genomes,

and combining the two can compensate for their respective

shortcomings (Nobu et al., 2015; Mende et al., 2016). Sequencing

the microbiome at the resolution of individual microorganisms

effectively improves the efficiency and accuracy of obtaining

genome-wide information from complex microbial communities,

and also allows for the study of individual cellular behaviors

underlying the complexity of microbial ecosystems (Lloréns-Rico

et al., 2022; Madhu et al., 2023). Single-cell isolation is essential to

performing high-throughput single-cell genomics workflows (Xu

et al., 2018a). Microfluidic devices offer advantages in terms of
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throughput, affordability, and automation for single-cell capture

and retrieval applications (Han et al., 2023). Its subsequent steps

include DNA extraction, 16S rRNA gene PCR phylogenetic

identification, multiple displacement amplification (MDA), library

construction, sequencing, and data analysis (Xu and Zhao, 2018b;

Arikawa et al. (2021) developed a framework for integrating single-

cell genomics and macrogenomics, integrating single-cell amplified

genomes (SAG) and macrogenome assembled genomes (MAG) to

reconstruct competent microbial genomes, and achieving high-

quality recovery of strain-resolved genomes. Zheng et al. (2022)

developed and validated a strain-resolved, high-throughput single-

cell sequencing method (Microbe-seq) that uses a microfluidic

platform to individually encapsulate microorganisms into droplets

where whole-genome amplification and specific barcode coding are

performed, followed by sequencing of merged labeled DNA to

generate a single amplified genome (SAG), and then finally co-

assembling the SAGs of the same bacterial species. SAGs from the

same bacterial species are finally co-assembled to achieve single-

strain level resolution. However, SAGs can introduce chimeric and

biased sequences during genome amplification, leading to sequence

incompleteness. To address this problem, Kogawa et al. (2023)

developed a single-cell amplified genome long read-length assembly

workflow to construct complete circular SAGs (cSAGs).
5 Culturography

Culturomics is a high-throughput method of isolating and

culturing bacteria under as many combinations of culture

conditions as possible, using a combination of matrix-assisted

laser-resolved ionization time-of-flight mass spectrometry

(MALDI-TOF MS) or other sequencing technologies for

microbial identification (Diakite et al., 2021; Wan et al., 2023; Yu

et al., 2023). It is a high-throughput method for bacterial isolation

and culture. The technique was first used for the analysis of

uncultured microorganisms identified in the human gut, and with

the significant expansion of strain databases, many microorganisms

previously overlooked or considered unculturable have been

brought into the culture (Diakite et al., 2021). Classical

cultureomics is an untargeted strategy that includes steps such as

sample collection, sample processing, microbial isolation, culture,

identification, and preservation (Wan et al., 2023). That is, the

treated samples are dispersed and cultured into different media, and

then the characteristic colonies are selected for identification using

MALDI-TOF MS analysis if the reference profiles are lacking,

16SrRNA sequencing is required for further identification, and if

the similarity is < 98.65%, it is considered to be a new species, and

then describing new species using taxonomic genomics (Lagier

et al., 2018; Peng et al., 2020). In addition, with the use of

membrane diffusion culture (Nichols et al., 2010; Chaudhary et

al., 2019) microfluidic devices (Anggraini et al., 2022; Luo et al.,

2022) FACS, FISH (Waters, 2009) and reverse genomics (Cross

et al., 2019), and other high-throughput culture technologies and

targeted sorting techniques, the culture results of cultureomics will

be greatly enriched (Figure 3). Combined with full-length 16S rRNA

gene amplicons and birdshot macro-genome sequencing, culture-
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based metabonomics (CBM) will deeply explore untapped novel

bacterial resources at high resolution (Li et al., 2023b). In addition,

information specific to the target microorganisms obtained in

advance from literature studies or macrogenomics data can also

be used to reverse-guide the isolation and culture of the target

microorganisms, providing additional opportunities to obtain pure

cultures (Bellais et al., 2022; Liu et al., 2022). Of course, there are

still some constraints in cultureomics: it is still at the beginning

stage in the cultivation of rumen microorganisms, which is labor-

intensive and will result in a waste of manpower and resources

(Mordant and Kleiner, 2021); gut-microbiota interactions and

symbiotic relationships between microorganisms are still unclear

(Yadav et al., 2022).
Frontiers in Cellular and Infection Microbiology 09
6 Perspectives and conclusions

The rumen microecological environment is extremely complex,

and it is difficult to simulate its physicochemical parameters in vitro.

Traditional in vitro techniques for isolation and culture of rumen

probiotics have significant limitations and it is difficult to identify rare

microorganisms by general identification techniques. Therefore, it is

necessary to introduce new techniques for large-scale mining of

probiotics in the rumen. This will help rationally define the

beneficial flora, pinpoint microbial-derived metabolites with

beneficial effects, and provide technical support for developing

novel probiotic formulations. This is of great significance for

animal nutrition and health, food safety, and ecological protection.
FIGURE 3

The technical route of culturomics (Wan et al., 2023).
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1411482
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wu et al. 10.3389/fcimb.2024.1411482
7 Future Direction

The first key feature of the state-of-the-art technologies presented

in this review is high-throughput culture. Traditional laboratory

microbiological cultures are usually inefficient and time-consuming,

but the development of microfluidic devices has created conditions

for high-throughput cultures. Therefore, instrument design,

microfluidic chip design, and fabrication have become crucial. The

integration of experimental functions such as dilution, separation,

single-cell encapsulation, anaerobic incubation, and targeted sorting

onto a small chip requires interdisciplinary collaboration, while

reagent development, construction of equipment such as anaerobic

devices, and sorting and collection devices requires an experienced

R&D team. Second, genome sequencing at single-cell resolution is

another key feature. Single-cell sequencing can reveal functional

information about rare species, help understand inter-microbial or

microbe-host interactions, and explore potential metabolic pathways.

The development of various histological approaches will also provide

information on the rumen microbiome and its metabolites, which

will help guide the isolation and culture of target microorganisms.

While cultureomics, with its attributes of high-throughput culture

and single-cell resolution, will significantly increase the potential for

isolating and culturing “dark matter” from the rumen, this endeavor

has significant challenges. The adaptation of optimal media for

microorganisms is time- and labor-intensive, and the design of co-

culture or mono-culture systems may not be able to meet the growth

needs of all microorganisms. In addition, targeted sorting devices

such as FACS and FISH still suffer from problems such as crosstalk

and insufficient number of stains. Overcoming these technological

bottlenecks requires the unremitting efforts of the R&D team.

Rumen probiotics from cattle and sheep are relatively well

documented, but there are fewer reports on probiotics from

antelope, deer, and musk family sources. The rumen microbial

composition is very rich and susceptible to factors such as feeding

management, geographic location, and significant differences in

microbial composition between individuals and species, so

gastrointestinal microbiological studies in rare ruminants may

yield unexpected findings. In addition, the research and

application of rumen probiotics require the establishment of a

standard system for probiotic isolation and culture, identification,

evaluation of probiotic properties, safety evaluation, and

application. Only by ensuring the maximum use of strain

resources can the potential of rumen probiotics be better

explored, their application in agriculture and industry be
Frontiers in Cellular and Infection Microbiology 10
improved, and a greater contribution be made to the sustainable

development of animal husbandry.
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