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Objective: In clinical practice, imaging manifestations of diffuse lung

parenchymal lesions are common and indicative of various diseases, making

differential diagnosis difficult. Some of these lesions are eventually diagnosed as

lung cancer.

Methods: Because respiratory microorganisms play an important role in lung

cancer development, we searched for microbial markers that could predict the

risk of lung cancer by retrospectively analyzing the lower respiratory tract (LRT)

microbiome of 158 patients who were hospitalized in the First Affiliated Hospital

of Guangzhou Medical University (March 2021–March 2023) with diffuse lung

parenchymal lesions. The final diagnosis was lung cancer in 21 cases, lung

infection in 93 cases, and other conditions (other than malignancy and

infections) in 44 cases. The patient’s clinical characteristics and the results of

metagenomic next-generation sequencing of bronchoalveolar lavage fluid

(BALF) were analyzed.

Results: Body mass index (BMI) and LRT microbial diversity (Shannon, Simpson,

species richness, and Choa1 index) were significantly lower (P< 0.001,

respectively) and Lactobacillus acidophilus relative abundance in the LRT was

significantly higher (P< 0.001) in patients with lung cancer. The relative

abundance of L. acidophilus in BALF combined with BMI was a good predictor

of lung cancer risk (area under the curve = 0.985, accuracy = 98.46%, sensitivity

= 95.24%, and specificity = 100.00%; P< 0.001).

Conclusion: Our study showed that an imbalance in the component ratio of the

microbial community, diminished microbial diversity, and the presence of

specific microbial markers in the LRT predicted lung cancer risk in patients

with imaging manifestations of diffuse lung parenchymal lesions.
KEYWORDS

lung cancer, diffuse lung parenchymal lesions, bronchoalveolar lavage fluid,
microbiome, metagenomic next-generation sequencing, biomarker
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Introduction

Diffuse lung parenchymal lesions are typically characterized by

the presence of ground-glass shadows, miliary opacities, diffuse

patchy shadows, or diffuse nodules in both lungs on imaging, and

their causes are complex (Tomassetti et al., 2017). Some common

tumors and infectious diseases of the lungs show similar

manifestations that are difficult to distinguish in clinical diagnosis

and generally require a confirmatory pathological examination. A

proportion of Diffuse lung parenchymal lesions are ultimately

diagnosed as lung cancer, most of which are of intermediate to

advanced stages, and the 5-year survival rate is poor. Early-stage

lung cancer has a 10-year survival rate of 92% if surgical resection is

possible. However, the prediction and identification of early-stage

lung cancer remain challenging (Chinese Anti-Cancer Association

et al., 2021). The gold standard for clinical diagnosis of lung cancer

is lung biopsy. Although highly accurate, it has major limitations

due to its invasive nature and a low patient acceptance rate (Pabst

et al., 2023). Computed tomography (CT) and multislice spiral CT

also have high diagnostic value, but radiation exposure limits their

use (Hughes et al., 2022). Some new serological markers of lung

cancer have been recently reported. For example, Tian et al (Tian

et al., 2019). reported the significant downregulation of miR-486-5p

in the serum of patients with non-small cell lung cancer, and Huang

et al (Huang et al., 2021). identified a variety of circRNAs that

differed significantly in the peripheral blood of patients with lung

cancer, but the sensitivities and specificities of these markers

were unsatisfactory.

The human microbiota comprises bacteria, fungi, archaea,

protozoa, and viruses, all of which play important roles in

physiological processes and diseases. An increasing number of

studies have shown that the microbiota influences cancer

occurrence and development (Zitvogel et al., 2017). For example,

the presence ofHelicobacter pylori in the upper gastrointestinal tract

significantly increases the risk of gastric cancer (Tan and Wong,

2011), and toxins produced by Fusobacterium nucleatum in the gut

promote colorectal cancer development (Rubinstein et al., 2019).

Lung cancer is a common tumor worldwide, and its mortality rate

was reported to be the highest in urban areas (Wu et al., 2022). Liu

et al (Liu et al., 2018). collected and sequenced bronchial brush

samples from cancerous sites and contralateral non-cancerous sites

in patients with lung cancer and from healthy controls and found

that the a diversity of the microbiome gradually decreased from the

healthy to the non-cancerous to the cancerous site. Furthermore,

the abundance of Streptococcus and Neisseria increased, while that

of Staphylococcus decreased. In contrast, Greathouse et al (Chen et

al., 2021). collected and sequenced pathological tissue samples of

cancerous sites and adjacent non-cancerous sites from patients with

lung cancer and tissue samples of normal lungs from patients who

did not have lung cancer, and the results showed that the a diversity

of normal lung flora was lower than that of tumor-adjacent or

tumor tissue. These discrepancies indicate that the study of the

relationship between lung microbiota and lung cancer is still in the

preliminary exploratory stage.

Therefore, this study aimed to analyze the LRT microbiome of

patients with Diffuse lung parenchymal lesions on lung imaging to
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search for microbial markers predictive of lung cancer risk and to

provide new approaches for the diagnosis and differential diagnosis

of lung cancer.
Materials and methods

Subjects

We retrospectively analyzed 158 patients who were hospitalized

in the First Affiliated Hospital of Guangzhou Medical University

from March 2021 to March 2023 and showed imaging

manifestations of diffuse parenchymal lung lesions. Of them, 21

were finally diagnosed with lung cancer, 93 with lung infection, and

44 with other conditions (except malignancy and infections). The

clinical characteristics of the patients and metagenomic sequencing

results of BALF were summarized and analyzed.

This study was registered with the Chinese Clinical Trial

Register (www.chictr.org.cn) under registration number ChiCTR-

CCC-12002950. All enrolled patients signed informed consent.

Figure 1 presents the study design and the full inclusion and

exclusion criteria.
Bronchoalveolar lavage fluid sampling
and processing

A routine clinical status assessment was performed before

bronchoalveolar lavage with strict control of indications and

contraindications. Briefly, surface anesthesia was performed using

nebulized inhaled lidocaine, followed by the injection of 1–2 ml 2%

lidocaine into the lavage lung segment through the biopsy hole for

local anesthesia. Then, 60 ml room-temperature sterilized saline

was rapidly injected through the operated orifices in divided

injections. Immediately thereafter, the BALF was collected by

suction under negative pressure (<100 mmHg), and the total

recovery rate was ≥30%. The collected BALF was divided into

two sterile sealed containers for pathogenetic and cytological

analysis, respectively (Society, C. R, 2017). Each sample was saved

in a 2-6°C cooler, and immediately transported to a -86°C ultra-

low-temperature refrigerator for storage until it was thawed

before sequencing.
Nucleic acid extraction and microbiota
profiling by metagenomic next-
generation sequencing

Nucleic acids were extracted from the BALF, and the DNA

library was prepared using the PathoLib™ Genomic Library

Construction Kit from Willingmed Technology (Beijing Co., Ltd).

The concentrations of nucleic acid, library, and fragment length

were measured simultaneously. The library was diluted to the

appropriate concentration for sequencing, denatured by adding

NaOH to a final concentration of 0.1 nM, mixed with Illumina

HT1 solution, and then sequenced on an Illumina NextSeq 550
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System (Eisenstein, 2015). Negative controls, positive controls, and

internal controls were set up during the aforementioned steps. All

reagents were provided by Willingmed Technology (Beijing

Co., Ltd).
Relative quantitative polymerase
chain reaction

Relative quantitative PCR assay using the SYBR method.

Amplification/oligonucleotide primer pairs were designed for

Lactobacillus acidophilus based on the characteristics in the

nucleotide sequences of the 16S-23S rRNA spacer regions (Forward

primer 5’-TCTAAGGAAGCGAAGGAT-3’, Reverse primer 5’-

CTCTTCTCGGTCGCTCTA-3’) (Tilsala-Timisjärvi and Alatossava,

1997). 18sRNA was used as an internal reference gene (Forward

primer 5’-GCAATTATTCCCCATGAACG-3’, Reverse primer 5’-

GGCCTCACTAAACCATCC-3’). PCR reaction conditions: 95°C for

1 minute; 95°C for 20 seconds, 56°C for 1 minute, for a total of 40

cycles. DNA levels were calculated using the 2-DDCT method.
Bioinformatics analysis

FastQC v0.12.1 (de Sena Brandine and Smith, 2021) was used for

quality assessment, and fastp v0.23.4 for quality control of sequencing
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data. Trimmomatic (Bolger et al., 2014) was used to remove primers,

connectors, and low-quality sequences. Host sequences were removed

using Kneaddata v0.12.0 (http://huttenhower.sph.harvard.edu/

kneaddata) and Bowtie2 v2.5.1 (Langmead and Salzberg, 2012),

and the resultant non-host sequences underwent downstream

analysis. MetaPhlAn2 (Truong et al., 2015) was used to analyze

the composition of the microbiome community and HUMAnN 2

(http://www.huttenhower.org/humann2) to obtain the species

abundance and metabolic pathway function information of the

microbiome. The above analysis was performed using the

EasyMetagenome pipeline (https://github.com/YongxinLiu/

EasyMetagenome). The cooccurrence network of the microbiota

was generated using Cytoscape v3.7.0 and visualized in a circular

layout (Sam Ma et al., 2015).
Statistical analyses

Data were shown as the mean (standard deviation) or the

median (interquartile range) for continuous variables and number

(%) for categorical variables. Continuous variables were compared

between groups by the one-way ANOVA or Kruskal–Wallis test,

and categorical variables were analyzed using the Pearson Chi-

square test or Fisher exact test. A two-sided P value< 0.05 was

considered statistically significant. Statistical analyses were

performed using SPSS Version 22 (IBM, Corp., Armonk, NY,
FIGURE 1

Full inclusion and exclusion criteria, and study design.
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USA) statistical software. Box plots were drawn using GraphPad

Prism v9.5 (GraphPad Software, Inc., La Jolla, CA, USA). Principal

co-ordinates analysis (PCoA) Plot-Adonis were drawn for the three

groups using the Bray-Curtis distance. MedCalc Statistical Software

v19.0.4(MedCalc Software bvba, Ostend, Belgium; https://

www.medcalc.org; 2019) was used to analyze and compare the

receiver operating characteristic (ROC) curves. A microbiome

cooccurrence network was established using SparCC (Sparse

Correlations for Compositional data) (von Mering et al., 2012)

and visualized using Cytoscape software (v3.9.0, National Institute

of General Medical Sciences, Bethesda, MD, USA) (Shannon

et al., 2003).
Results

Characteristics of the study participants

The study cohort comprised 158 patients (average age 62.76

years; 98 males and 60 females). The final diagnoses included 21

cases of lung cancer, 93 cases of lung infection, and 44 cases where

the diagnosis was neither malignancy nor infection (others). Of the

21 patients with lung cancer, 16 had adenocarcinomas, 4 had

squamous cell carcinomas, and 1 had small cell carcinoma. The

clinical staging of these patients was as follows: 5 patients at stage I,

8 patients at stage II, 7 patients at stage III, and 1 patient at stage IV.

Body mass index (BMI) was significantly lower in patients with lung

cancer compared with patients with lung infection and other

diagnoses, and peripheral blood leukocyte counts, and neutrophil

percentages were significantly higher in patients with lung infection

compared with the other two groups. The characteristics of the

study participants and all P values are presented in Tables 1 and 2.
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Metagenomic sequencing of BALF from the 158 patients

yielded 310,149,065 sequences, of which 287,595,289 (92.73%)

were classified. The average number of sequences per sample was

1,962,968, including 82.13% human, 3.9% microbial, 4.7% low

quality, 2.0% duplicates, and 7.27% unclassified.
The component ratio of LRT microbiota
taxa in patients with lung cancer is
imbalanced and tends to be homogeneous

Taxonomic analyses of relative abundance were conducted at the

kingdom, phylum, genus, and species levels. At the kingdom level,

Bacteria were dominant in all study subjects. Eukaryota were present in

a smaller proportion in the lung infection and the others groups, but

almost absent in the lung cancer group (Figure 2A). At the phylum

level, Firmicutes, Actinobacteria, Fusobacteria, Bacteroidetes, and

Proteobacteria were present in high abundance in all subjects

(Figure 2B). At the genus level, the lung cancer group was

dominated by Lactobacillus and Streptococcus (both belonging to

Firmicutes), while the abundance of all other genera was lower. In

the lung infection group, the genera with higher abundance were

Lactobacillus, Streptococcus, Corynebacterium, Pseudomonas,

Staphylococcus, Veillonella, Neisseria, Acinetobacter, and Klebsiella. In

the others group, Actinomyces, Prevotella, Fusobacterium, Leptotrichia,

Corynebacterium, and Rothia were in high abundance, and the

proportion of each genus was relatively balanced (Figure 2C). At the

species level, the lung cancer group was dominated by Lactobacillus

acidophilus and Streptococcus mitis. In the lung infection group,

common pathogenic bacteria included Pseudomonas aeruginosa, S.

oralis, Acinetobacter baumannii, Staphylococcus aureus ,

Corynebacterium accolens, Enterococcus faecium, Candida albicans,
TABLE 1 Clinical characteristics of patients.

Variables Lung cancer N=21 Lung infection N=93 Others N=44 P value

Demographic characteristics

Age, year 62.95±6.91 62.69±12.36 62.64±7.22 0.862a

Sex ,M/F 13/8(61.9/38.1) 56/37(60.2/39.8) 29/15(65.9/34.1) 0.814c

BMI, kg/m2 19.83±1.41 21.82±1.51 22.67±1.82 <0.001b

Smoking status,% 11(52.38) 32(34.41) 15(34.09) 0.278c

Peripheral Blood

WBCs,109/L 6.72±1.97 10.26±4.60 6.98±3.11 <0.001a

Neu,% 57.76±9.59 74.81±13.08 60.83±10.41 <0.001a

Lym,% 35.16±10.07 23.01±13.05 31.96±10.49 <0.001a

NLR 1.61(1.26,2.28) 3.67(1.97,6.49) 1.88(1.29,2.58) <0.001a

Histology AC/SCC/SCLC 16/4/1

Stage I/II/III/IV 5/8/7/1
aP values were obtained by the Kruskal-Wallis test.
bP values were obtained by the One-way ANOVA test.
cP values were obtained by the Pearson Chi-Square test.
BMI, body mass index; WBC, White blood cells; Neu, Neutrophils; Lym, Lymphocytes; NLR, The ratio of neutrophil count to lymphocyte count; AC, Adenocarcinoma; SCC, Squamous cell
carcinoma; SCLC, Small cell carcinoma.
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and S. salivarius. In contrast, the composition of microbial species in

the others group maintained its genus-level characteristics and was

more balanced, with a relatively high proportion of F. nucleatum

(Figure 2D). Thus, the component ratio of LRT microbiota taxa in

patients with lung cancer was imbalanced and tended to be

homogeneous. Table 3 shows the relative abundance of microbial

taxa. Heat maps (Supplementary Figure 1) were presented to

demonstrate the microbiome composition of each sample.
The LRT microbiome of patients with lung
cancer shows a decreased number of
species and diminished microbial diversity

We identified 341 types of bacteria at the species level (lung

cancer group, 162; lung infection group, 318; and others group,

173). Of them, 168 (49.27%) distinct species were identified in the

lung infection group, 3 (0.88%) in the others group, and none in the

lung cancer group (Figure 3A).

Next, we compared the diversity across different groups of BALF

microbiomes. Alpha diversity was lower in the lung cancer group and

lung infection group at the genus level (Shannon, Simpson, Choa1, and

richness index: all P< 0.001; Figures 3B–E), detailed data are presented

in Table 4. The results of Principal co-ordinates analysis (PCoA)

showed significant differences in the composition of the bacterial

flora among the three groups (Figure 3F). These findings indicated a

decreased number of species and diminished microbial diversity in the

LRT microbiome of patients with lung cancer.
Microbial biomarkers are enriched in the
LRT of patients with lung cancer

We searched for LRT microbial markers in patients with lung

cancer by analyzing differences among all phyla, genera, and species

in terms of relative abundance using the linear discriminate analysis
Frontiers in Cellular and Infection Microbiology 05
effect size (LEfSe). The results showed that specific taxa were

enriched in each group (Figures 4A–C). Firmicutes, Lactobacillus,

and L. acidophilus were significantly enriched in the lung cancer

group. In the lung infection group, P. aeruginosa, C. striatum, S.

oralis, S.epidermidis, C. albicans, E. faecium, and other common

pathogenic bacteria were significantly enriched. In the others group,

Actinomyces, Prevotella, Fusobacterium, Leptotrichia, Rothia, and so

on were significantly enriched.

The results of the relative quantitative PCR assay showed that

the relative DNA levels of L.acidophilus in the BALF of patients with

lung cancer were significantly higher than those in the other two

groups, as shown in Figure 5A. The DNA levels of each group and

the p-values for two-by-two comparisons are shown in Table 5. This

indicates the enrichment of microbial biomarkers in the LRT of

patients with lung cancer. Table 3 shows the exact values of the

abundance of microbial biomarkers.
A combined analysis of the relative
abundance of L. acidophilus in BALF and
BMI provided a better prediction of lung
cancer risk

Our dataset was used to establish a diagnostic model for

predicting lung cancer risk. The abundance of L. acidophilus in

BALF and BMI were used as candidate indices for lung cancer risk

prediction and were included in multivariate logistic regression

analyses to establish prediction equations (P< 0.05, respectively;

Figure 5B). Table 6 presents detailed information on the equations.

P =
1

1 + e−ð19:25 − 1:118 � BMI + 0:074 � L :   acidophilus %Þ

The predictive performance of the model was evaluated according

to the area under the curve (AUC). The ROC value was 0.845 (P<

0.001) for BMI and 0.914 (P< 0.001) for L. acidophilus %. The

combination of the two indices showed a higher ROC value than

each one alone (AUC = 0.965, accuracy = 93.04%, sensitivity = 95.24%,

and specificity = 92.70%; P< 0.001; Figure 5C). We also found a

statistically significant difference in AUC between L. acidophilus % or

BMI alone compared with their combination (P< 0.001, respectively).

Table 7 shows the ROC values.

We used data on the BMI and L. acidophilus% in BALF of three

typical cases showing Diffuse lung parenchymal lesions on CT

imaging who had final diagnoses of lung cancer (Figure 6A), lung

infection (Figure 6B), and congenital lung malformation

(Figure 6C) and input these into the above prediction equation.

The results showed that the probability of lung cancer in these three

patients was 98.61%, 0.10%, and 0.09%, respectively.
The microbial interactions in the LRT of
patients with lung cancer or lung
infections are weakened

To explore potential microbiome coexistence and coexclusion

relationships, we performed a co-occurrence network analysis. We
TABLE 2 P value table for pairwise comparison of the indexes with
statistically significant differences in the three groups.

indexes Others vs.
Lung cancer

Others vs.
Lung
infection

Lung cancer
vs.
Lung
infection

BMI <0.001 0.012 <0.001

WBCs, 1.000 0.001 <0.001

Neu 1.000 <0.001 <0.001

Lym 1.000 <0.001 <0.001

NLR 1.000 <0.001 <0.001

Richness <0.001 <0.001 0.003

Shannon <0.001 <0.001 0.002

Simpson <0.001 <0.001 0.001

Chao1 <0.001 <0.001 0.026
P values have been adjusted by the Bonferroni for multiple tests.
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selected the top 15 most abundant genera in each group and used

them to build and estimate a network based on the relative

abundances of microbiome genera using SparCC (Sparse

Correlations for Compositional data) with an r threshold = 0.7

and a p threshold = 0.01. The degree of connectivity between genera

was weaker in the lung cancer group. Lactobacillus, the most

abundant genus, had few connections with other genera, while

Streptococcus, the second most abundant genus, had connections

with the other eight genera (Figure 7A). The degree of connectivity

between genera was also weaker in the lung infection group, with

Neisseria showing more connections to other genera. (Figure 7B).

The genera showed a strong degree of connectivity in the others

group, with Prevotella being mutually exclusive with the other six

genera (Figure 7C). This indicated the weakened interaction

between microbes in the LRT of patients with lung cancer or lung
Frontiers in Cellular and Infection Microbiology 06
infections. The numbers presented in Tables 8–10 represent the

correlation coefficient using SparCC for the top 15 genera in BALF

across the three groups.
Discussion

Lung cancer is a common tumor worldwide, and respiratory

microorganisms play an important role in lung cancer development.

However, there are limitations to the current diagnostic and differential

diagnostic tools for lung cancer (Chinese Anti-Cancer Association

et al., 2021). We analyzed the clinical characteristics and the LRT

microbiome of patients with manifestations of Diffuse lung

parenchymal lesions on imaging. The microbial diversity was

significantly diminished, and the relative abundance of L. acidophilus
B

C D

A

FIGURE 2

Taxonomic profiles of the LRT microbiota in patients with lung cancer, lung infection, and others. (A) Kingdom-level taxonomic profiles. (B) Phylum-
level taxonomic profiles. (C) Genus-level taxonomic profiles. (D) Species-level taxonomic profiles. Each vertical bar represents a unique group. The
y-axis shows the relative abundance of each taxon. Only the most common taxa are shown. These bar plots were performed on the Tutools
platform (https://www.cloudtutu.com), a free online data analysis website. .
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was significantly increased in the LRT of patients with lung cancer.

Collectively, our findings suggest that the BMI combined with the

relative abundance of L. acidophilus in the BALF is a good predictor of

lung cancer risk.

We analyzed the microbiome of BALF by metagenomic

sequencing. The diversity of the LRT microbiota of patients with

lung cancer was diminished. A large-scale LRT microbiome study

conducted by Yu et al (Yu et al., 2016). also reported that the

microbiota richness was significantly lower in patients with lung

cancer, with a gradual decrease in diversity from healthy to non-

cancerous to cancerous sites. Hosgood et al (Hosgood et al., 2021).

sequenced mouthwash samples of patients with lung cancer and

controls, revealing that those with a lower microbiota alpha

diversity had a significantly increased risk of lung cancer.

The development of high-throughput sequencing technologies

has led to an increasing number of studies reporting diverse

microbial flora in the lungs, as well as significant differences
TABLE 3 The microbial taxonomic identification in BALF
(Relative abundance).

Microbial taxa Lung
cancer

Lung
infection

Others

Kingdom

Bacteria 99.43±2.57 97.81±11.02 98.08±2.08

Eukaryota 0.20±0.88 2.19±11.02 1.28±1.52

Archaea 0.55±2.45 0.01±0.04 0.85±1.62

Phylum

Firmicutes 81.25±14.56 55.65±36.17 14.21±13.44

Actinobacteria 6.92±6.22 14.13±21.75 33.85±8.68

Proteobacteria 3.51±3.84 21.93±35.30 7.88±5.25

Bacteroidetes 6.59±8.35 0.83±2.92 22.19±9.70

Fusobacteria 1.02±2.43 1.85±9.99 16.77±8.40

Ascomycota 0 2.1±11.01 0

Candidatus 0.16±0.36 1.09±4.78 0.74±0.81

Basidiomycota 0.2±0.88 0.09±0.61 1.28±1.52

Synergistetes 0.01±0.02 0.01±0.03 1.50±1.89

Euryarchaeota 0.55±2.45 0.01±0.04 0.85±1.62

Spirochaetes 0.01±0.02 0 1.03±1.70

Genus (Top 20)

Lactobacillus 57.55±27.11 11.66±21.35 3.20±11.78

Corynebacterium 0.96±1.93 6.62±18.87 4.43±3.28

Actinomyces 2.18±2.88 0.87±2.88 8.72±4.12

Prevotella 1.10±2.09 0.47±1.68 9.68±5.77

Leptotrichia 0.54±1.67 0.38±0.96 8.83±4.61

Fusobacterium 0.21±0.91 1.45±9.94 6.79±4.92

Pseudomonas 0 7.97±24.39 0

Neisseria 0.65±1.57 3.94±12.98 3.10±3.06

Staphylococcus 0.01±0.02 7.59±21.70 0.09±0.13

Rothia 0.57±1.19 2.87±6.10 3.66±3.96

Veillonella 0.36±0.68 4.54±10.78 1.99±2.62

Tannerella 2.59±6.06 0.06±0.23 3.84±3.24

unclassified 2.32±3.03 1.54±5.31 2.55±2.64

Lancefieldella 0.59±1.24 0.83±2.54 3.15±2.21

Acinetobacter 0 3.98±16.72 0

Peptostreptococcus 0.20±0.46 1.89±4.99 0.76±1.07

Enterococcus 0 2.15±10.87 0

Candida 0 2.07±11.01 0

Species (Top 30)

Lactobacillus. acidophilus 57.55±27.11 11.42±21.40 3.20±11.78

(Continued)
TABLE 3 Continued

Microbial taxa Lung
cancer

Lung
infection

Others

Species (Top 30)

Pseudomonas. aeruginosa 0 7.97±24.39 0

Fusobacterium. nucleatum 0.18±0.79 1.13±9.90 5.92±4.97

unclassified 2.66±3.42 0.51±3.64 3.42±3.02

Neisseria. subflava 0.53±1.51 3.13±12.59 1.72±1.92

Rothia. mucilaginosa 0.32±0.82 2.77±6.09 2.15±3.23

Corynebacterium. striatum 0 4.18±17.01 0

Lancefieldella. parvula 0.58±1.23 1.23±3.12 2.24±1.69

Streptococcus. oralis 0.64±2.07 3.24±12.21 0.15±0.35

Acinetobacter. baumannii 0 3.98±16.72 0

Veillonella. parvula 0.09±0.26 2.77±9.67 1.01±1.29

Staphylococcus. aureus 0 3.85±16.49 0

Tannerella_Sp_oral_taxon_808 1.31±2.81 0 2.27±2.50

Corynebacterium. accolens 0.54±1.45 1.19±5.74 1.77±2.84

Streptococcus_sp_A12 0.08±0.27 2.01±6.93 0.43±1.10

Staphylococcus. epidermidis 0.01±0.02 2.35±11.82 0.09±0.13

Scardovia. wiggsiae 0.11±0.35 0.86±6.27 1.37±0.99

Enterococcus. faecium 0 2.12±10.87 0

Peptostreptococcus. SGB749 0.16±0.45 1.22±3.10 0.55±0.94

Candida. albicans 0 1.84±10.87 0

Veillonella. rogosae 0.02±0.02 0.99±3.70 0.82±1.81

Streptococcus. salivarius 0.30±0.92 1.38±7.89 0.11±0.19

Streptococcus. parasanguinis 0.02±0.03 1.33±4.97 0.26±0.90

Corynebacterium. propinquum 0 1.00±5.17 0.58±1.18
Only species that were statistically different among the three groups are shown for clarity.
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between physiological and pathological states (Baranova et al.,

2022). Although the lung microbiota is constantly updated and

replaced, most microbes belong to Bacteroidetes, Firmicutes,

Proteobacteria, and Actinobacteria. The main genera found in the

lungs of healthy people include Prevotella, Veillonella, Streptococcus,

Neisseria, Haemophilus, and Fusobacterium (Kovaleva et al., 2019).

Our study revealed changes in the LRT bacterial flora of patients
Frontiers in Cellular and Infection Microbiology 08
with lung cancer, showing a significant enrichment of Lactobacillus

(which belongs to Firmicutes). These findings are consistent with

Hosgood et al (Hosgood et al., 2021), who reported that an

association between a higher abundance of Lactobacillus and

increased lung cancer risk. These studies have established robust

associations between lung cancer and specific microorganisms, such

as Haemophilus influenza, Acidovorax, Klebsiella, Moraxella
B C

DEF

A

FIGURE 3

The diversity of the LRT microbiome in patients with lung cancer has changed. (A) Venn diagram of the three groups. (B) Shannon index, (C)
Simpson index, (D) Choa1 index, and (E) Richness index of the LRT microbiome in the three groups. The Kruskal-Wallis test was used, and all P
values were less than 0.05. Graphpad Pism9.5 software was used for plotting. (F) Principal co-ordinates analysis (PCoA) Plot-Adonis based on Bray-
Curtis distance for samples in three groups at the genus level. *P<0.05,**P<0.01 ***P<0.001. ****P<0.0001.
TABLE 4 The microbiome a diversity indexes in BALF at the genus level.

indexes Lung cancer Lung infection Others P value

Richness 19.00(16.00,32.00) 7.00(3.00,17.00) 71.50(65.25,75.75) <0.001

Shannon 2.87(2.62,3.21) 1.86(1.10,2.65) 3.84(3.78,3.87) <0.001

Simpson 0.94(0.91,0.95) 0.83(0.67,0.91) 0.97(0.96,0.97) <0.001

Chao1 43.60(29.10,62.07) 17.75 (5.50,45.00) 79.35(74.42,83.18) <0.001
P values were obtained by the Kruskal-Wallis test.
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catarrhalis, Mycobacterium tuberculosis, and Granulicatella

adiacens (Chen et al., 2021).

In contrast, Lee et al (Lee et al., 2016). analyzed BALF from 20

patients with lung cancer and showed that compared with healthy

people, the relative abundance of two phyla (Firmicutes and

Saccharibacteria) and two genera (Veillonella and Megasphaera)

was higher in patients with lung cancer. Furthermore, Liu et al (Liu

et al., 2018). reported a significant increase in the relative

abundance of Streptococcus in BALF of patients with lung cancer.

In summary, these studies suggest that the LRT microbiota

undergoes dynamic changes during lung cancer development and

that microecological imbalance occurs in patients with lung cancer.

Our findings suggest the BMI combined with the relative

abundance of L. acidophilus in the BALF may be a good predictor of
Frontiers in Cellular and Infection Microbiology 09
lung cancer risk. A lower BMI was associated with a higher risk of lung

cancer, which is consistent with studies by Smith et al (Smith et al.,

2012). and Yu et al (Yu et al., 2018). L. acidophilus is a

homofermentative, microaerobic, short-chain Gram-positive

bacterium (Anjum et al., 2014). It maintains thermal stability and

activity over a wide pH range and is a strong inhibitor of food spoilage

and pathogenic bacteria, making it an important class of biological

preservatives (Vemuri et al., 2018). L. acidophilus is generally

considered a probiotic in the medical field, and its

immunomodulatory ability has been demonstrated in vitro (Vemuri

et al., 2018). Furthermore, it modulates microbiota and reduces

inflammation levels in clinical models (Martoni et al., 2020). In

terms of disease treatment, L. acidophilus significantly improves the

abdominal pain and symptom severity scores of adult patients with
B

C

A

FIGURE 4

Microbial biomarkers enriched in the LRT of patients with lung cancer. Linear discriminant analysis effect size (LEfSe) revealed different microbiome
taxa among all phyla (A), genera (B), and species(C) in each group (taxa with LDA score > 4). The LEfSe was performed on the Tutools platform
(https://www.cloudtutu.com), a free online data analysis website.
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irritable bowel syndrome and normalizes bowel habits accordingly

(Paul et al., 2021). Furthermore, patients with rheumatoid arthritis

showed improved symptoms after consuming L. acidophilus

preparations (Yang et al., 2020). The protective and regulatory effects
Frontiers in Cellular and Infection Microbiology 10
of L. acidophilus were also reflected in a 30% reduction in lung cancer

risk that was associated with the high consumption of yogurt,

indicating its potential protective role in lung cancer development.

Simultaneous administration of L. acidophilus and cisplatin reduces
B CA

FIGURE 5

(A) The relative DNA levels of L. acidophilus in the BALF of patients with lung cancer were significantly higher than that of the other two groups.
P values were obtained by Dunn's multiple comparisons test. Graphpad Pism9.5 software was used for plotting. *P<0.05, ****P<0.0001. (B) The
abundance of L. acidophilus in BALF and BMI were used as candidate indices for lung cancer risk prediction. Multivariate logistic regression analyses
to establish prediction equation. (C) The predictive performance of the model was evaluated by the receiver operating characteristic (ROC) curve.
The combination of the two indices showed a higher ROC value than each alone(Figure 4E). MedCalc 20.1.4 was utilized to analyze and compare
the ROC curves.
TABLE 5 The relative DNA level of L.acidophilus amplified by qPCR in BALF.

indexes
Lung
cancer

Lung
infection

Others

P value

lung cancer
vs. infection

lung cancer
vs. others

infection
vs. others

relative
DNA level

5.75±2.71 0.98±1.81 0.32±1.18 <0.001 <0.001 0.039
P values were obtained by Dunn's multiple comparisons test.
TABLE 7 The diagnostic value of BMI, L. acidophilus% and their combination in predicting the risk of lung cancer.

Variable
Associated
criterion AUC

95% CI
Accuracy Sensitivity Specificity

P
valueLower Upper

BMI ≤20.55 0.845 0.779 0.897 77.85 76.19 78.10 <0.001

L. acidophilus% >17.89 0.914 0.859 0.953 86.71 90.48 86.13 <0.001

Combination >0.12 0.965 0.923 0.988 93.04 95.24 92.70 <0.001

BMI vs L.acidophilus % 0.209

Combination vs BMI 0.002

Combination vs L.acidophilus % 0.035
fron
TABLE 6 The result of multivariate logistic regression analysis.

Variable B S.E. Wald P value OR
95% CI

Lower Upper

BMI -1.118 0.316 12.511 <0.001 0.327 0.176 0.607

L. acidophilus% 0.074 0.015 24.552 <0.001 1.077 1.046 1.108

Constant 19.253 6.203 9.614 0.002
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lung tumor size, improves survival rate, and regulates the antigrowth

and proapoptotic effects of cisplatin (Gui et al., 2015). In conclusion, L.

acidophilus plays a protective or ameliorating role in the occurrence

and development of many diseases, including lung cancer. Our study

revealed the significant enrichment of probiotics in the LRT of patients

with lung cancer. This may be due to carcinogenesis and subsequent

alteration of the lung microenvironment, thereby paradoxically

promoting the proliferation of probiotics to exert anticancer effects.

Needless to say, this speculation requires further verification. The

mechanisms of microbiota involvement in cancer occurrence and

progression remain unclear. Studies have shown that changes in the

LRT microbiota may contribute to the occurrence or progression of
Frontiers in Cellular and Infection Microbiology 11
lung cancer through mechanisms such as the inflammatory response,

immune response, and metabolic product regulation (Francescone

et al., 2014; Gur et al., 2015; O'Keefe et al., 2015).

Our study has several limitations. Firstly, the sample size was

relatively small, there was no control group of healthy individuals

and a larger validated cohort, and the majority of study participants

resided in the same geographic area, which limits the

generalizability of our findings. Secondly, it is regrettable that well

did not extract RNA from the BALF samples for sequencing, which

prevented further analysis of the functional differences of these

bacteria in the human body. The role of the LRT microbiota in lung

cancer tumorigenesis is largely unknown, and further study is
B CA

FIGURE 6

Three typical cases presenting with diffuse lung parenchymal lesions on lung imaging are shown. Case 1 (A): A female patient, 32 years old, with a
diffuse parenchymal lesion in the middle lobe of the right lung, in which bronchiectasis with enlarged mediastinal hilar lymph nodes and pleural
effusion on the right side was seen, was finally diagnosed with adenocarcinoma of the right lung; Case 2 (B): A male patient, 53 years old, with a
diffuse parenchymal lesion in the upper lobe of the right lung, with uneven internal density, visible multiple cystic translucent areas, and multiple
small patchy shadows in both lungs, accompanied by pleural effusion on the right side of the chest, was finally diagnosed as a lung infection caused
by Klebsiella. Pneumonia; Case 3 (C): A male patient, 52 years old, with diffuse parenchymal lesions in the lower lobe of the right lung, and multiple
cystic translucent areas of varying sizes with peripheral striated shadows, was finally diagnosed with congenital airway malformation.
B CA

FIGURE 7

The LRT microbiome interactions with each other in different groups. BALF microbiome networks in lung cancer (A), lung infection(B), and others
(C). The networks of the top 15 genera were built by SparCC (Sparse Correlations for Compositional data) for different diseases. Each node
represents a genus. The size of the nodes represents the relative abundance of the genus. Each edge represents a significant correlation between
pairs of nodes (P<0.05). The width of the edge is proportional to the absolute correlation coefficient. Edges were colored based on co-existence
(red) or co-exclusion (blue) relationship. The network was drawn using Cytoscape software.
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TABLE 8 The correlation coefficient by SparCC of the top 15 genera in BALF for the lung cancer group.

Methanobrevibacter Neisseria Prevotella Rothia Streptococcus Tannerella

1

-0.072 1

0.024 -0.082 1

-0.121 -0.112 0.147 1

0.041 0.202 -0.164 -0.069 1

0.011 0.039 0.351 0.138 -0.265 1

a

Enterococcus Candida Peptostreptococcus Dolosigranulum Mycoplasma

1.000

0.023 1.000

-0.062 -0.107 1.000

-0.037 -0.032 0.105 1.000

0.051 0.111 -0.085 -0.018 1.000
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Variable Actinomyces Campylobacter Capnocytophaga

Actinomyces 1

Campylobacter 0.116 1

Capnocytophaga 0.013 -0.141 1

Corynebacterium -0.088 -0.174 -0.028

Gemella -0.068 -0.042 -0.032

GGB1202 -0.221 0.186 -0.151

Isoptericola 0.241 -0.023 -0.019

Lachnoanaerobaculum -0.057 0.109 -0.061

Lactobacillus 0.019 0.352 0.016

Methanobrevibacter -0.163 -0.015 0.078

Neisseria 0.023 0.082 0.118

Prevotella 0.211 -0.157 -0.134

Rothia -0.025 -0.088 -0.061

Streptococcus -0.146 0.016 0.205

Tannerella 0.407 -0.086 0.036

TABLE 9 The correlation coefficient by SparCC of the top 15 gener

Variable Streptococcus Lactobacillus Pseudomonas

Streptococcus 1.000

Lactobacillus 0.130 1.000

Pseudomonas -0.085 -0.119 1.000

Staphylococcus 0.044 -0.029 -0.042

Corynebacterium -0.088 -0.035 0.074

Veillonella 0.352 0.065 -0.043

Acinetobacter -0.034 -0.038 0.121

Neisseria 0.146 0.132 -0.023

Rothia 0.364 0.004 -0.058

Klebsiella 0.002 -0.187 0.158

Enterococcus -0.094 -0.017 0.005

Candida -0.060 0.082 0.028

Peptostreptococcus 0.313 0.068 -0.056

Dolosigranulum 0.022 -0.021 0.029

Mycoplasma -0.049 -0.111 0.042
orynebacterium Gemella GGB1202 Isoptericola Lachnoanaerobaculum Lactobacillus

.316 1

.084 0.049 1

0.165 -0.025 -0.078 1

.043 0.147 -0.014 -0.165 1

0.106 -0.153 0.028 0.031 0.107 1

0.113 0.062 0.041 -0.023 0.000 0.091

0.162 -0.036 -0.062 -0.098 0.092 -0.06

.054 -0.071 -0.062 0.205 -0.012 0.003

.026 0.128 -0.015 0.107 -0.077 -0.108

.239 0.289 0.105 -0.188 0.028 -0.552

0.029 -0.13 -0.067 0.268 -0.01 0.074

n BALF for the lung infection group.

Staphylococcus Corynebacterium Veillonella Acinetobacter Neisseria Rothia Klebsiella

1.000

0.033 1.000

-0.068 -0.030 1.000

0.010 0.083 -0.056 1.000

-0.040 -0.067 0.138 -0.067 1.000

-0.002 -0.058 0.193 -0.037 0.076 1.000

0.020 -0.011 -0.029 0.023 -0.062 0.055 1.000

0.149 0.138 -0.076 0.038 -0.069 -0.036 0.041

0.045 0.010 -0.019 0.049 -0.093 -0.088 -0.042

-0.084 -0.007 0.271 -0.037 0.162 0.253 -0.103

-0.024 0.282 0.059 -0.037 -0.088 -0.009 -0.016

0.039 -0.027 0.005 0.022 -0.069 -0.053 0.042
C

1

0

0

-
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TABLE 10 The correlation coefficient by SparCC of the top 15 genera in BALF for the others group.

cillus Lancefieldella Leptotrichia Neisseria Olsenella Phocaeicola Prevotella Rothia Streptococcus Tannerella Treponema Veillonella

1

0.273 1

-0.098 0.164 1

0.093 0.246 -0.044 1

0.128 0.036 0.032 -0.139 1

-0.003 -0.002 0.095 -0.125 0.097 1

0.008 0.132 0.044 0.189 -0.079 -0.463 1

-0.228 0.038 -0.044 0.013 -0.189 -0.121 0.076 1

-0.103 -0.121 0.192 0.018 0.031 0.076 -0.115 0.035 1

0.048 -0.107 0.013 -0.021 0.116 -0.014 -0.118 0.041 -0.094 1

-0.098 0.093 -0.141 0.013 -0.124 -0.131 0.074 0.221 0.059 -0.071 1
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Variable Actinomyces Corynebacterium Fusobacterium Lactoba

Actinomyces 1

Corynebacterium -0.051 1

Fusobacterium 0.408 -0.105 1

Lactobacillus -0.159 0.236 -0.221 1

Lancefieldella 0.162 0.030 0.376 -0.143

Leptotrichia 0.407 -0.222 0.697 -0.171

Neisseria 0.111 0.003 0.018 -0.048

Olsenella 0.086 -0.083 0.285 -0.012

Phocaeicola -0.012 0.021 0.114 -0.041

Prevotella -0.304 -0.231 0.091 0.038

Rothia 0.047 -0.078 -0.016 0.019

Streptococcus 0.041 0.131 -0.074 0.356

Tannerella -0.043 -0.103 -0.054 0.132

Treponema 0.015 0.151 -0.066 0.05

Veillonella -0.135 0.025 0.093 0.341
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necessary. Third, we did not consider lung function in our study. It

was reported that the respiratory microbiome of patients with

chronic obstructive pulmonary disease differed from that of

healthy individuals (Wang et al., 2021), and this confounding

factor must be addressed in a follow-up study. Finally, our study

did not address daily dietary composition, which may induce

alterations in the lung microbiome through the gut–lung axis

(Marsland et al., 2015).
Conclusion

Our study revealed that in patients where lung imaging shows

diffuse parenchymal lesions, an imbalance in the component ratio

of the microbial community, diminished microbial diversity, and

the presence of specific microbial markers in the LRT microbiome

can predict lung cancer risk. Our findings provide novel approaches

to the diagnosis and differential diagnosis of lung cancer.
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