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Antibiotic resistance, a known global health challenge, involves the flow of

bacteria and their genes among animals, humans, and their surrounding

environment. It occurs when bacteria evolve and become less responsive to

the drugs designated to kill them, making infections harder to treat. Despite

several obstacles preventing the spread of genes and bacteria, pathogens

regularly acquire novel resistance factors from other species, which reduces

their ability to prevent and treat such bacterial infections. This issue requires

coordinated efforts in healthcare, research, and public awareness to address its

impact on human health worldwide. This review outlines how recent advances in

gene editing technology, especially CRISPR/Cas9, unveil a breakthrough in

combating antibiotic resistance. Our focus will remain on the relationship

between CRISPR/cas9 and its impact on antibiotic resistance and its related

infections. Moreover, the prospects of this new advanced research and the

challenges of adopting these technologies against infections will be outlined

by exploring its different derivatives and discussing their advantages and

limitations over others, thereby providing a corresponding reference for the

control and prevention of the spread of antibiotic resistance.
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Introduction

The development of innovative gene editing and targeting strategies to combat bacterial

infections has been a top priority for researchers ever since the first antibiotics were discovered.

The tendency of pathogenic bacteria to develop antibiotic resistance has accelerated, and as a

result, the world has had to put in place significant barriers to address this problem. Antibiotic-

resistant bacteria were classified into 12 groups by the World Health Organization (WHO) in

2017. This categorization was based on their capacity to fend against infection. Among these, P.

aeruginosa, A. baumannii, and Enterobacter spp. have been recognized as the most important
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pathogens that were shown to oversee high death rates in hospitals

(Tacconelli et al., 2018). Two things that led to the emergence of such

resistant bacteria were the misuse and abuse of antibiotics (Reygaert,

2018). Additional factors included the mechanisms by which bacteria

develop resistance against antimicrobial drugs; examples of such

mechanisms include random gene mutation (Davies and Davies,

2010), horizontal gene transfer (HGT) (Sun et al., 2019) as a means

of transmitting resistance genes, changing the permeability or efflux of

the drug (Murray et al., 2015), and the capacity to form biofilm (Lewis,

2007). Because persister cells are present, communities of bacteria

responsible for long-term infections may develop an antibiotic

tolerance, which could lead to chronic infections without changing

the genetic composition of the bacterium. It is vital to create novel

methods for identifying, managing, and preventing superbug infections

due to the complex ways in which they spread. Numerous scientific

investigations have highlighted the detrimental characteristics of these

multidrug-resistant bacteria and several approaches to address them

(Fischbach, 2011; Buckner et al., 2018; Annunziato, 2019).

As of right now, a few therapeutic strategies have been

employed to address the resistance mechanisms displayed by

antibiotic-resistant bacteria. These strategies include developing

next-generation antibiotics, employment of efflux pump inhibitors

(EPIs) (Ghosh et al., 2019; Mulani et al., 2019; Gray and Wenzel,

2020)/quorum sensing inhibitors (QSIs) as well as the manufacture

of host defense peptides, which is a promising substitute for

conventional antibiotics. But all these traditional methods have

drawbacks (Alaoui Mdarhri et al., 2022), and a suitable solution to

this issue has yet to be created (Suh et al., 2022).
Confronting antibiotic resistance:
contemporary strategies and solutions

Antibacterial resistance or Multidrug resistance (MDR) is the

capacity of bacteria, when they become resistant to antibiotics

where they should be killed (Ahmad et al., 2017, 2023). These

types of bacteria are becoming more prevalent daily, but at the same

time, the understanding of biology and technology is expanding. To

survive under these different antibiotic settings, bacteria use

intrinsic or acquired mechanisms to get different resistance genes

(Blair et al., 2015). One of such resistance mechanisms is an

expression or generation of resistance genes against different

multiple targets, that significantly alter different growth

conditions (Whittle et al., 2021). Some good examples that bring

out DNA alteration or mutations in bacteria are mobile genetic

elements (MGEs), phages or plasmids (Schroeder et al., 2018). As

mentioned earlier also, MDR is divided into two main categories i.e.

genetic and phenotypic (Allemailem, 2024). The mutations or

alterations that occur in the bacterial DNA give rise to genetic

resistance. Moreover, this type of bacterial resistance is also seen

when the resistance genes exchange or enter between bacteria. On

the other hand, the phenotypic MDR causes alterations within the

bacteria but doesn’t bring out any change in its genetic makeup and

usually disappears within the individual bacterial cell (Balaban et al.,

2019; Allemailem, 2024).
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A full understanding or compression of the molecular foundations

of antibiotic resistance or MDRs is very important as it will help in the

discovery of innovative therapies or novel treatments for antibiotic-

resistant infectious diseases (Darby et al., 2023). Recent years have seen

major advancements in the science behind how antibiotics work and

how bacteria develop inhibitory resistance to their deadly and lethal

effects (Ahmad et al., 2018; Ahmad et al., 2023). The three pillars of

interrelated tactics that bacteria adopt to counteract antibiotics are

tolerance, resistance, and persistence (Allemailem, 2024). The

understanding of how the biochemical actions of different drugs or

pharmacological compounds like antibiotics work and how bacteria

pose resistance to them is still fully unknown but has advanced

significantly. Numerous studies have explained various acts of

resistance mechanisms that include the production of antibiotic

resistance-related genes, downregulation or alteration of porins to

reduce the entry or penetration of antibiotics through the bacterial

cell, modification of its cell wall components or target sites, the

inactivation of antibiotics and the hyperactivity of active efflux

pumps (Alav et al., 2021; Morgan et al., 2021; Allemailem, 2024).

Based on these above-mentioned mechanisms, several techniques have

been proposed that include phage therapy (Lin et al., 2017; Kortright

et al., 2019), drug-loaded nanoparticles (Rai et al., 2012; Makabenta

et al., 2021), photodynamic therapy, combinatorial therapy, drug

repurposing ( Rangel-Vega et al., 2015; Liu et al., 2021),

antimicrobial peptides (Hassan et al., 2012; Lima et al., 2021) or anti-

virulence compounds (Ménard et al., 2014).

Combinatorial therapy is the use of various pharmacological

combinations as opposed to a single medication to target multiple

areas and achieve a synergistic impact that kills the bacteria

(Tamma et al., 2012). Combinatorial therapy is required due to

the rapid emergence of antibiotic-resistant bacterial strains, as

monotherapy is no longer effective in treating most bacterial

infections, especially resistant ones. However, this technique

impacts the pharmacokinetics and pharmacodynamics of the

employed medications due to some incompatibility difficulties

between distinct drugs (Petrosillo et al., 2010; León-Buitimea

et al., 2020).

Apart from this, gene-blocking oligonucleotides and RNA

interference (RNAi) are the two examples of RNA-based

treatments used against AMR organisms. These methods take

advantage of the enzymatic targeting of bacterial mRNA by

oligonucleotides, which permits the removal of the genes that are

responsible for resistance (Kole et al., 2012). Methods based on

antisense RNA also seem to have provided a way to monitor the

genes involved in growth promotion and MDR. However, there are

certain toxicity problems and low intracellular absorption with

RNA-based therapies (Kole et al., 2012). In certain cases, phage

therapy has also shown promise in combating germs resistant to

antibiotics. Nevertheless, there are several difficulties, such as how

they interact with intracellular bacteria, encourage the formation of

neutralizing antibodies, and cause bacteria to become resistant to

phages (Doss et al., 2017). Monoclonal antibodies (mAbs) have also

been used to treat some bacterial resistance but some of the barriers

preventing their usage are bacterial target selection and degradation

through bacterial proteolytic enzymes (Pelfrene et al., 2019).
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The employment of gene editing tools, such as transcription

activator-like effector nucleases (TALENs) and zinc finger nucleases

(ZFNs), which may be utilized to precisely modify drug-resistant

bacteria’s DNA, has also contributed to the resolution of antibiotic

resistance problems. For their removal or cleavage, TALENs and

ZFNs are employed against the target DNA sequences (Zhang et al.,

2019; Li et al., 2020). The ZFN and TALEN tools have opened a new

avenue for contemporary gene editing tactics. Some significant

obstacles, including delivery difficulties, off-target consequences,

and complexity, have prevented these genome-editing techniques

from being widely successful.

Since its discovery, the CRISPR/Cas9 (Clustered Regularly

Interspaced Short Palindromic Repeats-Cas9) gene editing system,

which is currently regarded as the most inventive method, has been

applied quickly to the treatment of antibiotic resistance or MDR.

Since it is the quickest, least expensive, and most effective method of

genome editing, it is widely employed. Additionally, it is employed

in the improvement of genetic flaws, the eradication of major

infectious viruses (Kim and Lee, 2022; Redman et al., 2016), and

the removal of bacterial infections (Kang et al., 2017; Park et al.,

2017). Numerous scientific researches support the adoption of

CRISPR/Cas-based strategies to prevent the spread of MDR

(Uribe et al., 2021; Wu et al., 2021; Kim & Lee, 2022).
Unveiling CRISPR/Cas: a cutting-edge
gene editing marvel and its
intriguing contrasts with
alternative technologies

Initially found in both archaea and bacteria, CRISPR-Cas was

found to play a role in adaptive immunity (Ishino et al., 2018).

Bacteria and archaea can use this mechanism to identify and

eliminate viruses and plasmids that are entering their cells.

CRISPR-Cas has been altered for use in gene editing and genetic

engineering within the last ten years. CRISPR-Cas gene editing and

base editing are two crucial methods for precisely modifying an

organism’s DNA. These technological developments have made it

possible to correct genetic defects, increase crop yields, and create

cutting-edge biotech applications (Arora and Narula, 2017; Yao

et al., 2018; Wu et al., 2020). Scientists can now conduct research

and tests more efficiently because of technological improvements,

which speed up the production of results. In this review, we will

focus mainly on recent breakthroughs of CRISPR/cas9 and its

derived gene editing technologies like CRISPRi, CRISPRa and

CRISPR base editing in the context of antibiotic resistance. We

will uncover the limitations and advantages of CRSIPR-based gene

editing technology over other gene editing technologies and will

conclude with some new thoughts and ideas that could help in

making these technologies more efficient and precise to combat the

tendency of bacterial antibiotic resistance.

Talking about other gene editing/targeting approaches, CRISPR/

Cas-based techniques have become a widely adopted, promising

complement against conventional approaches to fighting against

antibiotic resistance with minimal harmful repercussions on humans
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or the environment. CRISPR-Cas genome editing was praised for its

simplicity, effectiveness, adaptability, and lack of requirement for any

markers for recognizing species of harmful bacteria as compared to

other DNA-based genetic engineering techniques (Rabaan et al., 2023).

Despite this, it can accurately target a particular sequence using just one

guide RNA (gRNA) and the protein that accompanies it (Cas). This

system usually acts as an adaptive immunity, shielding the body from

genetic material that is not native to the body (Tetsch, 2017). However,

its method of action is different for different resistant bacteria, which

use it as a transferable or integrative system for attacking antibiotic-

resistant genes (Wu et al., 2021).

Since it makes it possible to precisely and successfully identify

the genes causing bacterial drug resistance, the development of

CRISPR-based editing of genomes has had a profound effect on

medicine. Previous research showed that a novel gene that renders

bacteria extremely resistant to the last-resort group of antibiotics

was found and driven out from Escherichia coli utilizing the type II

CRISPR-Cas9 system (Sun et al., 2017). Moreover, other studies

have also reported the use of Six csm and cas6 genes in a CRISPR-

Cas-III-A system to target interference with crRNA processing in

Mycobacterium tuberculosis (Wei et al., 2019). The CRISPR-Cas-

III-A system was essentially created to cleave co-transcriptionally

active DNA, and target and identify RNA to create a potent defense

(Liu et al., 2018). Furthermore, the use of different CRISPR and its

related strategies, like CRISPR-Cas-II-A in Streptococcus agalactiae

(Lier et al., 2015) or a CRISPR-Cas12a strategy in conjunction with

enzymes to identify genes resistant to kanamycin, ampicillin, and

chloramphenicol, has confirmed genetic editing in a range of

antibiotic-resistant bacteria (Chen et al., 2023). Conventional

CRISPR-Cas-mediated gene editing is widely used, but it has

some limitations. These include the potential for genomic

instability due to inaccurate off-target and on-target editing,

which can be caused by the low GC content of sgRNA, the use of

protospacer adjacent motif (PAM-in) orientation, or the use of

inefficient delivery methods to remove AMR genes (Javaid and

Choi, 2021; Kundar and Gokarn, 2022).

Base-editing techniques are currently being employed to

address this problem by lowering the frequency of faults. With

this technique, we can alter DNA sequences in a variety of ways

without risking dsDNA cleavage. A modifying enzyme for precise

nucleotide modification and an ssDNA for programmable DNA

binding are the two main parts of base editors, that allow this

method to change bases properly. DNA base editors use fusion

proteins (nickase Cas9, dead Cas9, or dead Cas12a/b) fused to

ssDNA-specific nucleobase deaminases to increase the efficacy of

site-directed mutagenesis (Kantor et al., 2020; Rabaan et al., 2023).

Moreover, it is very important to understand that the two gene

editing methods that preceded the CRISPR/Cas 9 technology were

TALEN and ZFN respectively. However, these two technologies

have their different drawbacks as compared to CRISPR/Cas9. In the

case of TALEN and ZFN, the main limitation lies in their designing

that should be uniquely created to target each DNA target with the

custom proteins. Furthermore, this method is also time-consuming,

costly and labor-intensive as compared to CRISPR/Cas9 which

impedes researchers or scientists from using them. While off-

targeting is the limitation that comes with all gene editing
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technology, the additional complexities and intricacies of protein-

DNA binding make ZFNs and TALENs even more susceptible to

off-target cleavage. In the case of CRISPR/cas9 while off-target

effects are still possible significant progress has been made in

lowering off-target cleavage. Scientists and researchers are busy

improving the specificity-enhancing alterations and better guide

RNA designing to address this problem. Figure 1 is the visual

representation, depicting the causes of antibiotic resistance and the

role of CRISPR/Cas9 in combating it.

Furthermore, CRISPR-Cas is also known for its great versatility,

which can be achieved by effortless retargeting by modifying its

guide RNA sequence, hence facilitating efficient multiplexing and

concurrent editing of several different genes. On the other hand,

ZFNs and TALENs are less adaptable and might need a substantial

amount of reengineering for every new target as they are not as

flexible as CRISPR/Cas9. Because of these qualities, CRISPR-Cas is

a comparatively more dependable, durable, robust, and low-cost

gene editing technique. CRISPRi (CRISPR interference or

inhibition) and CRISPRa (CRISPR activation) are also considered

the two derivatives of CRISPR/cas9 technology but they are more

likely called as the handy tools that could manipulate the gene

function by activating it or by inhibiting it. Some researchers have

also shown the lead roles of CRISPRi in combating biofilm-based

antibiotic-resistant bacterial infections. They tried to knock down

the various genes that are either related to bacterial virulence or

with their mechanism of action that could lead to those biofilm

infections. The key genes they addressed were luxS (Zuberi et al.,

2017b), fimH (Zuberi et al., 2017a) and bolA (Azam et al., 2020).

They further showed the role of the OmpR/EnvZ pathway in

controlling such infections with the help of this technology

(Zuberi et al., 2022). Their work demonstrates the significant
Frontiers in Cellular and Infection Microbiology 04
merit worthy of commendation in the context of this technology

to combat such infections.
The revolutionary progress of CRISPR/
Cas9 against antibiotic resistance

Genome editing based on CRISPR/Cas9 is currently widely

regarded as a potentially next-generation method to tackle

infectious diseases, particularly the ones brought on by antibiotic-

resistant bacteria (Bikard and Barrangou, 2017; Duan et al., 2021).

CRISPR/Cas9 mediated genome editing may be applied as a gene-

based strategy as well as a pathogen-targeted strategy, depending on

the target gene’s location. The pathogen-based strategy depends on

focusing on a few bacterial chromosomal regions. By using this

technique, certain pathogenic strains are killed, and bacterial cells

are destroyed. Targeting the antibiotic resistance genes harbored by

different plasmids, however, is how the gene-focused approach is

continued. This strategy makes the bacterium more susceptible to

antibiotics (Allemailem, 2024). Pathogen-focused strategies can be

utilized to treat certain strains of interest in heterogeneous bacterial

pathogens in addition to specific infections; gene-focused strategies,

on the other hand, are unclear. Nonetheless, this method pertains to

the decrease in the prevalence of antibiotic resistance within the

microbial community as a means of treating bacterial illnesses

(Shabbir et al., 2019).

Unlike traditional antimicrobials, the CRISPR/Cas9 technology

uses precise and very specific sequence targeting to distinguish

between harmful and symbiotic organisms as already mentioned

earlier. This method has shown success in transforming antibiotic-

resistant strains of bacteria like Staphylococcus aureus and
FIGURE 1

The visual depiction illustrating the causes of antibiotic resistance and the effectiveness of CRISPR/Cas9 gene editing technology in addressing it.
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Escherichia coli with the help of a plasmid that encodes Cas9-driven

RNA (Shabbir et al., 2019). Using this strategy, the expression of the

antibiotic resistance gene was accurately reduced. However, since

the goal of this strategy is to reach MDR treatment, it is now in the

preclinical stage. Nevertheless, this genome-editing technology has

also been used in several clinical investigations as an antibacterial

medicine. Certain clinical isolates of S. aureus harboring gene

resistant to methicillin (mecA) when treated with Cas9 and

modified crRNA exhibited a roughly 50% reduction in sickness

(Aslam et al., 2020; Palacios Araya et al., 2021). Parallel to this, a

different study showed this gene editing method also targets the

gene responsible for erythromycin resistance (ermB) that eventually

reduces the growth of intestinal E. faecalis resistant to

erythromycin. Moreover, using a mouse skin colonization model,

CRISPR/Cas9 interventions dramatically decreased S. aureus skin

colonization (Wang et al., 2019). One of the bacteria from the

ESKAPE group of pathogens i.e. Klebsiella pneumonia can acquire

several MDR mutations by natural horizontal gene transfer (Sun

et al., 2019; Allemailem, 2024). In one research these bacteria were

subjected to CRISPR/Cas9 mediated genome editing to investigate

the roles of certain genes like ramR, tetA, and mgrB, which promote

colistin and tigecycline within carbapenem-resistant K. pneumonia

(Sun et al., 2019). These genes were rendered inactive because of the

upregulation of CRISPR/Cas9, which changed the bacteria’s

susceptibility to tigecycline and colistin, respectively.

Multi-drug resistant E. faecalis is devoid of the whole functional

CRISPR system, particularly the Cas9 system (Palmer and Gilmore,

2010). Using the pheromone-responsive plasmid (PRP), the entire

functional CRISPR/Cas9 system was successfully delivered to these

multidrug-resistant bacteria. This method, which was exclusive to

E. faecalis, produced effective conjugation. pD1, which is specific for

the enterococcal antibiotic resistance genes like tetM (encoding

tetracycline resistance) with ermB (encoding erythromycin

resistance), was used to build a constitutively transcribed

CRISPR/Cas9 system. In vitro, the erythromycin and tetracycline

resistance of the E. faecalis bacterium was effectively reduced

(Rodrigues et al., 2019). Concurrently, another in vivo intestinal

colonization experiment demonstrated that PRP targeting ermB in

donors may have decreased the incidence of intestinal E. faecalis

that is resistant to erythromycin, supporting the use of engineered

PRP in reducing multidrug resistance. The Gram-positive bacteria

Enterococcus faecium is increasingly linked to antibiotic resistance

in hospital-acquired infections. Higher recombination levels in

these microbes with the help of CRISPR/Cas9 mediated DNA

editing resulted in their specifically designed mutant clinical

strain named E745 (de Maat et al., 2019).

Another study showed that TP114, a conjugative plasmid

harboring a CRISPR/Cas9 system was improved for transfer

efficiency and this method eliminated over 99.9% of the specific

antibiotic-resistant E. coli in the gut microbiome of mice with a

single dosage. The Citrobacter rodentium infection model was

likewise treated with this approach, and after a few days of

treatment, the infection was completely eradicated (Neil et al., 2021).

Lysostaphin is a potent staphylolytic enzyme that can harm

Staphylococcus aureus bacteria. This glycylglycine endopeptidase
Frontiers in Cellular and Infection Microbiology 05
exhibits strong antibacterial properties. S. aureus does, however,

exhibit a certain degree of resistance against this endopeptidase

because of its wall teichoic acid (Wanner et al., 2017). Using

CRISPR/dCas9, some researchers were able to suppress the

transcription of the tarO, tarG, and tarH genes, prevent the synthesis

of teichoic acid within the walls of bacteria, and kill S. aureus by

sensitizing the bacterium to lysostaphin (Wu et al., 2019). In a unique

study, blaKPC, blaNDM, and blaOXA-48 in carbapenem-resistant

Enterobacteriaceae (CRE) were precisely cut using a CRISPR/Cas9-

based plasmid-curing system (pCasCure). The outcomes showed that,

with curative effectiveness of greater than 94%, pCasCure effectively cut

these genes found in several Enterobacteriaceae species of clinical

isolates of E. coli, K. pneumonia, E. hormaechei, E. xiangfangensis,

and S. marcescens (Hao et al., 2020; Allemailem, 2024). Furthermore,

the pKpQIL plasmid’s parA, repA, and repB genes were carefully

removed to stop the plasmid-based carbapenemase resistance gene

from desensitizing the impact of the carbapenem antibiotic on CRE.

The MIC value was lowered by over eight times because of this

experiment (Hao et al., 2020; Allemailem, 2024).
Conclusion

In this review, we tried to explain the latest developments in

gene editing technology, especially CRISPR/Cas9, which holds great

promise against antibiotic resistance. We shed light to clarify how

CRISPR and Cas9 interact to address the problem of antibiotic

resistance, we examined the possibilities of these novel approaches

in combating antibiotic resistance, highlighting their benefits and

drawbacks in comparison to traditional tactics. Through providing

an extensive synopsis of these developments together with an

analysis of their obstacles, this review seeks to provide insightful

information to direct initiatives to manage and stop the emergence

of antibiotic resistance.
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