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Introduction:Wild rodents can serve as reservoirs or carriers of E. bieneusi, thereby

enabling parasite transmission to domestic animals and humans. This study aimed to

investigate the prevalence of E. bieneusi in wild rodents from the Inner Mongolian

Autonomous Region and Liaoning Province of China. Moreover, to evaluate the

potential for zoonotic transmission at the genotype level, a genetic analysis of the

isolates was performed.

Methods: A total of 486 wild rodents were captured from two provinces in China.

Polymerase chain reaction (PCR) was performed to amplify the vertebrate

cytochrome b (cytb) gene in the fecal DNA of the rodents to detect their

species. The genotype of E. bieneusi was determined via PCR amplification of

the internal transcribed spacer (ITS) region of rDNA. The examination of genetic

characteristics and zoonotic potential requires the application of similarity and

phylogenetic analysis.

Results: The infection rates of E. bieneusi in the four identified rodent species

were 5.2% for Apodemus agrarius (n = 89), 4.5% for Cricetulus barabensis (n =

96), 11.3% forMus musculus (n = 106), and 38.5% for Rattus norvegicus (n = 195).

Infection was detected at an average rate of 17.4% among 486 rodents. Of the 11

identified genotypes, nine were known: SHR1 (detected in 32 samples), D (30

samples), EbpA (9 samples), PigEbITS7 (8 samples), HNR-IV (6 samples), Type IV (5

samples), HNR-VII (2 samples), HNH7 (1 sample), and HNPL-V (1 sample). Two

novel genotypes were also discovered, NMR-I and NMR-II, each comprising one

sample. The genotypes were classified into group 1 and group 13 via

phylogenetic analysis.

Discussion: Based on the initial report, E. bieneusi is highly prevalent and

genetically diverse in wild rodents residing in the respective province and

region. This indicates that these animals are crucial for the dissemination of
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E. bieneusi. Zoonotic E. bieneusi-carrying animals present a significant hazard to

local inhabitants. Therefore, it is necessary to increase awareness regarding the

dangers presented by these rodents and reduce their population to prevent

environmental contamination.
KEYWORDS
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Introduction

Enterocytozoon bieneusi is an obligate intracellular pathogen

mainly observed in immunocompromised patients, especially those

with HIV, who suffer from chronic or persistent diarrhea, colic,

vomiting, and/or anorexia (Han et al., 2021). Recently, there has

been a growing number of reports indicating its presence in

asymptomatic healthy persons (Han et al., 2021). However, their

route of transmission is still not fully understood. The widespread

distribution of infectious spores in nature and their ability to infect

nearly all animal kingdoms have led to the hypothesis of zoonotic

transmission (Ruan et al., 2021). Based on this presumption, the

fecal-oral route is the main mode of transmission, either through

infected animal-to-human contact or through the ingestion of

contaminated food and water (Li and Xiao, 2020a). Outbreaks of

this pathogen that are predominantly transmitted via food and

water have been documented (Decraene et al., 2012; Bourli et al.,

2023). E. bieneusi has a wide influence, being classified as a Category

B Priority Pathogen by the National Institute of Allergy and

Infectious Diseases and designated by the US Environmental

Protection Agency as a potential water-borne contaminant (EPA,

1998; Didier and Weiss, 2006). As there are currently no targeted

treatments or vaccines available to control microsporidiosis, it is

crucial to comprehend the origins and methods of transmission of

this disease.

E. bieneusi has been successfully identified by molecular

diagnostic techniques employing PCR, thereby contributing

significantly to the field of epidemiology. Currently, the most

commonly employed technique is ribosomal internal transcriber

spacer (ITS) nucleotide sequence amplification and sequencing

analysis (Santı ́n and Fayer, 2009). More than 850 unique

genotypes of E. bieneusi have been identified through this

method, and comprehensive data on the distribution of genotypes

among animal and human hosts have been obtained, with at least

126 of them being found exclusively in humans (Koehler et al.,

2022). Moreover, the detection of 58 genotypes in both humans and

animals provides further evidence for the occurrence of zoonotic

transmission (Koehler et al., 2022). Phylogenetic analysis is also

crucial for evaluating the zoonotic potential of genotypes. Based on

the current study, the identified genotypes can be categorized into
02
15 distinct clusters referred to as groups 1 to 15 (Zhao et al., 2020;

Jiang et al., 2024). Importantly, groups 1 and 2 were identified as the

most significant, accounting for 90% of the genotypes. As these two

groups constitute the majority of zoonotic genotypes, they are

designated zoonotic groups (Li et al., 2019a). Therefore,

genotypes associated with these groups show a greater possibility

of potential comoronotic transmission. Conversely, the genotypes

comprising the 13 remaining groups revealed a substantially higher

level of host specificity, thereby limiting the potential for zoonotic

transmission (Li et al., 2019a). Currently, the precise role of each

host in the transmission of the disease remains enigmatic. Thus, to

effectively limit the widespread prevalence of E. bieneusi, it is crucial

to study and examine a wide range of hosts, especially those that are

close to humans.

Growing evidence indicates that wild animals are essential for

the transmission and hosting of E. bieneusi genotypes, which can

adapt to hosts and transmit diseases to humans (Koehler et al.,

2022). Rodents have been identified as potential carriers or

reservoirs of E. bieneusi, and they disseminate the parasite among

humans and other animals in both rural and urban areas

(Taghipour et al., 2022). The typing data indicate that these

rodents harbor more than 100 genotypes of E. bieneusi, with

significant overlap in genotypes in humans (Zhao et al., 2023).

This overlap emphasizes the relevance of rodents as a crucial factor

in E. bieneusi transmission to humans and the necessity of

incorporating them into efforts to eradicate this pathogen.

China is a biodiverse hub for rodents, with a total of 235 species

from 12 different families. Significantly, this pathogen is distributed

in 16 provinces and has been detected in 22 of these rodent species

(Ni et al., 2021; Tuo et al., 2023; Zhao et al., 2023; Jiang et al., 2024).

This comprises a wide range of rodent species, including

domesticated and wild rodents, experimental subjects, and even

household pets (Zhao et al., 2023). Despite these developments, the

understanding of the transmission of E. bieneusi infections among

different host species is still incomplete. Importantly,

epidemiological data on this topic are particularly limited in the

Inner Mongolian Autonomous Region and Liaoning Province of

China. Therefore, the current study evaluated the zoonotic potential

of E. bieneusi isolates at the genotype level by observing their

prevalence in rodents from the respective regions.
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Materials and methods

Ethical consideration

The protocols of the present study were approved by the Research

Ethics Committee of Wenzhou Medical University after a rigorous

review procedure with approval number SCILLSC-2021–01.
Sample collection

A total of 486 wild rodents were collected between November

2023 and February 2024 from two distinct regions: Jianping County

of Liaoning Province and Harqin Banner of Inner Mongolia, China,

which contributed 229 and 257 rodents, respectively. The rodents

were captured using cage traps that were loaded with a combination

of peanut and sunflower seeds. To establish transects, approximately

50 cage traps were positioned in a straight line along each designated

capture location, with a consistent spacing of 5 m between each trap.

The transects were positioned precisely at 4:00 PM and reconvened

the next morning at 8:00 AM. Each captured rodent was euthanized

via CO2 asphyxiation and immediately transported to the laboratory

in containers comprising ice, ensuring its safety for 48 h. A fecal

sample (0.5 g) was collected from the rectum of each rodent.
DNA extraction

The collected samples (0.2 g) were processed for DNA

extraction, while the remainder of the sample was kept as a

backup and stored at -80°C. Genomic DNA was isolated from

each processed sample via the QIAamp DNA Mini Stool Kit

(Qiagen, Germany). The lysis temperature was increased to 95°C

during extraction, and all other procedures were carried out under

strict guidelines provided by the manufacturer. The DNA was then

reconstituted in 200 µL of AE elution buffer, which was included in

the reagent, and stored at -20 °C before PCR analysis.
Identification of rodent species

The vertebrate cytochrome b (cytb) gene (421 bp) was amplified

from the fecal DNA using PCR to identify the rodent species. Based on

the methodology described by Verma and Singh (2003), the primer

sequences utilized were 5’-TACCATGAGGACAAATATCATTCTG-

3’ and 5’-CCTCCTAGTTTGTTAGGGATTGATCG-3’. The PCR

parameters were as follows: 35 cycles of denaturation (94 °C for 30

s), annealing (51 °C for 30 s), and extension (72 °C for 30 s). Prior to

this, an initial denaturation step was performed at 94°C for 5 minutes,

followed by a final extension step at 72 °C for an additional 5 minutes.
Genotyping of E. bieneusi

The genotype of E. bieneusi was determined through the

amplification of the ITS region using nested PCR, employing primers
Frontiers in Cellular and Infection Microbiology 03
and cycle parameters established by Buckholt et al. Specifically, the

external PCR primers used were EBITS3 (5’-GGT CAT AGG GAT

GAA GAG-3’) and EBITS4 (5’-TTC GAG TTC TTT CGC GCT C-3’),

while the internal PCR primers used were EBITS1 (5’-GCT CTG AAT

ATCTAT GGC T-3’) and EBITS2.4 (5’-ATC GCC GAC GGATCC

AAG TG-3’). The cycling parameters involved two distinct sets: the first

set consisted of 35 cycles, with denaturation at 94°C for 30 seconds,

annealing at 57°C for 30 seconds, and extension at 72°C for 40 seconds.

The second set comprised 30 cycles of denaturation at 94°C for 30

seconds, annealing at 55°C for 30 seconds, and extension at 72°C for 40

seconds. Both sets concluded with a final extension step at 72°C for 10

minutes. TaKaRa Taq DNA Polymerase was used in combination with

genotype BEB6 DNA from deer as a positive control and 2 mL of

distilled water as a negative control. The PCR results were further

examined using 1.5% agarose gel electrophoresis and then visualized via

DNAGREEN staining (Tiandz, Inc., China).
DNA sequencing and analysis

The PCR products that yielded positive results for E. bieneusi

were sequenced via bidirectional sequencing (Sangon Biotech Co.,

Ltd., China). The Basic Local Alignment Search Tool (BLAST) and

ClustalX 1.83 software were used for genotyping the E. bieneusi

isolates. This process involved comparing the identified nucleotide

sequences with published GenBank sequences. The genotypes were

designated using the standard nomenclature system based on 243

bp of the ITS region of E. bieneusi (Santıń and Fayer, 2009).

Specifically, if the nucleotide sequences were identical to known

genotypes, the first published name was assigned. Conversely, if the

nucleotide sequences differed from those previously published and

were verified as novel sequences through sequencing of two

additional separate PCR products derived from the same

preparations, they would represent distinct, novel genotypes.
Phylogenetic analysis

A neighboring-joining phylogenetic tree was generated via the

Kimura-2-parameter model using Mega X software. Moreover, to

validate the gene groups and examine the associations between their

genotypes, 1,000 replicates were performed.
Statistical analyses

To determine the disparities in E. bieneusi prevalence across

rodent species and regions, the chi-square test was applied to each

of the two variables. P values ≤ 0.05 were considered to indicate

statistical significance.
Nucleotide sequence accession numbers

The GenBank database accession numbers of the detected

nucleotide sequences are PP550151 to PP550161.
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Results

Rodent species identification

In this study, four different rodent species, namely, Apodemus

agrarius (n = 96), Cricetulus barabensis (n = 89),Mus musculus (n =

106), and Rattus norvegicus (n = 195), were identified by sequencing

analysis of the cytb gene after PCR. No additional information were

collected on these wild rodents (Table 1).
Prevalence of E. bieneusi

Among all 486 tested samples, E. bieneusi was detected in 19.6%

(96 samples). The infection rates varied among the different species.

For example, A. agrarius had an infection rate of 5.2% (5/96), C.

barabensis had a rate of 4.5% (4/89), M. musculus had a rate of

11.3% (12/106), and R. norvegicus had a particularly high rate of

38.5% (75/195) (Table 1). These results demonstrated significant

differences in the rates of infection in various rodent species (c2 =
73.7; df = 3; P <0.001). Moreover, a comparison between the two

regions showed that animals from Inner Mongolia had a much

greater infection rate (27.1%, 62/229) than those from Liaoning

(13.2%, 34/257) (c2 = 14.6; df = 1; P <0.001). This suggests that

there is a geographical difference in the prevalence of E. bieneusi.
Characterization and distribution of the
genotypes of E. bieneusi

A total of 11 genotypes were identified after sequencing all 96

samples that tested positive for E. bieneusi. Of these, there were nine

known genotypes: SHR1 (found in 32 samples), D (30 samples), EbpA
Frontiers in Cellular and Infection Microbiology 04
(9 samples), PigEbITS7 (8 samples), HNR-IV (6 samples), Type IV (5

samples), HNR-VII (2 samples), HNH7 (1 sample), and HNPL-V (1

sample). Furthermore, this study identified two new genotypes, NMR-I

and NMR-II, in each single sample. When comparing the NMR-I

(PP550160) genotype to the SHR1 genotype, two single-base differences

were observed. Specifically, there was an A to G transition at the 159th

nucleotide site and a T to C transition at the 209th nucleotide site.

However, there was minor variation between NMR-II (PP550160) and

genotype D, with the addition of a G base at the 14th nucleotide site.

There was some variation in the distribution of E. bieneusi

genotypes among all rodent species. Genotype D was found in all

four wild rodent species, whereas genotype SHR1 was detected in three

rodent species, except C. barabensis. Conversely, genotypes PigEbITS7

and Type IV were limited to two rodent species, M. musculus and R.

norvegicus. The HNR-VII and HNPL-V genotypes were exclusively

found inM. musculus, while the EbpA, HNR-IV, HNH7, NMR-I and

NMR-II genotypes were uniquely found in R. norvegicus (Table 1).
Phylogenetic analysis

The identified genotypes in the ITS region of E. bieneusi were

classified into two different clusters based on phylogenetic analysis:

Group 1, which consisted of seven genotypes, and Group 13, which

contained four genotypes (Figure 1).
Discussion

This study revealed that the average infection rate of E. bieneusi

among rodents in the Inner Mongolian Autonomous Region and

Liaoning Province of China is 19.6%. This result exceeds the rates

recorded in several countries, including Peru (14.9%), the United
TABLE 1 Prevalence and distribution of E. bieneusi genotype in the investigated rodents from the inner mongolian autonomous region and liaoning
province of China.

Rodent
species

Inner Mongolia (Harqin Banner) Liaoning (Jianping) Total

Positive/
examined
(%)

E. bieneusi
genotype (n)

Positive/
examined
(%)

E. bieneusi
genotype (n)

Positive/
examined
(%)

E. bieneusi
genotype (n)

Apodemus
agrarius

2/36 (5.6) D (1), SHR1 (1) 3/60 (5.0) SHR1 (3) 5/96 (5.2) SHR1 (4), D (1)

Cricetulus
barabensis

3/62 (4.8) D (3) 1/27 (3.7) SHR1 (1) 4/89 (4.5) D (3), SHR1 (1)

Mus
musculus

8/28 (28.6) D (3), PigEbITS7 (3), HNPL-V
(1), Type IV (1)

4/78 (5.1) Type IV (2), HNR-VII (2) 12/106 (11.3) D (3), PigEbITS7 (3), Type IV
(3), HNR-VII (2), HNPL-V (1)

Rattus
norvegicus

49/103 (47.6) SHR1 (22), D (8), EbpA (6),
HNR-IV (6), PigEbITS7 (5),
NMR-I (1), NMR-II (1)

26/92 (28.3) D (15), SHR1 (5), EbpA (3),
Type IV (2), HNH7 (1)

75/195 (38.5) SHR1 (27), D (23), EbpA (9),
HNR-IV (6), PigEbITS7 (5),
Type IV (2), HNH7 (1), NMR-
I (1), NMR-II (1)

Total 62/229 (27.1) SHR1 (23), D (15), PigEbITS7
(8), EbpA (6), HNR-IV (6),
Type IV (1), HNPL-V (1),
NMR-I (1), NMR-II (1)

34/257 (13.2) D (15), SHR1 (9), Type IV (4),
EbpA (3), HNR-VII (2),
HNH7 (1)

96/486 (19.6) SHR1 (32), D (30), EbpA (9),
PigEbITS7 (8), HNR-IV (6),
Type IV (5), HNR-VII (2),
HNH7 (1), HNPL-V (1),
NMR-I (1), NMR-II (1)
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States (18.0%), the Czech Republic and Germany border (10.7%),

China (13.9%), Japan (13.0%), and Slovakia (1.1%). However, the

infection rate observed in Poland is higher at 38.9% (Taghipour et al.,

2022; Tuo et al., 2023; Zhao et al., 2023). It is crucial to acknowledge

that, except for China and the United States, each of these countries

has only been the focus of a single study. This constraint significantly

undermines the reliability of cross-national comparisons. There is

considerable variation in infection rates among distinct regions in

China. The findings of this study indicate that Inner Mongolia has a

greater infection rate than Liaoning. Conversely, it is lower than the

rates reported in Chongqing, Anhui, Henan, and Shanghai but higher

than those found in Xinjiang, Hainan, Heilongjiang, and Zhejiang (Ni

et al., 2021; Tuo et al., 2023; Zhao et al., 2023; Jiang et al., 2024).

Infection rates are significantly influenced not only by geographical

differences but also by the species of rodents. The results of this study

suggested that R. norvegicus had the highest infection rate of 38.5%,

whereas C. barabensis had the lowest infection rate of 4.5%.

Furthermore, previous studies have shown that infection rates vary

among species, ranging from Chinchillas (3.6%) to guinea pigs

(87.5%) (Taghipour et al., 2022; Tuo et al., 2023; Zhao et al., 2023).

These results indicate that rodents, especially wild rodents, are

commonly infected with E. bieneusi and have a significant impact
Frontiers in Cellular and Infection Microbiology 05
on the persistence of high levels of endemicity (Zhao et al., 2023).

Considering the importance of these findings, it is crucial to carry out

more studies on rodent-borne E. bieneusi and their potential

implications for public health.

The SHR1 genotype, which was present in 33.3% (32 out of 96) of

the samples, was the most prevalent among the 11 identified E. bieneusi

genotypes. In addition toM.musculus, this genotype has been identified

in all sampled animal populations, demonstrating its wide distribution.

It was initially detected in experimental rodents and rabbits in China

and has emerged as the prevailing genotype, having been identified in

civets covering 7 provinces in China as well as pet snakes in Beijing (Li

et al., 2020b, 2020c; Lin et al., 2021; Zhao et al., 2021). Furthermore, it

has also been detected in humans fromHainan Province, China (Zhang

et al., 2022). These findings suggest that genotype SHR1 has a wide host

range and the potential to infect humans. However, considering its

discovery only in China, it is still unclear whether it shows any

geographical specificity. Further study is expected to provide more

clarity on the actual range of hosts for this genotype.

In the present study, genotype D was found to be the second most

prevalent genotype after SHR1, at 31.3% (30/96). Multiple studies have

consistently demonstrated a heightened occurrence of this genotype

among humans, particularly among immunocompromised individuals

and those with gastrointestinal disorders (Ruan et al., 2021; Zhao et al.,

2022). Furthermore, genotype D has been documented in a diverse

range of 68 host species across 38 countries, indicating its widespread

distribution (Koehler et al., 2022). Its ability to be detected in

environmental samples, including water and vegetables, underscores

its extensive ecological reach (Salamandane et al., 2023). The

adaptability and resilience of the genotype across diverse

environments and hosts underscore its potential as a significant

threat to public health. The prevalent occurrence of genotype D

among wild rodents, as observed in our study, provides additional

evidence of the crucial role played by these animals in the

dissemination of E. bieneusi.

Type IV, PigEbITS7, EbpA, and PigEbITS7 are zoonotic

genotypes and have been frequently observed in humans from

Nigeria, Thailand, China, Bangladesh, Egypt, Mozambique, and

Congo (Li et al., 2019a; Koehler et al., 2022). These genotypes have

a wide range of hosts, including nonhuman primates, domesticated

animals, and avian species (Ruan et al., 2021). In particular, these

genotypes have been detected in potable source water from Shanghai

and in raw wastewater along with vegetable and fruit surfaces from

Henan, China (Ma et al., 2016; Ye et al., 2017; Li et al., 2019b). The

current study revealed these three genotypes in 22.9% (22/96) of the

rodents surveyed, suggesting a substantial possibility of transmission

between infected rodents and both humans and other animals.

Genotype HNH7, which was previously found in humans in

Hainan Province, China, was not detected in any other animal until

this recent discovery (Zhang et al., 2022). However, this study

revealed the presence of this genotype in R. norvegicus in Liaoning,

indicating its ability to infect both humans and animals. In contrast,

genotypes HNR-IV, HNR-VII, and HNPL-V have not been

detected in humans. However, they have been found in other

animal hosts, especially rodents and civets (Zhao et al., 2021,

2023). Moreover, the genotypes NMGH1 in horses, MJ in sheep

(MK348513), CPB19 (OQ534110) in giant pandas and PL2 in civets
FIGURE 1

A phylogenetic tree was constructed to represent the genetic
relationships among various E. bieneusi genotypes, based on their
ITS sequences. This tree was generated using the neighboring-
joining method, which relies on the Kimura-2-parameter model. To
assess the reliability of the tree, bootstrap values were derived from
1,000 replicates. In this tree, genotypes are distinguished by hollow
circles and red hollow circles, indicating known and novel
sequences identified in this study, respectively.
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have also been classified as HNR-IV (Li et al., 2020d; Lin et al.,

2021). HNR-VII has been detected in Lesser rice field rats and

Asiatic brushtailed porcupines from Hainan, China (Zhao et al.,

2020, 2023). HNPL-V has been detected in civets in Hainan

Province, China (Zhao et al., 2021). In this study, these genotypes

were observed in R. norvegicus andMus musculus, which shows that

these small rodents play a crucial role in the transmission of

E. bieneusi among wildlife, the environment, and farmed animals.

In this study, two new genotypes were detected, NMR-II, which

is classified in group 1 and is the most common and intricate group

comprising ≥ 600 genotypes (Koehler et al., 2022). Specifically,

group 1 genotypes have been found in various hosts, including

humans, and present a significant risk of transmission across other

species and zoonotic transmission (Li et al., 2019a). As a result,

there is a prediction that genotype NMR-II may have a wider range

of hosts and could potentially infect people. However, additional

research is needed to evaluate this prediction.
Conclusions

This study revealed a concerning rate of E. bieneusi infection in

four different species of wild rodents found in the Inner Mongolian

Autonomous Region and Liaoning Province of China. The presence

of the human pathogenic genotype HNH7, along with other

zoonotic genotypes of E. bieneusi, such as genotype D, PigEbITS7,

Type IV, and EbpA, as well as the potential zoonotic SHR1 and

host-adaptive HNR-IV, HNR-VII, and HNPL-V genotypes,

suggests that these rodents may play a crucial role in the

epidemiology and transmission of E. bieneusi in the region.

Therefore, it is essential to take measures to control rodent

infestations and improve hygiene and sanitation practices to

prevent the transmission of E. bieneusi and other zoonotic diseases.
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