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Sébastien Pomel,
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Background: Statins, being the primary pharmacological intervention for

hypercholesterolemia, exhibit a notable degree of interpatient variability in

their effectiveness, which may be associated with gut microbiota. This study

sought to identify the biomarkers for evaluating differences in statin efficacy.

Methods: A quasi case-control study was conducted among participants with

hypercholesterolemia and coronary heart disease taking rosuvastatin essential.

According to the level of low density lipoprotein cholesterol (LDL-C), participants

was divided into the “Up to standard” (US) group and the “Below standard” (BS)

group. 16S rDNA sequencing and untargeted metabolomics were applied to

detected the information of gut microbiota and related metabolites.

Results: A total of 8 US and 8 BS group matched by age and sex were included in

the final analysis. 16S rDNA sequencing results indicated that the characteristic

strains of the US group were f-Eubacterium_coprostanoligenes and g-

Papillibacter, while the characteristic flora of the BS group were o-C0119, g-

Pseudolabrys, s-Dyella-Marensis and f-Xanthobacaceae. Metabolomic results

suggested that the levels of chenodeoxycholic acid-3-b-D-glucuronide, 1-

methylnicotinamide and acetoacetate in stool samples of the US group were

significantly higher than those of the BS group. By identifying the differentially

abundant bacterial taxa, the gut microbiota could modulate the efficacy of statins

through producing enzymes involved in cholesterol metabolism.
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Conclusions: The findings suggest that the difference in statin efficacy may be

related to gut microbiota strains that can produce short-chain fatty acids and

secondary bile acids and affect the efficacy of statins by regulating the activities of

cholesterol metabolite-related proteins. Metabolites related to short-chain fatty

acids and secondary bile acids in the gut are expected to be biomarkers

indicating the efficacy of statins.
KEYWORDS

gut microbiota and hypercholesterolemia hypercholesteremia, statins, gut microbiota,
metabolomics, biomarker
1 Introduction

As we know, the prevalence of atherosclerotic cardiovascular

disease (ASCVD) has persisted at an elevated and escalating rate,

thus emerging as the foremost contributor to global mortality. An

increasing researches have revealed that hypercholesterolemia,

predominantly characterized by elevated levels of low-density

lipoprotein cholesterol (LDL-C) in the bloodstream, constitutes a

significant and modifiable risk factor for ASCVD (Sirtori, 2014;

Raja et al., 2023). Presently, the incidence of hypercholesterolemia

in China stands at 4.9%, with a persistent upward trend. Projections

indicate that between 2010 and 2030, an estimated 9.2 million novel

cardiovascular events attributable to hypercholesterolemia will

manifest in China (Moran et al., 2010). Indeed, the accurate and

efficient reduction of cholesterol levels holds immense significance

in both the treatment and prevention of ASCVD.

Statins, being the foremost pharmacological agents employed in

the management of hypercholesterolemia, hold significant

prominence. Among these, rosuvastatin stands out due to its

potent inhibitory effect on HMG-CoA reductase and pronounced

hydrophilicity, thereby yielding favorable outcomes in LDL-C

reduction (Lamb, 2020). However, it is crucial to acknowledge the

considerable interindividual variations observed in the lipid-

lowering efficacy of statins within the realm of clinical practice.

Studies have demonstrated that patients administered identical

statin types and dosages can exhibit a wide range of reductions in

blood LDL-C levels, spanning from a modest 5% to a remarkable

70% (Mangravite et al., 2006; Barber et al., 2010; Postmus et al.,

2014), which may be related to genes that affect statin metabolism.

However, despite actively controlling for these known influencing

factors, there are still significant differences in statin efficacy. We

speculate that it may be related to the gut microbiota.

The gut is home to a vast array of microorganisms that

contribute to various metabolic processes. The gut microbiota

plays a crucial role in pharmacokinetics, as the use of drugs can

disrupt the composition of the gut microbiota. Research by Moore
02
et al. has shown that the gut microbiota is a key determinant of

individual differences in drug reactions, as it influences the

absorption, distribution, metabolism, and elimination of drugs

(Sousa et al., 2008). Furthermore, the efficacy of drugs can be

influenced by the gut microbiota. Studies have demonstrated that

antibiotics can interfere with the metabolism of lovastatin in the

human body, thereby affecting its pharmacokinetics and

effectiveness (Yoo et al., 2014). The concentration of simvastatin

in the bloodstream is strongly correlated with the levels of

secondary bile acids, which are produced through microbial 7-a-
dehydroxylation in the human gut (Kaddurah-Daouk et al., 2011).

Patients who respond well to atorvastatin treatment have been

found to have higher gut microbial diversity. Similarly, a group of

individuals who experience a positive treatment effect (LDL-C <

3.64 mmol/L after 4 weeks of treatment) have a higher proportion of

firmicutes in their gut microbiota compared to those with a less

favorable treatment outcome (LDL-C > 3.64 mmol/L after 8 weeks

of treatment) (Liu et al., 2018).

Statins are a class of drugs that are absorbed through the

gastrointestinal tract and enter the systemic circulation by crossing

the small intestinal wall. They exert their pharmacological effects by

reducing cholesterol levels in the body (Hirota et al., 2020).

Interestingly, statins can also have an impact on the composition of

the gut microbiota in patients, and conversely, the gut microbiota can

interact with statins (Vourakis et al., 2021). The relationship between

statins and the gut microbiota is an area of growing interest, as it has

been found to be closely associated with the lipid-lowering effects of

statins. By studying the gut microbiota of patients, it may be possible to

achieve personalized and precise regulation of blood lipids. However, it

is important to note that there is currently limited research in this field.

Therefore, this study aims to fill this gap by conducting a quasi case-

control study analysis to explore the relationship between the lipid-

lowering efficacy of statins and the gut microbiota. This research will

contribute to our understanding of how the gut microbiota influences

the effectiveness of statin therapy and may provide valuable insights for

personalized lipid-lowering strategies.
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2 Methods

2.1 Study design and population

All patients enrolled in this study were hospitalized in the

Department of Cardiology, Peking University First Hospital in

Beijing, China. Inclusion criteria are as follows: (1) Age ≥ 18

years old; (2) Patients with hypercholesterolemia diagnosed

according to the Guidelines for the Prevention and Treatment of

Adult Dyslipidemia in China (2016); (3) Patients were diagnosed

with coronary heart disease by coronary angiography; (4) No health

products or drugs affecting the gut microbiota was used for nearly

one month; (5) Currently taking 10mg rosuvastatin (codeine,

AstraZeneca Pharmaceutical Co., Ltd.) once a day for more than

3 months and not taking other lipid-lowering drugs. Exclusion

criteria are as follows: (1) Use of antibiotics and dairy products in

recent one month; (2) Long-term use of steroid hormones, thyroid

hormones, contraceptives; (3) Chronic gastrointestinal diseases; (4)

Adrenal cortex function decreases; (5) Hypothyroidism; (6) Current

or past drug abuse. Subjects who met all the inclusion criteria and

did not meet any of the exclusion criteria were included in the

study. According to 2019 ESC/EAS Guidelines for the management

of dyslipidemias, 2021 ESC Guidelines on cardiovascular disease

prevention in clinical practice and 2023 Chinese Guidelines for the

management of blood Lipid, patients with established CHD who are

at very-high risk, an LDL-C goal of <1.8 mmol/L (<70 mg/dL) are

recommended. Therefore < patients were divided into two groups:

“Up to Standard” group (US group) (LDL-C <1.8 mmol/L) and

“Below to Standard” group (BS group) (LDL-C ≥1.8 mmol/L).

According to the same gender and age (± 3 years), the qualified

group and the non-qualified group were matched. This study

matched US group with an equal number of BS group (patients

without stroke) for age ± 3 years and sex. Referring to previously

published papers on small sample studies of gut microbiota, a total

of 16 patients were included (8 participants in US group; 8

participants in BS group). The study was approved by the Ethics

Committee of the Institute of Biomedicine, Peking University First

Hospital, China. All participants signed an approved written

consent after it was explained to them.
2.2 Stool samples and DNA extraction

Stoll sampling procedures followed the requirements of the

German Sarstedt fecal collection system. After feces samples were

obtained from patients, feces samples were mixed evenly with a

sterile spatula, loaded 1 g into 12 ml sterile refrigerated tubules,

labeled and numbered, and stored in a -20°C refrigerator. Samples

were shipped to the laboratory within 24 h for storage at -80°C.

Using CTAB/SDS (cetyltrimethylammonium bromide/sodium

lauryl sulfate) to extract total genomic DNA from samples. The

total DNA from samples was extracted using CTAB/SDS method.

DNA concentration and purity was monitored on 1% agarose gels.

According to the concentration, DNA was diluted to 1 ng/µL using

sterile water.
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2.3 16S rDNA sequencing

The 16S rDNA gene in V3-V4 region was amplified by primer

and DNA sample with the concentration of 1 ng/µL. The primer

sequences used are as follows (5’-3’ from left to right): 341F:

CCTAYGGGRBGCASCAG; 806R: GGACTACNNGGGTA

TCTAAT. A PCR system was prepared with various reagents and

materials according to the following proportions: 15 µL of Phusion

High-Fidelity PCR Master Mix (New England and Biolabs, UK), 0.2

µL of primers DNA 10 ng of target DNA. The PCR cycle conditions

are set as follows: denaturation at 98-°C for 1 min, then cycle at

98-°C (10 s), 50-°C(30 s) and 72-°C (30 s) for 30 times, and finally

extend at 72-°C for 5 minutes.

The amplified product was mixed with equal volume of 1 ×

loading buffer (containing SYB green) and detected by 2% agarose

gel electrophoresis. Electrophoresis parameters are: agarose gel

concentration: 2%; Voltage: 80 v; Electrophoresis time: 40 min.

After the detection, PCR products from different samples were

mixed in equal amounts and purified using Qiagen Gel Extraction

Kit (Qiagen, Germany). Sequencing library was generated by

Illumina Truseq DNA PCR-free library preparation kit (Illumina,

USA), quantified by Qubit2.0fluorometer (Thermo Science, USA)

and Agilent Bioanalyzer 2100 system (Agilent, China). Finally, 250

base-pair end readings were sequenced on the Illumina NovaSeq

platform (Illumina, the US). Sequencing and data pretreatment

were completed in Beijing Nuohe Zhiyuan Company.
2.4 Metabolites extraction

The stool samples (100 mg) were individually grounded with

liquid nitrogen and the homogenate was resuspended with

prechilled 80% methanol by well vortex. The samples were

incubated on ice for 5 min and then were centrifuged at 15000 g,

4°C for 20 min. 400 mL supernatant was diluted to final

concentration containing 53% methanol by LC-MS grade water.

The samples were subsequently transferred to a fresh Eppendorf

tube and then were centrifuged at 15000 g, 4°C for 20 min. Finally,

the supernatant was injected into the LC-MS/MS system analysis

(Want et al., 2013).
2.5 Non-targeted metabolomics detection

UHPLC-MS/MS analyses were performed using a Vanquish

UHPLC system (ThermoFisher, Germany) coupled with an

Orbitrap Q Exactive TM HF mass spectrometer or Orbitrap

Q Exactive

TMHF-X mass spectrometer (Thermo Fisher, Germany) in

Novogene Co., Ltd. (Beijing, China). Samples were injected onto a

HypesilGoldcolumn (C18) using a 12-min linear gradient at a flow

rate of 0.2 mL/min . The eluents for the positive and negative

polarity modes were eluent A (0.1% FA in Water) and eluent B

(Methanol). The solvent gradient was set as follows: 2% B, 1.5 min;

2-85% B, 3 min; 85-100% B, 10 min;100-2% B, 10.1 min;2% B,
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12 min. Q Exactive TM HF mass spectrometer was operated in

positive/negative polarity mode with spray voltage of 3.5 kV,

capillary temperature of 320°C, sheath gas flow rate of 35 psi and

aux gas flow rate of 10 L/min, S-lens RF level of 60, Aux gas heater

temperature of 350°C. min.
2.6 Covariates

Covariates included sex, age (years), body mass index (BMI, kg/

m2), current smoking, current drinking, history of hypertension,

history of diabetes, antihypertensive drugs, glucose-lowering drugs,

white blood cell (WBC), high sensitivity c reactive protein (hsCRP,

mg/L), total cholesterol (TC, mmol/L), triglycerides (TG, mmol/L),

high density lipoprotein cholesterol (HDL-C, mmol/L), uric acid

(UA, mmol/L) and estimated glomerular filtration rate (eGFR,

mL·min−1.1.73 m−2).
2.7 Statistical analyses

Data are presented as median (P25-P75) for continuous variables

and as frequency (%) for categorical variables. Differences in

baseline characteristics between two groups were compared using

generalized Mann-whitney U tests for continuous variables and chi

square tests for categorical variables.

Based on the returned operational taxonomic unit (OTU) table

and species annotation results, follow-up data analysis was carried

out. One sorting operation unit represented one strain. Draw venn

plot and petal plot in RStudio to visually display OTU annotation.

Took the top 10 microorganisms with the highest relative

abundance at phylum, family and genus level as cumulative bar

graph in SPSSAU, and analyze the difference of the relative

abundance of the top 10 relative abundances of bacteria at

different classification levels.

RStudio was used to calculate the a diversity index of the two

groups of samples, and the difference of a diversity between the two

groups was judged by Mann-Whitney test in SPSSAU (https://

spssau.com). The a diversity used in this study include Goods-

coverage, Chao1, Ace, Shannon and Simpson indices. The

differences of microbial composition between the two groups

were analyzed from three aspects: sequencing depth, microbial

abundance and microbial diversity. Using RStudio to analyze

b diversity based on Bray-curtis distance matrix. Calculated the

b diversity of the two groups of samples, and analyzed whether the

difference is significant by Mann-Whitney test in SPSSAU.

Completed principal co-ordinates analysis (PCoA), principal

component analysis (PCA) and non-metric multidimensional

scaling (NMDS) to reflect the difference between the samples

within and between groups. Drawn UGPMA cluster plot to show

the results of microbial b diversity analysis among groups visually.

Using LefSe online analysis website (http://huttenhower.

sph.harvard.edu/galaxy) to select representative species with

differences between groups.

Using KEGG database (https://www.genome.jp/kegg/

pathway.html), HMDB database (https://hmdb.ca/metabolites)
Frontiers in Cellular and Infection Microbiology 04
and LIPIDMaps database (http://www.lipidmaps.org) to annotate

the identified metabolites. Metabolomics data processing software

metaX was used to preprocess the original data. The data

preprocessing was completed by Beijing Nuohe Zhiyuan

Company. The results obtained in positive and negative ion

modes were combined. RStudio and SPSSAU were used for data

analysis and drawing. PCA analysis and partial least squares

discriminant analysis (PLS-DA) were used to reflect the

differences of metabolites within and between groups. The

variable influence on projection (VIP) value of each metabolite

was obtained from the data obtained by PLS-DA method. The fold

change (FC) of each metabolite between the two groups was

calculated according to the measured content of each metabolite

in each sample. The statistical significance difference of each

metabolite between the two groups was calculated based on

T-test. The metabolites with VIP > 1.4 and P-value < 0.05 and

FC > 2 or FC < 0.5 were considered to be differential metabolites.

Volcano plots were used to filter metabolites of interest which based

on log2(FC) and -log10(p-value) of metabolites by ggplot2 in

R language. The standard score (Z-score) of the differential

metabolites ranked as Top30 according to P. The area under the

receiver operating characteristic curve (ROC) of different

metabolites was calculated in SPSSAU, which was used as a

reference standard to determine biomarkers. According to the

specific biological significance of different metabolites, combined

with AUC value, biomarkers were determined. Metabolic pathway

enrichment analysis of differential metabolites was performed based

on the KEGG database. Metabolic pathways with P < 0.05 were

significantly enriched by differential metabolites.

All the analyses were performed using the statistical package R

(http://www.R-project.org, Te R Foundation. A 2-tailed P<0.05 was

considered to be statistically significant.
3 Results

3.1 Baseline characteristics of
study participants

A total of 16 patients were included (8 participants in US group;

8 participants in BS group). As shown in Table 1, compared with the

US group, participants in BS group had higher TC and LDL-C

levels. No significant differences were found between the two groups

in terms of sex, gender, smoking, drinking, WBC, hsCRP, TG,

HDL-C, FBG and eGFR.
3.2 Sequencing quality control

After processing the data, we get 77402-95293 initial sequence.

It could be seen from the dilution curve (Figure 1A) that with the

increase in the number of sequences, the increase rate gradually

slowed down. When the number of sequences increased from 50815

to 60976, the curve was nearly flat and entered a plateau period,

indicating that the sequencing depth was appropriate. As shown in

the cumulative box plot of species (Figure 1B), when the number of
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samples was 15 or 16, the number of OTUs had hardly increased,

and the curve became smooth, indicating that the number of 16

samples was sufficient, which could reflect the gut microbiota of

patients in the group more comprehensively and could be used for

subsequent analysis.

After the sequence was annotated, the OTU clustering map was

obtained. A total of 1,338 OTUs were detected, of which 829 were

detected in both US and BS groups. There were 216 OTUs and 293

OTUs specific to the US group and the BS group, respectively. The

OTUs annotation within the US and BS groups was shown in the

petal plot in Figure 2. In the US group, 148 OTUs could be detected

in all samples. Although sample US7 contained more non-common

OTUs, the overall trend showed that most OTUs were common to

all samples. In the BS group, 136 OTUs were detectable in all

samples, and the overall trend remains that most OTUs were

common within the group.
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3.3 Types of gut microbiota

As shown in Figure 3, the distribution differences among the 10

OTUs with the highest relative abundance at the phylum, family and

genus levels were displayed. At the phylum level, there was no

significant difference in the relative abundance of the microflora

between the two groups. At the family level, the Rumen Bacteroides

and Bifidobacterium families accounted for more proportion in the

US group than in the BS group, while the relative abundance of

Chaetomium and Bacteroides was lower than that in the BS group. At

the genus level, the levels of Faecalibacterium and Bifidobacterium in

the US group were higher than those in the BS group, and the levels of

Bacteroides and Blautia were lower than those in the BS group.
3.4 Gut microbiota
composition comparison

The comparison of a-diversity between two groups was shown

in Figure 4A. There was no significant difference in the Good-

coverage index between the US group and the BS group (P = 0.507),

indicating that the results of the tests in each group reflected the

actual situation of samples approximately. There was no significant

difference in Chao1 index (P = 0.561) and Ace index (P = 0.508),

indicating that there was no significant difference in the abundance

of gut microbiota between the two groups. There was no significant

difference between the Shannon index (P = 0.816) and Simpson

index (P = 0.582), indicating that there was no significant difference

in microbial community diversity between the two groups. Based on

the Bray-curtis distance matrix, Mann-Whitney test, PCoA analysis

and NMDS analysis were carried out on the samples of the US

group and the BS group. Mann-Whitney test was used to test the b-
diversity index between the US group and the BS group (Figure 4A),

and the result was significant (P=0.036). PCoA and NMDS results

were not significantly differentiated between the two groups of

samples (Figure 4B). PCA results showed that there was significant

aggregation of the US group (Figure 4B), and only individual

samples overlapped with those of the BS group. On the overall

level, there was a significant separation trend between the two

groups. The UPGMA results (Figure 4C) showed that the samples

of the US group were basically at the bottom of the clustering plot,

while the samples of the BS group were basically at the upper of the

clustering plot, and some samples of the BS group were interspersed

among the samples of the US group. However, the overall results

showed that the samples within the group are similar, and the

groups could be generally distinguished. This phenomenon

indicated that there were differences in the gut microbiota

diversity and microbiota abundance between the US group and

the BS group to a certain extent.

The LefSe (Linear Discriminant Analysis Effect Size) analysis was

conducted to select the differential strains with distinguishing effect

between the two groups. The LDA Score >3.5 was set as the threshold,

and 8 differential strains at different classification levels were screened
TABLE 1 General clinical comparison of US group and BS group.

Variables* US (n=8) BS (n=8)
P

value

Male, n(%) 6 (75.00) 6 (75.00) 1.000

Age
63.50

(60.50, 70.20)
64.50

(53.20, 71.00)
0.958

BMI
24.62

(22.89, 25.41)
25.15

(22.44, 26.49)
0.529

Smoking, n (%) 4 (50.00) 4 (50.00) 1.000

Drinking, n (%) 3 (37.50) 3 (37.50) 1.000

History of hypertension,
n (%)

6 (75.00) 4 (50.00) 0.170

History of diabetes,
n (%)

2 (25.00) 5 (62.50) 0.315

Antihypertensive drugs,
n (%)

6 (75.00) 4 (50.00) 0.170

Glucose-lowering drugs,
n (%)

1 (12.50) 3 (37.50) 0.569

WBC (×109/L) 5.10 (4.62, 6.15) 5.85 (4.82, 6.92) 0.247

hsCRP (mg/L) 0.91 (0.39, 1.94) 1.28 (0.76, 1.84) 0.372

TC (mmol/L) 3.26 (3.02, 3.61) 4.56 (4.07, 5.21) 0.002

TG (mmol/L) 1.02 (0.67, 2.06) 1.34 (0.88, 1.75) 0.674

HDL-C (mmol/L) 1.04 (0.95, 1.33) 1.18 (0.99, 1.48) 0.343

LDL-C (mmol/L) 1.64 (1.37, 1.74) 2.52 (2.22, 2.98) 0.001

FBG (mmol/L) 7.08 (5.77, 9.36) 7.17 (4.94, 9.75) 0.753

UA (mmol/L)
360.00

(328.25, 399.00)
390.50

(331.50, 417.75)
0.495

eGFR (ml/min/1.73m3)
71.04

(64.36, 93.29)
85.52

(71.01, 97.83)
0.345
BMI, body mass index; WBC, white blood cell; hsCRP = TC, total cholesterol; TG,
triglycerides; HDL-C, high density lipoprotein cholesterol; FBG, fasting blood glucose; UA,
uric acid; eGFR, estimated glomerular filtration rate.
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(Figure 5A). The results of the lowest classification level were reserved

for the differential strains, and 6 different differential strains were

obtained in total, the dominant strains in US were f-

Eubacterium_coprostanoligenes_group, and g-Papillibacter. The

dominant strains in the BS group were o-C0119, g-Pseudolabrys, s-

Dyella-marensis, and f-Xanthomonadaceae. The species that showed

significant differences between the two groups were o-C0119

(P=0.011), f-Eubacterium_coprostanoligenes_group (P = 0.016), and

g-Pseudolabrys (P = 0.027) (Figure 5B).
3.5 Results of untargeted metabolomics

As shown in the PCA plot (Figure 6A), the US group and the BS

group samples were significantly separated, and there was

significant difference between the two groups of metabolites. PLS-

DA plot (Figures 6B, C) showed that the US group and the BS group

were significant distinguished, and the model could effectively

distinguish the two groups of samples. Screening based on the

conditions of VIP > 1.4; FC > 2 or FC < 0.5 identified 104

differential metabolites, of which 80 metabolites were significantly

up-regulated and 24 metabolites were significantly down-regulated

in the US group compared to the BS group. The differential
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metabolite information was plotted as a volcano diagram

(Figure 6D), which can visualize the overall distribution of

differential metabolites in the two groups. Zscore was calculated

according to the formula Z = (x-m)/s. x represents the specific

content of a metabolite, m represents the mean value of the

metabolite, and s refers to the standard deviation. The relative

concentrations of the top 30 differential metabolites were plotted as

Z-score (Figure 6E) in descending order of P-value. Among the 104

differential metabolites, 35 with an AUC value was greater than 0.9,

and 66 with an AUC value was within the range of 0.7-0.9.

A total of 57 KEGG enrichment pathways were identified

(Figure 6F), including 6 significant pathways as follows:

Endocrine resistance (P=0.009), drug metabolism -cytochrome

P450 (P=0.009), pyrimidine metabolism (P=0.035), adrenergic

signaling in cardiomyocytes (P=0.048), prolactin signaling

pathway (P=0.048), and African trypanosomiasis (P=0.048).
4 Discussion

Screening for differential flora holds significant potential in

guiding healthcare professionals towards more rational drug usage,

ultimately leading to precise control of blood lipid levels. However,
BA

FIGURE 1

Sequencing quality control up to standard. (A) Dilution curves of US group and BS group; (B) Species accumulation box.
FIGURE 2

Venn plot and petal plots for OTUs between the US and BS groups.
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it is important to acknowledge that the current understanding of

screening for differential flora is still incomplete and imperfect. In

our study, we identified six distinct strains that exhibited differential

abundance between the two groups. The representative strains in

the US group were f-Eubacterium-coprostanoligenes and g-

Papillibacter, while o-C0119, g-Pseudolabrys, s-Dyella-Marensis,

and f-Xanthobacaceae were representative strains in the BS group.

The representative strains in the US group were found to assist in

the lipid-lowering effects of rosuvastatin through various

mechanisms. They inhibited cholesterol synthesis and facilitated

its elimination. For instance, f-Eubacterium-coprostanoligenes

secretes cholesterol dehydrogenase ECOP170, which aids in the

elimination of cholesterol through feces (Koppel et al., 2017; Kenny

et al., 2020). On the other hand, g-Papillibacter produces butyric

acid (Konikoff and Gophna, 2016), which acts as a short-chain fatty

acid (SCFA) that inhibits hepatic cholesterol synthesis and

promotes the redistribution of cholesterol from the blood to the

liver (Taylor and Williams, 1998). These mechanisms contribute to

the overall lipid-lowering effects observed in the US group.

The representative strains of the BS group were all Gram-negative.

Gram-negative bacteria have an outer layer of lipopolysaccharide

components called endotoxin, which can cause endotoxemia,

resulting in local inflammation and metabolic disorders that increase

adipose tissue production (Pussinen et al., 2022). It was deduced that

endotoxin had a negative effect on the lipid metabolism in patients of

this group, and at the same time, weakened the efficacy of rosuvastatin.

By employing KEGG pathway enrichment analysis, we uncovered a

noteworthy enrichment of differential metabolites within the endocrine

resistance pathways and drug metabolism-cytochrome P450 (CYP450)

pathways, highlighting distinct metabolic profiles between the two

investigated groups. Notably, the metabolism-CYP450 pathway

exhibited a significant enrichment of differential metabolites,

including Valproic acid (VPA) and 2-PGA, which were found to be

present in substantially higher quantities in fecal samples from the US

group compared to those from the BS group. Intriguingly, the KEGG

pathway plot illustrates the human metabolism of valproic acid,

wherein it undergoes biotransformation by CYP2C9 enzymes

belonging to the cytochrome P450 family, ultimately leading to the

formation of 2-PGA, the final metabolite in this pathway.

Notably, statins, irbesartan, and loratadine are among the

pharmaceuticals that undergo metabolism mediated by the

CYP450 family. Shah et al., has shed light on the influence of
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patients’ drug metabolism capacity on their responses to

medications. Genetic variations in the expression and activity of

drug metabol ism enzymes can significantly al ter the

pharmacological properties of drugs, ultimately impacting their

efficacy and potential toxicity (Shah and Smith, 2015). In the

context of metabolism, CYP2C9 enzymes, which are part of the

CYP450 family, play a crucial role in the metabolism of

rosuvastatin. Lin et al., revealed that patients with a mutant

CYP2C9 exhibited a notably superior LDL-C lowering effect after

rosuvastatin administration compared to individuals with the wild-

type CYP2C9. This suggests that CYP2C9 gene polymorphisms

contribute to distinct CYP2C9 enzyme activities and metabolic

capabilities towards rosuvastatin, consequently influencing the

lipid-lowering effect of rosuvastatin in patients with

hypercholesterolemia (Lin et al., 2015), which serves as a

reminder that the activities of drug-metabolizing enzymes in

patients themselves exert a certain influence on the lipid-lowering

efficacy of statins. Considering the higher detection of the VPA final

metabolite, 2-PGA, in fecal samples from patients in the US group,

it can be speculated that patients in this group may have absorbed

less VPA. Our observation suggests that the CYP2C9 enzyme

activity primarily responsible for VPA metabolism in the liver of

patients in the US group might be higher compared to that in the BS

group. Consequently, it is reasonable to estimate that the

diminished efficacy of rosuvastatin in patients within the

substandard group may be attributed to their lower CYP2C9

enzyme activity and reduced metabolic capacity (Lin et al., 2015).

Moreover, Differential metabolites also enriched in the

endocrine resistance pathway included estradiol and cAMP. The

gut microbiota plays an important role in the regulation of estrogen

in humans, and Plottel et al., showed that some intestinal

microorganisms are able to secrete the enzyme b-glucuronidase,
which helps to convert estrogen from the bound form to the

unbound form, thus allowing the unbound form of estrogen to

re-enter the circulation, and decreasing the activity of the enzyme

leads to an increase in the fecal excretion of estrogen (Cullin et al.,

2021; Qi et al., 2021). Therefore, the level of estradiol in fecal

samples was lower in the US group than in the BS group, and the

level of estrogen in circulating blood was higher than in the BS

group. Higher circulating blood estrogen concentrations may

prevent obesity, metabolic syndrome, and cardiovascular disease

(Franasiak and Scott, 2015).
FIGURE 3

Top ten relative abundances of bacteria at the phylum, family and genus levels.
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Estradiol has the ability to activate adenylate cyclase (AC)

through the G protein-coupled estrogen receptor 1 (GPER1)

(Yasar et al., 2017). This activation leads to an increase in

intracellular cAMP levels through the phosphatase catalysis of

AC. Subsequently, the cAMP-PKA pathway is activated, which in

turn promotes cAMP-mediated transcriptional activity. This

signaling pathway has been implicated in various cellular

processes. Cannon et al. demonstrated that the efficacy of statins

is limited by a compensatory increase in 3-HYDROXY-3-
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methylglutamyl-CoA Reductase (HMGCR), the enzyme targeted

by statins. However, if the compensatory increase in HMGCR can

be inhibited, the efficacy of statins can be further improved

(Cannon et al., 2015). The promoter region of the HMGCR gene

contains a binding site for the cAMP response element (CRE),

which can interact with the cAMP response element-binding

protein (CREB) to regulate the transcription of the HMGCR gene

(Paul et al., 2022). Furthermore, cAMP can activate protein kinase

A (PKA), which phosphorylates the regulatory subunit of protein
B

C

A

FIGURE 4

Comparison of flora diversity and abundance between the US and BS groups. (A) a and b diversity between groups. (B) Two-dimensional diagram of
group difference analysis. (C) UPGMA cluster plot obtained by Bray-curtis algorithm.
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phosphatase 2A (PP2A) (Leslie and Nairn, 2019). This

phosphorylation event leads to the release of PP2A, preventing

the dephosphorylation and reactivation of HMGCR. Therefore,

higher levels of cAMP can enhance the activity of the PKA

pathway, inhibit the activation of HMGCR, and reduce the

impact of the compensatory increase in HMGCR on the lipid-

lowering efficacy of statins. Based on these findings, the lipid-

lowering efficacy of rosuvastatin was found to be superior in the

compliance group compared to the non-compliance group. This

may be attributed to the higher level of cAMP in the compliance

group, which improves the activity of the PKA pathway, inhibits

HMGCR activation, and mitigates the impact of the compensatory

increase in HMGCR on the effectiveness of rosuvastatin. Valproic

acid is a short-chain fatty acid. Since the human body cannot

synthesize VPA on its own and the enrolled patients did not have a

history of medication use, we hypothesized that VPA is synthesized
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by intestinal microorganisms. However, unlike short-chain fatty

acids such as butyric acid, VPA can affect lipid homeostasis by

inhibiting the activation of AMP-activated protein kinase (AMPK),

which promotes insulin resistance and oxidative stress (Duarte

et al., 2021).

Based on the biological significance and area under the curve

(AUC) values of the differential metabolites, three potential

predictive biomarkers were identified: chenodeoxycholic acid-3-b-
D-glucuronide, 1-Methylnicotinamide, and Acetoacetate. The levels

of chenodeoxycholic acid-3-b-D-glucuronide detected in stool

samples from patients in the US group were significantly higher

than those in the BS group. Chenodeoxycholic acid is metabolically

regulated in the liver and acts as a receptor for bile acids. Previous

studies have demonstrated that the farnesoid X receptor (FXR) can

activate the UGT2B4 gene, which is involved in the glucuronidation

of bile acids (Bock, 2012). This process ultimately leads to a decrease
B

A

FIGURE 5

LefSe analysis found the difference between groups. (A) LDA score map of differential species. (B) Relative abundance map of different strains. On
the left of each relative abundance map are the samples from the substandard group and on the right are the substandard group. The bar chart
shows the relative abundance of the differential species in each sample linear measure. The solid lines represent the average relative abundance of
differential species in this group, and the dashed line represents the median relative abundance of differential species in this group.
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in cholesterol levels in the body (Afonso et al., 2018). Therefore, the

higher levels of chenodeoxycholic acid-3-b-D-glucuronide in the

US group may indicate enhanced bile acid metabolism and

excretion, resulting in a better lipid-lowering effect compared to

the BS group after statin treatment. Levels of 1-methylnicotinamide

detected in feces samples from patients in the US group were

significantly higher than those in the BS group. Studies have shown

that NNMT plays a role in reducing lipid levels in the body by

modulating the expression of peroxisome proliferator-activated

receptor (PPARa) (Sharma et al., 2015). Mice with a knockout of

the NNMT gene have been found to have significantly higher serum

cholesterol levels and lower hepatic PPARa expression. The higher

level of 1-methylnicotinamide detected in the feces samples of the

US group suggests that the expression level of NNMT in the liver of

patients in this group is higher compared to the BS group. This

higher expression level of NNMT may be more conducive to

cholesterol metabolism, thereby enabling rosuvastatin to exert

better lipid-lowering efficacy. Similarly, levels of acetoacetate

detected in fecal samples from patients in the US group were

significantly higher than those in the BS group. Acetoacetate is
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involved in three KEGG enrichment pathways: propionate

metabolism, butyrate metabolism, and ketone body synthesis and

degradation. Studies have shown that acetoacetate can down-

regulate the gene transcription of ApoB100, ApoE, and LDL-R,

which are related to LDL-C assembly (Hwang et al., 2022). This

down-regulation inhibits the assembly of VLDL in bovine

hepatocytes, contributing to the reduction of blood LDL-C levels.

Additionally, it has been mentioned previously that intestinal

microorganisms can regulate blood cholesterol levels by secreting

short-chain fatty acids such as propionic acid and butyric acid. The

higher levels of acetoacetate in the US group may indicate a stronger

function of intestinal microorganisms in producing propionic acid

and butyric acid, which is more conducive to reducing blood LDL-C

levels. This, in turn, may help improve the lipid-lowering efficacy

of rosuvastatin.

According to the analysis of gut microbiota, there was a

difference in the microbiota capable of secreting short chain fatty

acids between the two groups. For example, a higher proportion of

Bifidobacteriaceae can be observed in the treatment group that

meets the efficacy standards. Bifidobacteriaceae can produce acetic
B C D

E F

A

FIGURE 6

Screening of differential metabolites and analysis of metabolic pathways. (A) PCA plot. (B, C) PLS-DA plot. In the left scatter plot, R2Y represents the
interpretation rate of the model, Q2Y is used to evaluate the predictive power of the PLS-DA model, and Q2Y is well established when R2Y is larger
than Q2Y. In the right rank test plot, the abscissa represents the Y of the randomized group and the original group Y correlation, the ordinate
represents the scores in R2 and Q2. (D) Volcanic map of differential metabolites. Green circles represent differential metabolites significantly
downregulated in the standard group compared to the substandard group, while red circles are significantly up-regulated in the standard group
compared to the substandard group. The size of the circle is positively correlated with its represented metabolite VIP values. The horizontal axis
represents the fold difference of metabolites between the two groups, and the vertical axis represents the significant degree of the difference. (E)
Differential metabolite Zscore score plot. (F) KEGG pathway function annotation bar graph of positive ion compounds: the X-axis represents the
number of metabolite annotations, and the Y-axis represents the annotated KEGG pathway.
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acid and propionic acid, while rumen microbiota can produce

butyric acid; moreover, the representative bacterial species

selected by the LefSE algorithm for the efficacy standard group,

Papillobacter genus, is also a butyrate producing bacterium. These

short chain fatty acids can inhibit the activity of HMGR, promote

upregulation of LDL-R expression (Pushpass et al., 2021), and have

a synergistic effect with statins, helping to reduce patient blood

LDL-c levels. The metabolomics also showed an increase in acetyl

acetate, a metabolite of the above short chain fatty acids. The

findings suggest that more of the above short chain fatty acids

maybe involved in the BS group. In addition to short chain fatty

acids, the gut microbiota can also regulate human metabolism by

producing secondary bile acids. Gut microbiota can ultimately affect

cholesterol metabolism by affecting the activity of FXR protein.

Previous study have confirmed that some secondary bile acids

produced by gut microbiota could act as inhibitors of FXR

proteins, and there were also secondary bile acids that could act

as FXR protein stimulants (Wahlström et al., 2016). Lithocholic acid

is a stimulant of FXR protein, while taurine b - rhamnocholic acid

could inhibit the activity of FXR protein (Pushpass et al., 2021). The

differences in the composition of gut microbiota between the two

groups resulted in the differences in the composition of secondary

bile acids produced by the microbiota, ultimately affecting the

efficacy of statin drugs.

This study provides a preliminary understanding of the

biological mechanism by which gut microbiota influences the

lipid-lowering effect of rosuvastatin. It lays the foundation for

further individualized treatment of hypercholesterolemia.

However, the study has several key limitations. First, it was a

cross-sectional study, the LDL-C levels and fecal samples before

taking statins were not collected. Second, the sample size was small.

Third, Additionally, this study specifically focused on rosuvastatin

and did not explore the potential unique influence mechanisms of

other statins. Further research is needed to investigate the specific

effects of different statins on the gut microbiota and their lipid-

lowering efficacy. Fourth, we did not have detailed food intake

information. In the future, we are looking forward to larger sample

cohort studies to confirm our findings. Moreover, animal and cell

experiments could be conducted to explore the possible regulatory

mechanism. As the interaction mechanism between gut microbiota

and statins continues to be studied in depth, it will provide new

insights for the precise treatment of hypercholesterolemia in

the future.
5 Conclusion

In summary, our study shows chenodeoxycholic acid-3-b-D-
glucuronide, 1-methylnicotinamide and acetoacetate in stool samples

of the US group were significantly higher than those of the BS group.

The findings suggest that metabolites related to short-chain fatty acids

and secondary bile acids in the gut are expected to be biomarkers

indicating the efficacy of statins. Further researches are needed.
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