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Causal relationship between gut
microbiota and insulin-like
growth factor 1: a bidirectional
two-sample Mendelian
randomization study
Xuejie Zheng1†, Yuping Qian2† and Lili Wang1*

1Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
2Department of Neonatology, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
Background: The causal relationship between gut microbiota and insulin-like

growth factor 1 (IGF-1) remains unclear. The purpose of this study was to explore

the causal relationship between gut microbiota and IGF-1 in men and women.

Methods: Single-nucleotide polymorphisms (SNPs) related to gut microbiota

were derived from pooled statistics from large genome-wide association studies

(GWASs) published by the MiBioGen consortium. Pooled data for IGF-1 were

obtained from a large published GWAS. We conducted Mendelian randomization

(MR) analysis, primarily using the inverse variance weighted (IVW) method.

Additionally, we performed sensitivity analyses to enhance the robustness of

our results, focusing on assessing heterogeneity and pleiotropy.

Results: In forward MR analysis, 11 bacterial taxa were found to have a causal

effect on IGF-1 in men; 14 bacterial taxa were found to have a causal effect on

IGF-1 in women (IVW, all P < 0.05). After false discovery rate (FDR) correction, all

bacterial traits failed to pass the FDR correction. In reverse MR analysis, IGF-1 had

a causal effect on nine bacterial taxa in men and two bacterial taxa in women

respectively (IVW, all P < 0.05). After FDR correction, the causal effect of IGF-1 on

order Actinomycetales (PFDR= 0.049) remains in men. The robustness of the IVW

results was further confirmed after heterogeneity and pleiotropy analysis.

Conclusion: Our study demonstrates a bidirectional causal link between the gut

microbiota and IGF-1, in both men and women.
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Introduction

The gut microbial system consists of at least 100 trillion bacteria

and archaea in the human gastrointestinal tract and is the largest

ecosystem in the human body. In addition to the large number of

microorganisms, the gut microbiota has 100 times more genes than

the human genome. It includes more than 1,000 bacterial species in

the human colon alone and consists of at least 160 bacterial species

in each individual (Qin et al., 2010; Sommer and Bäckhed, 2013;

Fukuda and Ohno, 2014). An increasing number of studies have

concluded that either the type or the amount of gut microbiota may

influence the development of disease (Tang et al., 2017; Busnelli

et al., 2019) and have even considered the gut microbiota as a

separate endocrine organ (Possemiers et al., 2011). It is now

recognized that the gut microbiota is closely related to host health

and that the two are interdependent, affecting the host’s digestive

function, intestinal permeability, endocrine system, resistance to

foreign pathogens, and immune stimulation (Blumberg and Powrie,

2012). Studies have reported that the gut microbiome has a clear

role in the development of type 2 diabetes and in the treatment of

obesity (Ley et al., 2005; Larsen et al., 2010; Karlsson et al., 2013;

Zhang et al., 2013; Kreznar et al., 2017; Kootte et al., 2017). In

addition, extensive associations between the gut microbiome and

other complex traits have been revealed by related studies

(Kurilshikov et al., 2021); however, the causal relationship,

defined as a direct cause-and-effect relationship where one

variable directly influences another, between these associations is

currently unknown.

Insulin-like growth factor 1 (IGF-1), as a key growth factor as

bone growth, may also be closely related to the gut microbiota. Two

complementary studies in the invertebrate Drosophila melanogaster

provide preliminary evidence that the microbiota can influence host

IGF-1 production (Shin et al., 2011; Storelli et al., 2011). Subsequent

studies from multiple experiments have demonstrated that the

microbiota also affects levels of IGF-1 and its orthologs in

chicken, zebrafish, and mice (Avella et al., 2012; Kareem et al.,

2016; Schwarzer et al., 2016; Yan et al., 2016). It should be

emphasized that, in the mouse study, mice with intact gut

microbiota (conventionally raised) had significantly higher IGF-1

levels than germ-free mice (Schwarzer et al., 2016). In addition,

serum IGF-1 levels in adult germ-free mice reconstituted with

conventional microbiota were significantly higher than those in

littermates that continued to remain germ-free (Yan et al., 2016).

Additionally, recent studies have indicated a connection between

the GH–IGF-1 axis and the gut microbiome (Jensen et al., 2020a,

2020b). However, most of the current studies are observational and

cannot provide further evidence of a causal relationship between the

gut microbiota and IGF-1.

A causal relationship implies a direct influence of one variable

on another, which is critical for understanding the underlying

mechanisms. Mendelian randomization (MR) is a robust and
Abbreviations: CI, confidence interval; GWAS, genome-wide association study;

IGF-1, insulin-like growth factor 1; IVW, inverse variance weighted; MR,

Mendelian randomization; SNP, single-nucleotide polymorphism; FDR, false

discovery rate; OR, odds ratio; CLIA, chemiluminescent immunoassay.
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effective method (Emdin et al., 2017) that uses genetic variants

[single-nucleotide polymorphisms (SNPs)] as instrumental

variables (IVs) to explore the causal effects of the gut microbiome

on IGF-1. MR leverages the random assortment of genes at

conception, which mimics the randomization process in

controlled trials, thus helping to infer causality rather than mere

association. Many previous studies have described the principles of

MR and its reliability (Smith and Ebrahim, 2003; Ghavami et al.,

2021). MR has been widely used to explore the causal relationship

between exposure and disease and has been used several times in

studies of the relationship between gut microbiota and disease

(Yang et al., 2022; He et al., 2023; Xue et al., 2023).

The goals of this study were to explore the possible causal

relationship between gut microbiota and IGF-1 by MR analysis and

to determine if this relationship is bidirectional, spanning both men

and women populations. By understanding these causal links, we

aim to provide insights into how modulating gut microbiota can

influence IGF-1 levels and vice versa, potentially offering new

therapeutic targets for related diseases.
Methods

Data sources of gut microbiome

The causal relationship between gut microbiota and IGF-1 was

assessed by a bidirectional two-sample MR, and the study design

and flowchart were shown in Figure 1. The MiBioGen consortium

published a large-scale genome-wide association study (GWAS) of

the composition of the gut microbiota (Kurilshikov et al., 2021).

This dataset contained a total of 18,340 samples of 16S ribosomal

ribonucleic acid (rRNA) gene sequencing data from 24 population-

based cohorts. A total of 211 gut microbiomes were identified from

genus to phylum. Subsequently, 15 bacteria were excluded due to

unknown traits, and finally 119 genera, 32 families, 20 orders, 16

classes, and 9 phyla were included in the MR analysis. The original

article described more detailed information about the gut

microbiome (Yurkovetskiy et al., 2013).
Data sources of IGF-1

Sex-specific datasets on IGF-1 were derived from the UK

Biobank (http://www.nealelab.is/uk-biobank), utilizing GWAS

summary statistics involving 361,194 participants of European

ancestry. IGF-1 was measured using a chemiluminescent

immunoassay (CLIA) (Siemens ADVIA Centaur IGF-1 assay).

This assay is widely validated for accurate and reproducible

measurement of IGF-1 levels across large populations. In the UK

Biobank cohort, the reference range for serum IGF-1 levels varies by

age and sex. For adults aged 18–35 years, the typical range is 116–

358 ng/mL for men and 97–310 ng/mL for women. Principal

component analysis was performed on the genetic data to adjust

for population stratification, and the top 20 principal components

were included as covariates in the analysis. These principal

components capture the major axes of genetic variation within
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the dataset, thus controlling for potential confounding due to

population structure. Genetic associations were also adjusted for

age and age squared (age²), expressed as per standard deviation

changes in IGF-1.
Ethical approvement

All summary-level datasets in our study were retracted from de-

identified public data/studies. Ethical approval and informed

consent were obtained by the ethics committee previously. Ethical

approval was thus exempted from our study.
Genetic instrument selection

In this study, we followed strict criteria to ensure the robustness

and validity of this MR study. For the gut microbiota as exposure, in

order to obtain sufficient SNPs to be used as IVs, a P-value of <1e−5

was set as the significance threshold to select genetic instruments

associated with bacterial traits. This threshold ensured that the

selected SNPs are strongly associated with the exposure, reducing

the risk of weak instrument bias. We set the chain imbalance

threshold r2 to <0.001 and the distance to 10,000 kb to avoid this

phenomenon of linkage disequilibrium. This process minimized the

inclusion of correlated SNPs that might confound the MR analysis.

IVs of the gut microbiota were shown in Supplementary Table S1. In

addition, we used theMR Pleiotropy RESidual Sum andOutlier (MR-

PRESSO) method to look for significant SNPs with pleiotropy

(Verbanck et al., 2018) and excluded outliers if present. MR-
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PRESSO identified and removed significant outliers that might

introduce pleiotropy, ensuring that the causal estimates were not

biased by pleiotropic effects. The results of the F-statistic represent the

strength of the IVs (F-statistics = Beta2/Se2, beta is the correlation

coefficient between SNPs and traits) (GBD 2016 Headache

Collaborators, 2018), and SNPs with F-statistic values > 10 indicate

that there is no substantial weak instrumental bias; otherwise, the IVs

were removed (Chen et al., 2022). Strong instruments were crucial for

reliable causal inference in MR studies. For our study, all F-statistics

were greater than 10. The participants in our analysis were derived

from large-scale GWASs conducted by the MiBioGen consortium

and the UK Biobank. The selection of participants in these studies is

population-based, capturing a wide range of demographic and

clinical characteristics. Therefore, the inclusion criteria primarily

involve ensuring high-quality genotyping data and appropriate

population structure.
Statistical analysis

MR analysis must meet the following three assumptions to be

performed correctly: (1) the assumption of relevance: the IVs used

for the analysis should be closely related to the exposure; (2) the

assumption of independence: the IVs were not related to the

exposure or confounders of the outcome; and (3) the assumption

of exclusivity: the IVs were not related to the outcome.

We used the inverse variance weighted (IVW) approach as the

primary method to explore the causal relationship between exposure

and outcome, an analysis that has the advantage of providing robust

causality estimates in the absence of directional pleiotropy (consistent
FIGURE 1

The research design and flow chart of MR. ① Genetic IVs are associated with exposure. ② Genetic IVs are not associated with confounders. ③
Genetic IVs influence outcome only through exposure.
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with the independence assumption) (Ehret et al., 2011). In addition,

three other additional analytical methods, namely, MR-Egger,

weighted median (WM) analysis, and weighted mode method, were

conducted as secondary references to improve the reliability of

causality. The MR-Egger method was based on the assumption that

all IVs are invalid and the intercept term is present by default

(Bowden et al., 2015). The WM analysis method was based on the

assumption that more than 50% of SNPs have valid SNPs (Bowden

et al., 2016). For estimation methods based on weighted models,

smaller sample sizes are required, but lower type I error rates and

smaller biases are guaranteed. P < 0.05 indicates statistical

significance. We also adjusted for the results in multiple

comparisons (Benjamini and Hochberg) by false discovery rate

(FDR). All MR analyses in this study were performed in the R

software (version 4.2.0, The R Foundation, Vienna, Austria)

with the “TwoSampleMR,” “MR-PRESSO,” “frostplot,” and

“ggplot2” packages.
Sensitivity analysis

The purpose of the sensitivity analysis was to test for

heterogeneity and horizontal pleiotropy of IVs in MR analysis.

We performed Cochran’s Q test for heterogeneity of IVs with MR-

Egger and IVW methods. Heterogeneity could indicate that the

instruments were not consistently estimating the same causal effect,

which could bias the results. Cochran’s Q test compared the

observed variance among the effect estimates of the genetic

instruments to what would be expected if all instruments were

estimating the same effect. A P-value greater than 0.05 from

Cochran’s Q test indicated that there was no significant

heterogeneity among the IVs, suggesting that the instruments are

homogeneous and the causal estimates are reliable. In addition,

horizontal pleiotropy was assessed using two methods: MR Egger

intercept and MR-PRESSO global test. The MR Egger regression

method provides an intercept term that can be used to test for

directional pleiotropy. A significant non-zero intercept indicates the

presence of pleiotropy, which can bias the MR estimates. In our

analysis, a p-value greater than 0.05 for the intercept term suggests

that there is no evidence of horizontal pleiotropy, indicating that the

genetic instruments are not affecting the outcome through pathways

other than the exposure. MR-PRESSO global test method is used to

detect and correct for horizontal pleiotropy. This method identifies

significant outliers that may contribute to pleiotropy. The global test

within MR-PRESSO assesses the overall pleiotropy by comparing

the observed data to the expected distribution under no pleiotropy.

A p-value greater than 0.05 indicates the absence of significant

pleiotropy. Furthermore, MR-PRESSO analysis reveals specific SNP

outliers that contribute to pleiotropy, which can be removed to

refine the causal estimates and reduce bias. To further validate the

stability of our results, we performed a “leave-one-out” analysis,

which evaluates the influence of each individual SNP on the overall

causal estimate. Of course, we used PhenoScanner (BMI and

smoking status) to exclude potentially pleiotropic SNPs that were

significantly associated with confounding factors (http://

www.phenoscanner.medschl.cam.ac.uk/).
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Reverse MR analysis of the causal effects of
IGF-1 on gut microbiome

For the reverse MR analysis, we collected IVs at a threshold of P <

1e-8 (Supplementary Tables S2, S3) in order to explore the genetically

predicted causal effects of IGF-1 on the gut microbiota. The chain

imbalance threshold r2 was also set to < 0.001, and the distance is set

to 10,000 kb. We had previously described the statistical methods to

be used in the reverse MR analysis. Our study was conducted in

accordance with the STROBE-MR checklist (STROBE-MR-checklist)

(Skrivankova et al., 2021).
Results

Causal effects of the gut microbiome on
IGF-1 in MR analysis

The research design and flow chart of this study was shown in

Figure 1. A total of 196 bacterial traits from five biological levels

(phylum, order, family, and genus) were finally included in this study.

In the forward MR analysis, the causal effects of 196 bacterial taxa on

IGF-1 in men and women were shown in Supplementary Figures S1,

S2, respectively. As shown in Table 1, genetically predicted class

Deltaproteobacteria [beta = 0.046, 95% confidence interval (CI) =

0.010 to 0.082, P = 0.011], order Desulfovibrionales (beta = 0.044,

95% CI = 0.006 to 0.082, P = 0.022), family Rikenellaceae (beta =

0.038, 95% CI = 0.003 to 0.073, P = 0.034), genusAnaerotruncus (beta

= 0.044, 95% CI = 0.007 to 0.080, P = 0.018), genus Eubacterium

eligens group (beta = 0.046, 95%CI = 0.003 to 0.090, P = 0.037), genus

Fusicatenibacter (beta = 0.040, 95% CI = 0.009 to 0.072, P = 0.013),

genus Howardella (beta = 0.029, 95% CI = 0.001 to 0.057, P = 0.043),

genus Senegalimassilia (beta = −0.042, 95% CI = −0.082 to −0.002, P

= 0.039), genus Veillonella (beta = 0.052, 95% CI = 0.017 to 0.086, P =

0.003), genus Ruminococcaceae UCG005 (beta = 0.044, 95% CI =

0.009 to 0.079, P = 0.015), and genus Roseburia (beta = 0.050, 95% CI

= 0.010 to 0.090, P = 0.015) had a causal effect on IGF-1 in men

(Figure 2A), whereas genetically predicted class Bacteroidia (beta =

0.036, 95% CI = 0.005 to 0.067, P = 0.023), order Bacteroidales (beta =

0.036, 95% CI = 0.005 to 0.067, P = 0.023), order Clostridiales (beta =

−0.031, 95% CI = −0.062 to −0.000, P = 0.049), family Alcaligenaceae

(beta = −0.035, 95% CI = −0.070 to −0.000, P = 0.048), family

Streptococcaceae (beta = −0.066, 95% CI = 0.020 to 0.112, P = 0.005),

family Veillonellaceae (beta = −0.029, 95% CI = 0.003 to 0.055, P =

0.029), genus Barnesiella (beta = −0.043, 95% CI = −0.080 to −0.006,

P = 0.024), genus Eubacterium ventriosum group (beta = −0.041, 95%

CI = −0.080 to −0.001, P = 0.044), genus Faecalibacterium (beta =

−0.034, 95% CI = −0.066 to −0.002, P = 0.035), genus

Lachnospiraceae UCG001 (beta = −0.040, 95% CI = −0.073 to

−0.007, P = 0.017), genus Oscillibacter (beta = 0.029, 95% CI =

0.004 to 0.053, P = 0.021), genus Ruminiclostridium9 (beta = 0.046,

95% CI = 0.003 to 0.089, P = 0.037), genus Ruminococcus1 (beta =

−0.052, 95% CI = −0.102 to −0.002, P = 0.040), and genus Veillonella

(beta = 0.037, 95% CI = 0.002 to 0.072, P = 0.039) had a causal effect

on IGF-1 in women (Figure 2B). Overall, our forward MR analysis

identified 11 bacterial taxa with a causal effect on IGF-1 in men and
frontiersin.org
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14 in women. Compared to observational studies, our study provides

stronger causal inferences.

In the forward MR analysis, all bacterial traits failed to pass the

FDR correction (P > 0.05). In the sensitivity analysis, Cochran’s Q
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test showed no sign of heterogeneity for all bacterial traits

(Supplementary Table S4). No pleiotropy was found in the results

by MR-Egger and MR-PRESSO analytical methods (Supplementary

Table S4). In addition, the results of leave-one-out analysis provide
TABLE 1 Positive MR results for the causal impact of gut microbiota on IGF-1 in men and women.

Sex Exposure No. SNP F-statistics Method Beta (95% CI) Pval

Men Class

Deltaproteobacteria 13 21.06 IVW 0.046 (0.010 to 0.082) 0.011

Order

Desulfovibrionales 11 21.33 IVW 0.044 (0.006 to 0.082) 0.022

Family

Rikenellaceae 18 21.61 IVW 0.038 (0.003 to 0.073) 0.034

Genus

Anaerotruncus 13 20.84 IVW 0.044 (0.007 to 0.080) 0.018

Eubacterium
eligens group

8 20.69 IVW 0.046 (0.003 to 0.090) 0.037

Fusicatenibacter 18 21.12 IVW 0.040 (0.009 to 0.072) 0.013

Howardella 10 21.74 IVW 0.029 (0.001 to 0.057) 0.043

Senegalimassilia 5 20.94 IVW −0.042 (−0.082 to −0.002) 0.039

Veillonella 8 20.97 IVW 0.052 (0.017 to 0.086) 0.003

Ruminococcaceae
UCG005

13 21.21 IVW 0.044 (0.009 to 0.079) 0.015

Roseburia 12 21.43 IVW 0.050 (0.010 to 0.090) 0.015

Women Class

Bacteroidia 14 21.09 IVW 0.036 (0.005 to 0.067) 0.023

Order

Bacteroidales 14 21.09 IVW 0.036 (0.005 to 0.067) 0.023

Clostridiales 13 21.73 IVW −0.031 (−0.062 to −0.000) 0.049

Family

Alcaligenaceae 12 21.94 IVW −0.035 (−0.070 to −0.000) 0.048

Streptococcaceae 11 22.58 IVW 0.066 (0.020 to 0.112) 0.005

Veillonellaceae 18 21.23 IVW 0.029 (0.003 to 0.055) 0.029

Genus

Barnesiella 14 21.94 IVW −0.043 (−0.080 to −0.006) 0.024

Eubacterium
ventriosum group

14 21.36 IVW −0.041 (−0.080 to −0.001) 0.044

Faecalibacterium 10 21.09 IVW −0.034 (−0.066 to −0.002) 0.035

Lachnospiraceae
UCG001

13 22.08 IVW −0.040 (−0.073 to −0.007) 0.017

Oscillibacter 14 22.21 IVW 0.029 (0.004 to 0.053) 0.021

Ruminiclostridium9 9 21.07 IVW 0.046 (0.003 to 0.089) 0.037

Ruminococcus1 10 21.05 IVW −0.052 (−0.102 to −0.002) 0.040

Veillonella 8 20.97 IVW 0.037 (0.002 to 0.072) 0.039
MR, Mendelian randomization; IGF-1, insulin-like growth factor 1; No. SNP, number of SNPs; CI, confidence interval.
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further evidence of the robustness of the results (Supplementary

Figures S3, S4). The power results showed that the power to evaluate

the causal effects of these microbiota features and IGF-1 was

satisfied; most of them were >70%.
Causal effects of the genetically predicted
IGF-1 on gut microbiome in reverse
MR analysis

The causal effects of total IGF-1 on 196 bacterial taxa in reverse

MR analysis for men and women were shown in Supplementary

Figures S5, S6, respectively. As shown in Table 2, IGF-1 levels

increased bacterial abundance of family Acidaminococcaceae (beta

= 0.074, 95% CI = 0.001 to 0.147, P = 0.046), genus Eubacterium

nodatum group (beta = 0.025, 95% CI = 0.070 to 0.381, P = 0.005),

genus Eubacterium xylanophilum group (beta = 0.074, 95% CI =

0.001 to 0.148, P = 0.048), genus Lachnospiraceae ND3007 group

(beta = 0.080, 95% CI = 0.015 to 0.146, P = 0.016), and genus

Ruminococcus gauvreauii group (beta = 0.094, 95% CI = 0.019 to

0.169, P = 0.014) in men. In contrast, the bacterial abundance of

family Actinomycetaceae (beta = −0.142, 95% CI = −0.234

to −0.050, P = 0.003), genus Actinomyces (beta = −0.130, 95%

CI = −0.224 to −0.036, P = 0.007), and genus Eisenbergiella

(beta = −0.114, 95% CI = −0.223 to −0.006, P = 0.039) were

decreased in men (Figure 3A). Moreover, genetically predicted

IGF-1 levels increased bacterial abundance of genus

Butyricicoccus (beta = 0.076, 95% CI = 0.009 to 0.142, P = 0.026),

and genus Ruminococcaceae UCG014 (beta = 0.090, 95% CI = 0.017

to 0.162, P = 0.016) in women (Figure 3B). Therefore, the results of
Frontiers in Cellular and Infection Microbiology 06
our reverse MR analysis indicated that IGF-1 exerted a causal effect

on nine bacterial taxa in males and two bacterial taxa in

females, respectively.

After FDR correction, the causal effect of IGF-1 on order

Actinomycetales (PFDR=0.049) remained in men. Figure 4 further

demonstrates the stability of this result. In the sensitivity analysis,

the results of Cochran’s Q test showed no signs of heterogeneity for

all bacterial traits (Supplementary Table S5). No pleiotropy was

found in the results by MR-Egger and MR-PRESSO analytical

methods (Supplementary Table S5). In addition, the results of

leave-one-out analysis provided further evidence of the robustness

of the results (Supplementary Tables S6, S7).

In summary, the results indicated that specific bacterial taxa

were closely linked with IGF-1 levels, suggesting potential pathways

through which gut microbiota might influence endocrine function.
Discussion

In this MR study, this study is the first to investigate the causal

relationship between gut microbiota IGF-1 through large-scale

GWAS summary data. Our findings provide new insights into the

complex interplay between gut microbiota and growth factors,

which have significant implications for understanding metabolic

and endocrine disorders.

IGF-1, as a growth factor, has been shown to have a

bidirectional causal relationship with the gut microbiota. First,

how the microbiota affects systemic and localized IGF-1 is still

under investigation. IGF-1 is downstream of growth hormone

during postnatal development (Van Wyk and Smith, 1999), and
FIGURE 2

Causal effect estimates of gut microbiota on IGF-1 in men and women. (A) Men. (B) Women. CI, confidence interval; IVW, inverse variance
weighted method.
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whether the microbiota mediates IGF-1 production via growth

hormone is unknown. There were substantial differences in IGF-1

levels but similar levels of circulating growth hormone in

conventionally reared mice, colonized mice, and germ-free mice

(Schwarzer et al., 2016; Yan et al., 2016). Similarly, the pathway by

which E. coli colonization regulates IGF-1 levels is independent of

growth hormone because serum growth hormone in B.

thailandensis–infected mice is not altered after E. coli O21:H+

colonization. In summary, IGF-1 production and function are not

only mediated by growth hormone but also altered with changes in
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the gut microbiota. Our study corroborates these findings and

further elucidates the directionality of these relationships. We

demonstrated that certain bacterial taxa causally influence IGF-1

levels and vice versa. Specifically, our forward MR analysis

identified 11 bacterial taxa with a causal effect on IGF-1 in men

and 14 in women. Compared to observational studies, our study

provides stronger causal inferences.

Many different bacterial species can regulate IGF-1 levels, so the

common production of a microbial metabolite by these species,

short-chain fatty acids (SCFAs), has the potential to provide an
FIGURE 3

Causal effect estimates of IGF-1 on gut microbiota in men and women. (A) Men. (B) Women. CI, confidence interval; IVW, inverse variance
weighted method.
TABLE 2 Positive MR results for the causal impact of IGF-1 on gut microbiota in men and women.

Sex No. SNP F-statistics Outcome Method Beta (95% CI) Pval

Men Order

122 80.38 Actinomycetales IVW −0.143 (−0.235 to −0.050) 0.002

Family

123 80.33 Acidaminococcaceae IVW 0.074 (0.001 to 0.147) 0.046

122 80.38 Actinomycetaceae IVW −0.142 (−0.234 to −0.050) 0.003

Genus

122 80.38 Actinomyces IVW −0.130 (−0.224 to −0.036) 0.007

121 80.80 Eisenbergiella IVW −0.114 (−0.223 to −0.006) 0.039

117 81.96 Eubacterium nodatum group IVW 0.225 (0.070 to 0.381) 0.005

124 85.06 Eubacterium xylanophilum group IVW 0.074 (0.001 to 0.148) 0.048

125 84.99 Lachnospiraceae ND3007 group IVW 0.080 (0.015 to 0.146) 0.016

125 84.99 Ruminococcus gauvreauii group IVW 0.094 (0.019 to 0.169) 0.014

Women Genus

133 80.31 Butyricicoccus IVW 0.076 (0.009 to 0.142) 0.026

133 80.31 Ruminococcaceae UCG014 IVW 0.090 (0.017 to 0.162) 0.016
MR, Mendelian randomization; IGF-1, insulin-like growth factor 1; No. SNP, number of SNPs; CI, confidence interval.
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explanation for the mechanism by which the gut microbiota

regulates host IGF-1. SCFAs, including acetate, propionate, and

butyrate, represent a wide range of microbial metabolites generated

through the fermentation of non-digestible dietary fibers. Among

these, butyrate stands out as the primary source of energy for

enterocytes. SCFA can exert their effects both within the local

environment of the intestinal tract and systemically by entering

the bloodstream (Yan and Charles, 2018). SCFA concentrations in

the feces of conventionally reared mice were higher than those in

germ-free mice (Arpaia et al., 2013; Smith et al., 2013). In a study by

Yan et al (Yan et al., 2016), conventional mice treated with broad-

spectrum antibiotics and vancomycin experienced a reduction in

SCFA concentrations, whereas the cecum of colonized germ-free

mice exhibited increased SCFA levels. Additionally, as cecal SCFA

concentrations roughly correlated with trends in serum IGF-1, they

demonstrated that, akin to colonization in mice, supplementation

with SCFA led to enhanced production of IGF-1 in adipose tissue

and a noticeable trend toward increased IGF-1 production in the

liver (Yan et al., 2016). This suggests that the gut microbiota may

influence IGF-1 production either directly or indirectly through the

generation of SCFA. A comprehensive review supports the link

between microbially produced SCFA and IGF-1, reporting that

feeding non-digestible fiber, oligosaccharides (fermented into

SCFA), and probiotics promotes bone health (McCabe et al.,

2015). However, it is not possible to definitively conclude that

SCFA were sufficient to directly induce IGF-1, and it was likely that

additional microbiota–host interactions contribute to the increased

IGF-1 production by host tissues. SCFA may indirectly influence

the production of IGF-1 through the following mechanisms: SCFA

can improve insulin sensitivity, thereby enhancing the anabolic

effects of insulin and subsequently influencing the production of

IGF-1 (Canfora et al., 2015); SCFA can strengthen gut barrier

integrity, supporting the nutrient absorption necessary for IGF-1

synthesis (Koh et al., 2016); SCFA can regulate lipid metabolism,

maintaining lipid balance, which is important for metabolic health

and can indirectly affect IGF-1 (den Besten et al., 2013).
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One of the pioneering studies to investigate the impact of IGF-1

on the gut microbiota involved its administration to nutritionally

restricted female BALB/c mice (Chen et al., 2016). Initially, the gut

microbiota in the nutritionally restricted mice showed signs of

dysregulation and immaturity. Subsequently, a subset of the diet-

restricted BALB/c mice underwent treatment with food restoration

alone or a combination of food restoration along with subcutaneous

IGF-1 injections. The results revealed that IGF-1 not only restored

body weight but also mitigated dysbiosis and immaturity in the gut

microbiota, ultimately bringing it back to a composition similar to

the ad libitum group, independent of diet (Chen et al., 2016).

Additionally, Buford et al. identified a positive correlation between

IGF-1 levels and certain taxonomic groups, including the

Leptospirae family, Bacteroidetes spp. (synonym Bacteroidota),

TM7, and Tenericutes phyla (Buford et al., 2018). Another study

demonstrated that the specific deletion of IGF-1 in the intestinal

epithelial cells of mice (conditional knockout (cKO) mice) induced

changes in the microbial composition of the cecum, leading to a

decrease in Helicobacter spp., Lactobacillus spp., and Oscillospira

spp., as well as an increase in Odoribacte and Bacteroides (Zheng

et al., 2018). On this basis, the results of our reverse MR analysis

demonstrated that IGF-1 has a causal effect on nine bacterial taxa in

men and two bacterial taxa in women, respectively. After FDR

correction, the causal effect of IGF-1 on order Actinomycetales

(PFDR=0.049) remained in men.

IGF-1 exerts various biological functions in the body and may

influence the composition and function of the gut microbiota

through multiple mechanisms. Firstly, IGF-1 can affect the gut

microbiota by regulating the host immune system (Duncan et al.,

1994). An intact gut barrier helps prevent pathogen invasion while

supporting the colonization of beneficial microbes. Additionally,

IGF-1 can modulate the function of immune cells such as

macrophages and T cells, which, in turn, influences the microbial

environment in the gut (Spadaro et al., 2017). Secondly, IGF-1

indirectly regulates the gut microbiota by affecting the secretory

activities of intestinal epithelial cells, such as mucus and
FIGURE 4

(A) Scatter plots to visualize the causal effect of IGF-1 on order Actinomycetales. (B) Funnel plots to visualize overall heterogeneity of MR estimates
for the effect of IGF-1.
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antimicrobial peptide production (Sheng et al., 2011). These

secretions can selectively inhibit the growth of harmful bacteria

while promoting the proliferation of beneficial microbes, thus

altering the composition of the gut microbiota. Lastly, IGF-1 can

influence the gut microbiota through interactions with metabolites.

IGF-1 is involved in regulating the body’s metabolic processes,

including glucose and lipid metabolism (Yakar et al., 2002). These

metabolites can serve as nutrients or signaling molecules for

microbes, thereby affecting the growth and metabolic activities of

the gut microbiota.

While our study primarily focused on the bacterial component

of the gut microbiome, we acknowledge that these other microbial

components could also play significant roles. Gut archaea, such as

methanogens, play a role in maintaining gut homeostasis by

participating in the digestion of complex carbohydrates and the

production of methane. This metabolic activity can influence the

overall gut environment, potentially affecting the composition and

function of bacterial communities and their interactions with IGF-1

levels (Samuel and Gordon, 2006). Bacteriophages can modulate

bacterial populations by infecting and lysing specific bacterial hosts.

This dynamic interaction can lead to shifts in the bacterial

community structure, indirectly influencing metabolic functions

and the production of metabolites like SCFAs, which are known to

affect IGF-1 levels (Duerkop and Hooper, 2013). Gut fungi,

although present in smaller numbers compared to bacteria, can

interact with bacterial communities and the host immune system.

Fungi can influence inflammatory responses and nutrient

metabolism, which could indirectly impact IGF-1 production

(Mukherjee et al., 2015). The oral microbiome can contribute to

systemic inflammation and metabolic changes through the

translocation of oral bacteria into the gut and bloodstream. This

process can affect gut microbial composition and metabolic

pathways, potentially influencing IGF-1 levels (Atarashi et al.,

2011). Due to data limitations, we were unable to explore the

specific influences of gut archaea, viruses, fungi, and the oral

microbiome on IGF-1 levels in this analysis. However, their

potential contributions should be considered in the interpretation

of our findings.

The bidirectional causal relationship between gut microbiota and

IGF-1 has important implications for understanding the underlying

mechanisms of metabolic and endocrine disorders. For instance, the

identified causal effects of gut microbiota on IGF-1 levels suggest

potential therapeutic targets for modulating IGF-1 levels through

microbiota interventions. Conversely, understanding how IGF-1

influences gut microbiota composition could lead to novel strategies

for managing conditions such as obesity, diabetes, and growth

disorders. Our findings also underscore the importance of

considering both directions of causality in future research to fully

capture the complexity of these interactions.

This study, while offering valuable insights, is not without its

limitations. Firstly, it is important to note that the genetic data pooled

from GWAS primarily included European participants, which may

restrict the applicability of our findings to other populations, thereby

constraining the generalizability of our results. Secondly, our

analytical scope was constrained by the capabilities of our classifiers

and sequencing methods, which permitted us to examine the gut
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microbiota only at the genus level and higher taxonomic

classifications. Thirdly, the inherent limitations of the available data

prevented us from assessing individual-level associations.

Additionally, although our MR approach provides robust causal

inference, several potential confounders and biases, including

population stratification, measurement error, and reverse causation,

still need to be considered. Population stratification can introduce

bias if there are systematic differences in allele frequencies between

subpopulations with different ancestries. IGF-1 data source was

adjusted for the top 20 principal components in the analysis, which

capture the major axes of genetic variation and help control for

population structure. Despite these adjustments, residual

confounding due to population stratification may still exist and

should be acknowledged. In our study, we used well-established

GWAS data from large consortia (MiBioGen and UK Biobank),

which have rigorous quality control measures to minimize

measurement error. However, it is important to recognize that

residual measurement error cannot be entirely ruled out, and such

errors may attenuate the estimated causal effects. Our bidirectional

MR approach helps mitigate this concern by examining the causal

effects in both directions. Nonetheless, it is essential to interpret the

findings in the context of potential reverse causation and consider

additional evidence from experimental or longitudinal studies to

strengthen the causal inference. Other important confounding

factors, such as overall health status, nutritional status, and detailed

dietary habits, could not be explored in our analysis due to data

limitations. Lastly, the MR itself has limitations, as it does not take

into account epigenetic modifications, which may affect gene

expression and IGF-1 production. The MR assumes a direct causal

pathway, oversimplifying the complex biological processes involved,

such as the roles of bacterial metabolites, inflammation, and nutrient

absorption. Additionally, although we used stringent criteria to select

genetic instruments, residual pleiotropy could still bias our results.

Further studies with larger sample sizes are needed to confirm

these findings.
Conclusion

Our study demonstrates a bidirectional causal link between the

gut microbiota and IGF-1, spanning both men and women

populations. Even after correction, most of the results became

non-significant but could still suggest an association between gut

microbiota and IGF-1. This discovery implies that the associated

microbiota are potential therapeutic targets for promoting

homeostasis of these hormones, which, in turn, may modulate gut

microbiota homeostasis. Certainly, future studies need to validate

the causal relationship between the gut microbiome and IGF-1 and

delve into the intricate mechanisms that underlie this connection.
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