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Triana Blanco-Pintos1, Marta Relvas2,
Manuela Alonso-Sampedro3, Carlos Balsa-Castro1

and Inmaculada Tomás1*

1Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical
Specialties, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS),
Universidade de Santiago de Compostela, Santiago de Compostela, Spain, 2Instituto Universitário de
Ciências da Saúde, Cooperativa de Ensino Superior Politécnico e Universitário (IUCS-CESPU),
Unidade de Investigação em Patologia e Reabilitação Oral (UNIPRO), Gandra, Portugal, 3Department
of Internal Medicine and Clinical Epidemiology, Instituto de Investigación Sanitaria de Santiago (IDIS),
Complejo Hospitalario Universitario, Santiago de Compostela, Spain
Introduction: Microbiome-based clinical applications that improve diagnosis

related to oral health are of great interest to precision dentistry. Predictive studies

on the salivary microbiome are scarce and of low methodological quality (low

sample sizes, lack of biological heterogeneity, and absence of a validation

process). None of them evaluates the impact of confounding factors as batch

effects (BEs). This is the first 16S multi-batch study to analyze the salivary

microbiome at the amplicon sequence variant (ASV) level in terms of

differential abundance and machine learning models. This is done in

periodontally healthy and periodontitis patients before and after removing BEs.

Methods: Saliva was collected from 124 patients (50 healthy, 74 periodontitis) in our

setting. Sequencing of the V3-V4 16S rRNA gene region was performed in Illumina

MiSeq. In parallel, searches were conducted on four databases to identify previous

Illumina V3-V4 sequencing studies on the salivary microbiome. Investigations that

met predefined criteria were included in the analysis, and the own and external

sequences were processed using the same bioinformatics protocol. The statistical

analysis was performed in the R-Bioconductor environment.

Results: The elimination of BEs reduced the number of ASVs with differential

abundance between the groups by approximately one-third (Before=265;

After=190). Before removing BEs, the model constructed using all study samples

(796) comprised 16 ASVs (0.16%) and had an area under the curve (AUC) of 0.944,

sensitivity of 90.73%, and specificity of 87.16%. The model built using two-thirds of

the specimens (training=531) comprised 35 ASVs (0.36%) and had an AUC of 0.955,

sensitivity of 86.54%, and specificity of 90.06% after being validated in the remaining

one-third (test=265). After removing BEs, the models required more ASVs (all

samples=200–2.03%; training=100–1.01%) to obtain slightly lower AUC (all=0.935;

test=0.947), lower sensitivity (all=81.79%; test=78.85%), and similar specificity

(all=91.51%; test=90.68%).
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Conclusions: The removal of BEs controls false positive ASVs in the differential

abundance analysis. However, their elimination implies a significantly larger

number of predictor taxa to achieve optimal performance, creating less robust

classifiers. As all the provided models can accurately discriminate health from

periodontitis, implying good/excellent sensitivities/specificities, the salivary

microbiome demonstrates potential clinical applicability as a precision

diagnostic tool for periodontitis.
KEYWORDS

periodontal diseases, saliva, microbiome, 16S rRNA gene, next-generation sequencing,
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1 Introduction

Next-generation sequencing (NGS) studies of the 16S rRNA gene

are characterized by heterogeneity in the results of salivary microbiota

present in different periodontal conditions (Balan et al., 2018; Lu et al.,

2022; Suzuki et al., 2022). This has resulted in a proliferation of

narrative reviews that seek to define consensus microbial profiles

associated with health or diseases (Belstrøm, 2020). However,

methodological differences in the original research concerning the

relevant steps of the 16S NGS workflow significantly affect the results

of bacterial diversity obtained. This makes comparisons in the form of

traditional reviews controversial (de la Cuesta-Zuluaga and Escobar,

2016; Robinson et al., 2016; Nearing et al., 2021).

Sequencing technologies perform differently regarding the read

length, sequence throughput, and error rate (de la Cuesta-Zuluaga

and Escobar, 2016), with Illumina performing better than Roche

454 or Ion Torrent (Nearing et al., 2021). Moreover, as

demonstrated in silico using primer pairs with coverage values

≥90%, the oral species detected when amplifying a given gene

region tend not to be covered when another zone is targeted, and

vice versa (Regueira-Iglesias et al., 2023b). Thus, comparing or

analyzing sequences or microbial diversity data obtained using

different sequencing technologies and gene regions is problematic.

Additionally, the problems associated with using both the

clustering of operational taxonomic units (OTU) (Regueira Iglesias

et al., 2022) and phylogenetically diverse databases for taxonomic

assignment are well known (Soergel et al., 2012; Edgar, 2018).

However, these approaches have been used in approximately 70% of

publications on the salivary microbiota present in different periodontal

conditions in the last five years. In this respect, comparing diversity

data obtained with different pipelines and databases is highly

questionable (Nearing et al., 2021; Zaura et al., 2021).

Consequently, studies using denoising methods, which are

considered more reliable (e.g. amplicon sequence variants - ASVs)

(Callahan et al., 2017; Caruso et al., 2019; Prodan et al., 2020) as well

as high-quality and specific oral databases are needed to achieve

accurate taxonomic classifications (Escapa et al., 2020). On the other

hand, microbiome data are characterized by their high-dimensional
02
structured multivariate sparse data and their compositional nature

(i.e., compositional data, CoDA) (Calle, 2019). Still, many

investigators are unaware of this (Gloor et al., 2017), so the

analyses performed in most of the oral microbiome studies did not

consider its compositional nature (Chen et al., 2015; Balan et al., 2018;

Damgaard et al., 2019; Lundmark et al., 2019; Sun et al., 2020; Ma

et al., 2021; Lu et al., 2022; Suzuki et al., 2022).

Besides the technical factors already mentioned, there has been

growing concern over the last few years about the influence of so-

called batch effects (BEs). BEs include any sources of unwanted

biological, technical, or computational variations that are unrelated

to but obscure the biological element of interest (Wang and LêCao,

2020). Although microbiome-specific methods have been developed

to remove BEs (Gibbons et al., 2018; Dai et al., 2019; Ling et al.,

2022; Ma, 2022; Wang and Lê Cao, 2023), their use is not yet

widespread. They have not been employed in any 16S rRNA gene

sequencing research on salivary microbiota.

Potential microbiome-based clinical applications to improve

prevention, diagnosis, or drug response related to oral and systemic

health are of great interest for precision dentistry (Bourgeois et al.,

2022; Zaura, 2022). Saliva has long been considered a fluid with

predictive potential for health conditions, mainly due to the ease and

non-invasiveness with which it can be collected and its abundance of

biomarkers (Javaid et al., 2016; Kaczor-Urbanowicz et al., 2017).

However, predictive analyses on oral microbiome data are

challenging because they require very large and evenly distributed

sample sizes between study groups, biological heterogeneity, and a

validation process. To our knowledge, no salivary microbiome

publication fulfills these mandatory methodological premises

in developing generalizable predictive models (Kuhn and

Johnson, 2013).

Given all of the above, we have conducted the present 16S

multi-batch (16S-MB) study to provide the most robust evidence on

the salivary microbial biomarkers for diagnosing both periodontal

health and periodontal diseases. The study aimed to evaluate the

salivary microbiota at the ASV level in relation to differential

abundance and predictive models for distinct periodontal

conditions before and after the removal of BEs under a CoDA
frontiersin.org
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analysis approach. Sequences stored in public repositories from

earlier Illumina V3-V4 publications on the salivary microbiome

were evaluated. We added to these further sequences derived from

the saliva of periodontally healthy and periodontitis patients in our

setting, which we obtained via the same platform and gene region. A

unique bioinformatics protocol for high-quality filtering and

sequence analysis was applied, employing an oral-specific

database for the taxonomic assignment. Predictive models were

built using all the samples and a subset of training specimens. The

latter were subsequently validated with test samples.

2 Material and methods

The complete analysis protocol applied in the present study is

represented in Figure 1.
2.1 Inclusion and exclusion criteria

The present investigation included studies on the salivary

microbiota of adult patients with distinct periodontal health
Frontiers in Cellular and Infection Microbiology 03
conditions. The V3-V4 region was targeted, and the Illumina

sequencing technology was employed. The predefined standards

for the articles in the literature and their metadata and sequences

are included in Data Sheet 1.
2.2 Search methods for the identification
and selection of investigations

The description of the search strategy and the manipulation of

the data identified in the searches are included in Data Sheet 1. The

terms used to perform the searches and to evaluate the articles

found are included in Data Sheet 2.

The identifiers of the bioprojects from the selected

investigations were used to access the information in the

Sequence Read Archive (SRA) database (Leinonen et al., 2011)

and the SRA run selector (https://www.ncbi.nlm.nih.gov/Traces/

study/). At this point, our two bioprojects (PRJNA774299 and

PRJNA774981) were added to the total. The information related

to patients from our setting and the sequencing process of their

samples is included in Data Sheet 3.
FIGURE 1

The complete protocol applied in the present multi-batch study.
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2.3 Classification of the information of the
selected investigations

A new metadata table was constructed for each bioproject, and

sequences were downloaded as described in Data Sheet 1.
2.4 Preprocessing and quality control of
the sequences. Mothur pipeline

The preprocessing and quality assessments of the sequences

were performed with USEARCH (Edgar, 2010), applying the filters

indicated in Data Sheet 1. We employed the mothur pipeline

(Schloss et al., 2009) for ASVs, with slight modifications that

included using the Escapa et al. (2020) oral-specific database for

taxonomic assignment. Sequences with >400 base pairs (bps) were

allowed. We removed those with >8 homopolymers, regarded as

chimeras by the VSEARCH algorithm (Rognes et al., 2016), and

those classified as unknown taxa at the highest hierarchical level.

Sequences were not clustered to any level, as we aimed to identify

and classify the highest number of sequences possible at the ASV

level. Finally, the count table, the taxonomic hierarchy at the ASV

level, the phylogenetic tree, and the metadata table were exported to

R-Bioconductor (Gentleman et al., 2004).
2.5 Assessment of the methodological
quality of the selected investigations

The quality of the bioprojects’ metadata and sequences were

evaluated as described in Data Sheet 1. The final number obtained

representing the metadata quality was categorized as low= 0.00–

0.33; medium= 0.34–0.66; and high= 0.67–1.00. The average

sequence score (ASS) values were interpreted as very low-

quantity= <0.25; low-quantity= 0.25–0.75; acceptable-quantity=

0.75–1.00; high-quantity= 1.00–2.00; and very high-quantity

sequences= >2.00.
2.6 Statistical analysis with R-Bioconductor

The statistical analysis of the 16S rRNA gene sequencing data at

the ASV level was performed using R (4.1.2) (R Core Team, 2022)

and R-Bioconductor (Gentleman et al., 2004) to read the data and

create a phyloseq object (phyloseq package 1.40.0) (McMurdie and

Holmes, 2013). Samples with <2,500 sequences were excluded,

leaving us with 814 specimens that were assigned to one of three

groups according to the periodontal condition of the patients:
Fron
1) Saliva; periodontal health (Sal_x0Hxx= 483).

2) Saliva; gingivitis (Sal_x0Gxx= 18).

3) Saliva; untreated periodontitis (Sal_x0Pxx= 313).
The gingivitis group was removed due to its low sample size for

developing predictive models, leaving 796 samples for analysis. ASVs
tiers in Cellular and Infection Microbiology 04
with an abundance ≤10 counts and present in ≤2 samples were also

excluded (Bourgon et al., 2010), meaning 9,859 ASVs remained.

We then converted the data from the phyloseq (McMurdie and

Holmes, 2013) object-countmatrix into percentage normalized data and

applied the following abundance filters: 0.00%, 0.05%, 0.10%, and 0.20%.

This meant that we obtained four different matrices in which the

abundance of each taxon was above the set threshold in the total

number of samples. The total ASVs and species for each filter were 9,859

and 573, 1,429 and 333, 659 and 208, and 355 and 142, respectively.

In parallel, an offset of one was added to the original count

matrix (i.e., a value of one was added to all non-normalized data, all

taxa) and a centered log-ratio (CLR) transformation was performed

using the mixOmics package (6.22.0) (Rohart et al., 2017). Then,

analyses were performed using the CLR-transformed data matrix,

and for each of them, we ran each of the abundance filters first so

that all the analyses were conducted for four abundance filters.

2.6.1 Analysis for the elimination of BEs
BEs were analyzed as Wang and Lê Cao (2023) described, and the

procedure is set out in Data Sheet 1. As a last step in this approach, BEs

were removed using the following methods: 1) the removeBatchEffect

function of the limma package (3.52.4) (Ritchie et al., 2015); 2) the

ComBat function of the surrogate variable analysis package (3.44.0)

(Leek et al., 2022); 3) a partial least-squares discriminant analysis (PLS-

DA); 4) a sparse PLS-DA (sPLS-DA); 5) the percentile_norm functions

of the PLSDA-batch package (Wang and Lê Cao, 2023); and 6) RUVIV

of the remove unwanted variation package (0.9.7.1) (Gagnon-Bartsch,

2019). The performance of each method was evaluated, with

removeBatchEffect (Ritchie et al., 2015) and ComBat (Leek et al.,

2022) being the best for the different abundance filters (Supplementary

Figure 1). The distribution of samples from subjects with periodontal

health and periodontitis from the different bioprojects before and after

removing the BEs was visualized using a principal component analysis

(PCA) and density plot (Figure 2).

2.6.2 Analysis of differential abundance
The mean difference between all the ASVs for both analysis

groups was assessed using the non-parametric Mann-Whitney-

Wilcoxon test. The p-value obtained was adjusted with the

Benjamini-Hochberg correction using the mutoss package (0.1–

13) (MuToss Coding Team et al., 2023). We got each ASV’s

corresponding effect size, including its confidence interval and

magnitude (large, medium, small, and negligible), using the

Cohen’s d and Hedges’ g statistics from the effsize package (0.8.1)

(Torchiano, 2020). ASVs with an adjusted p-value <0.01 were

considered to have differential abundance.

2.6.3 Predictive modeling analysis
The mixOmics package (Rohart et al., 2017) was used to

conduct a supervised classification using an sPLS-DA (Lê Cao

et al., 2011). This was done to facilitate categorizing the two

clinical groups and identify the ASVs that best distinguished

them. Predictive models were built, initially using all the study

samples, and then, a subset of training specimens was subsequently

validated with the remaining test samples. Taxa below each of the
frontiersin.org
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four abundance thresholds were excluded from the development of

the models. The number of components in each model was

determined by applying the rule of thumb K-1 (K= number of

classes; here, two clinical groups). Receiver Operating Characteristic

(ROC) curves were constructed with the true positivity rate

(sensitivity) as a function of the false positivity rate (1-specificity).

The following diagnostic performance parameters were calculated

using the confusionMatrix function of the caret package (6.0–93)
Frontiers in Cellular and Infection Microbiology 05
(Kuhn et al., 2023): area under the curve (AUC), accuracy (ACC),

sensitivity, specificity, positive predictive value (PPV), and negative

predictive value (NPV).

Finally, the number of predictor variables was reduced in the

models obtained using the method above (i.e., best models): five by

five up to 30, and one by one below 30, until we were left with only

one ASV. Every diagnostic accuracy estimator was calculated for

each number of predictors.
A

B

FIGURE 2

PCA and density graph representing the periodontally healthy and periodontitis samples of the different bioprojects. (A) Before removing the batch
effects; and (B) After removing the batch effects. Graph (A) shows how, before eliminating batch effects, the samples from the same bioproject tend
to be clustered together. In addition, groups of bioprojects are observed: 1) BP34 (China), 2) BP36, 41, 43, 48, and 49 (Spain and Portugal, Sweden,
and the United States of America), and 3) BP35, 39, 40, and 44 (China and Canada). Graph (B), after eliminating batch effects, shows the samples of
the different bioprojects intermixed with each other, with no defined groups. BP34= Sun et al., 2020 - China; BP35= Ji et al., 2020 - China; BP36=
Lundmark et al., 2019 - Sweden; BP39= Zhu et al., 2020b - China; BP40= Zhu et al., 2020a - China; BP41= Relvas et al., 2021 - Spain and Portugal;
BP43= Annavajhala et al., 2020 - United States of America; BP44= Hall et al., 2017 - Canada; BP48= own unpublished data (PRJNA774299) - Spain
and Portugal; BP49= own unpublished data (PRJNA774981) - Spain and Portugal.
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After evaluating the results obtained by the analyses using the

four thresholds of abundance filtering, our focus was on describing

the outcomes achieved by the high-abundance taxa (>0.20%).
3 Results

3.1 Investigations in the search process

Figure 3 illustrates the flowchart of the search process. The 120

searches performed per electronic database identified 30,331

abstracts after the automatic and manual removal of duplicates. A
Frontiers in Cellular and Infection Microbiology 06
total of 1,159 articles identified in these searches (Data Sheet 4) and

40 articles/bioprojects obtained from the SRA database (Leinonen

et al., 2011) (Data Sheet 5) were selected for manual assessment.

Ultimately, 16 articles with sequence data deposited in 16

bioprojects met the inclusion criteria (Data Sheet 6).

Six authors were contacted to obtain or clarify the metadata

required to process the sequences, three of whom provided the

information required. Five investigations were excluded after

assessing the metadata quality and three after evaluating the

samples and sequences. Consequently, the present 16S-MB study

included eight articles (Hall et al., 2017; Lundmark et al., 2019;

Annavajhala et al., 2020; Ji et al., 2020; Sun et al., 2020; Zhu et al.,
FIGURE 3

Flowchart of the search process. The exclusion reasons relating to the rejected articles and bioprojects are contained in Data Sheets 4–6.
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2020a, Zhu et al., 2020b; Relvas et al., 2021) with sequence data

deposited in eight bioprojects. We added to these bioprojects our

information from patients recruited in our setting (two bioprojects).

This produced a total of 796 samples, which were distributed in two

clinical groups: Sal_x0Hxx (n= 313) and Sal_x0Pxx (n= 483). The

main descriptive characteristics of the investigations included in the

study are detailed in Data Sheet 7.
3.2 Quality assessment of the metadata
and sequences from the
included investigations

Figure 4 is a graphic representation of the quality assessments of

the metadata and sequences included in the 16S-MB study.

According to the metadata available on the subjects to whom

the samples belonged, two of the 10 bioprojects had high-quality

metadata (value of 1.00), four had medium quality (range= 0.34

−0.51), and another four had low quality (range= 0.18−0.31). The

bioprojects classified as medium quality lacked information about

the ethnicity or clinical parameters of the study’s subjects. Those

categorized as low quality also failed to include the periodontitis
Frontiers in Cellular and Infection Microbiology 07
type and severity, as well as the participant’s age, sex, and

smoking habit.

In terms of the sample size, one bioproject had <50 samples

(10%), seven between 50 and 100 (70%), and two >100 (20%). Our

ASS parameter analysis identified no bioprojects with values <0.25, as

these had been removed in previous stages due to their very low

number of sequences. Four bioprojects and 338 samples, representing

42.46% of those processed, had values from 1.00–2.00. These were

regarded as high quantities, with 10,000–20,000 sequences per sample.

Lastly, six bioprojects and 458 samples, representing 57.54% of those

processed, had an ASS >2.00 and were thus deemed to be very high

quantity, with more than 20,000 sequences per sample.
3.3 Differential abundance before and after
the removal of BEs

Table 1 summarizes the differential abundance results (adjusted

p-value <0.01) between the periodontally healthy and periodontitis

groups before and after removing the BEs. Data Sheet 8 includes all

the taxa associated with each condition and their corresponding

effect size.
A

B

FIGURE 4

The methodological quality of the selected studies and bioprojects. Methodological quality of (A) metadata; and (B) sample size and sequence
quantity. Eight articles, whose sequence data were stored in eight bioprojects, and two bioprojects associated with our samples were included in the
multi-batch analysis. The 16 variables evaluated in the own-design metadata checklist were the following: 1) health condition; 2) periodontitis type
and severity (if applicable); 3) sample type; 4) saliva type; 5) therapy; 6) age; 7) sex; 8) ethnicity; 9) systemic health condition; 10) smoking habit; and
11) periodontal parameters: number of teeth, bacterial plaque level, total bleeding on probing, probing pocket depth and clinical attachment level.
BP34= Sun et al., 2020; BP35= Ji et al., 2020; BP36= Lundmark et al., 2019; BP39= Zhu et al., 2020b; BP40= Zhu et al., 2020a; BP41= Relvas et al.,
2021; BP43= Annavajhala et al., 2020; BP44= Hall et al., 2017; BP48= own unpublished data (PRJNA774299); BP49= own unpublished
data (PRJNA774981).
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Before the removal of the BEs, 265 ASVs belonging to 115

different species (2.69% and 20.07% of the total detected by the two

groups, respectively) demonstrated statistically significant differences

in their CLR abundance values between the periodontally healthy

subjects and the periodontitis patients (Table 1). Of these, 45 ASVs

from 33 species (0.46% and 5.76%, respectively) had the greatest

differences between the study groups (effect size ranges: Sal_x0Hxx=

-0.80− -1.33; Sal_x0Pxx= 1.70–0.80).

Conversely, after the exclusion of the BEs, a lower number of taxa

showed statistically significant differences in their CLR-abundance

values between the groups: 190 ASVs from 94 species (1.93% and

16.40%, respectively). Moreover, fewer taxa (19 ASVs from 18 species

-0.19% and 3.14%, respectively-) had large effect sizes (ranges:

Sal_x0Hxx= -0.82– -1.10; Sal_x0Pxx= 1.63–0.84) (Table 1).

If we compare the taxa obtained before and after removing the

BEs, 148 ASVs from 75 species were common (1.50% and 13.09%,

respectively), and 76 ASVs from 48 species maintained the same

magnitude of effect size (0.77% and 8.38%, respectively) (Data

Sheet 8).

3.3.1 Taxa with differential abundance in health
and periodontitis before and after the removal
of BEs

Concerning the specific taxa that were more abundant in each

periodontal condition before the removal of BEs, 39 species (i.e., all

their ASVs) were associated with health and 59 with the disease. Of

these, the following taxa stood out for their effect sizes (<-1.00 or

>1.00): Streptococcus oralis subsp. dentisani clade 058-AV1042 and

Streptococcus sanguinis AV228 were health-related; and Tannerella

forsythia-AV15, Fusobacterium nucleatum subsp. vincentii-AV10,

Treponema denticola-AV38, Parvimonas sp. HMT110-AV21,

Mycoplasma faucium-AV213, Campylobacter rectus-AV20,

Filifactor alocis-AV19, and Dialister invisus-AV68 were

periodontitis-related (Data Sheet 8).

After removing the BEs, 39 species were associated with health

and 43 with the disease, with 25 and 33 in common with those
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found before removal, respectively. S. oralis subsp. dentisani clade

058-AV1042 remained one of the taxa most strongly associated

with health, along with Haemophilus sputorum-AV564 (effect sizes

<-1.00). In contrast, save for C. rectus-AV20 and D. invisus-AV68,

all the taxa strongly associated with periodontitis before the

removal of BEs remained so, in addition to: Fretibacterium

fastidiosum-AV97, Peptostreptococcaceae [XI][G-5] saphenum-

AV129, Peptostreptococcaceae [XI][G-6] nodatum-AV189,

Peptostreptococcaceae [XI][G-9] brachy-AV51, Porphyromonas

gingivalis-AV8, Prevotella sp. HMT304-AV217 and Streptococcus

constellatus-AV101 (effect sizes >1.00) (Data Sheet 8).

Before and after the removal of the BEs, 17 and 12 species,

respectively (seven of which were common), had distinct ASVs,

each associated with one of the two periodontal conditions under

study. Before the exclusion of BEs, this was the case for, e.g.,

Haemophilus parainfluenzae (Sal_x0Hxx= 12 ASVs; Sal_x0Px=

AV226) and P. gingivalis (Sal_x0Hxx= AV229; Sal_x0Pxx= 3

ASVs). However, these two species were no longer associated

with both conditions after removing BEs. On the contrary, as

related to the two conditions before and after the BEs removal,

there were: Actinomyces sp. HMT172 (Sal_x0Hxx= AV577;

Sal_x0Px= AV260), Alloprevotella tannerae (Sal_x0Hxx= AV630;

Sal_x0Px= four ASVs), Fusobacterium periodonticum (Sal_x0Hxx=

two ASVs; Sal_x0Px= AV298), and Rothia mucilaginosa

(Sal_x0Hxx= AV48; Sal_x0Px= AV148) (Data Sheet 8).

Lastly, when comparing the associations between the taxa and the

clinical conditions before vs. after the BE corrections, we found nine

ASVs and 13 species related to the opposite conditions (Data Sheet 8).
3.4 Predictive models before and after the
removal of BEs

3.4.1 All samples
Before removing the BEs, the predictive model for

distinguishing periodontal health from periodontitis that was
TABLE 1 Number of taxa with differential abundance between the healthy and periodontitis groups.

Magnitude of effect size

Before BEs removal After BEs removal

No. ASVs
(% detected)

No. Species
(% detected)

No. ASVs
(% detected)

No. Species
(% detected)

Large
(≥0.80; ≤-0.80)

45 (0.46%) 33 (5.76%) 19 (0.19%) 18 (3.14%)

Medium
(≥0.50 - <0.80; ≤-0.50 - >-0.80)

66 (0.67%) 38 (6.63%) 41 (0.42%) 30 (5.24%)

Small
(≥0.20 - <0.50; ≤-0.20 - >-0.50)

119 (1.21%) 60 (10.47%) 120 (1.22%) 67 (11.69%)

Negligible
(>0.00 - <0.20; <0.00 - >-0.20)

35 (0.36%) 29 (5.06%) 10 (0.10%) 8 (1.40%)

All 265 (2.69%) 115 (20.07%) 190 (1.93%) 94 (16.40%)
Analyses were performed using high-abundance taxa (i.e., >0.20). The results shown are those with an adjusted p-value <0.01. The percentages of detected ASVs and species were calculated with
respect to the total number of different ASVs and species detected by at least one of the groups to be compared (9,859 ASVs; 573 species). Taxa that could not be classified at the species level
(“unclassified”) were counted once, meaning that the number of species detected is the minimum that could be obtained. Positive effect size magnitude thresholds correspond to disease-
associated taxa and negative thresholds to health-associated taxa.
ASVs, amplicon sequence variants; BEs, batch effects; No., number.
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constructed using all the study samples consisted of 16 ASVs (0.16%

of the total detected by the two groups) and had an AUC of 0.944

and an ACC of 88.57% (sensitivity= 90.73%; specificity= 87.16%;

PPV= 82.08%; NPV= 93.56%) (Table 2). These numbers worsened

after the BEs were removed: the model required more ASVs (200;

2.03%), and the measures of diagnostic accuracy, save for specificity

and PPV, were reduced (AUC= 0.935; ACC= 87.69%; sensitivity=

81 . 79% ; spec ific i t y= 91 . 51% ; PPV= 86 .20% ; NPV=

88.58%) (Table 2).

Both before and after the BEs removal, the reduction in the

number of predictor variables of the best models by approximately

half (before= 9 ASVs, 0.09%; after= 90 ASVs, 0.91%) reduced the

diagnostic accuracy parameters by less than 3.55% and 2.30%,

respectively (Table 2). Indeed, models using as few as four ASVs

(0.04%) before BEs removal and 20 (0.20%) thereafter exceeded the

thresholds for AUC>0.900; sensitivity and PPV >80.00%; and

specificity, NPV and ACC>85.00% (Table 2).

3.4.2 Training and test samples
Before the BEs removal, the predictive model built on the

training samples (2/3 of the total= 531) to distinguish between

the two periodontal conditions under study consisted of 35 ASVs

(0.36%). After being validated on the test samples (1/3 = 265), the

model had an AUC of 0.955 and an ACC of 88.68% (sensitivity=

86.54%; specificity= 90.06%; PPV= 84.91%; NPV= 91.19%)

(Table 3). Again, these values worsened when the BEs were

removed, with the training model requiring more ASVs (100;

1.01%) and all the diagnostic accuracy estimates becoming
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poorer, save for specificity, after testing (AUC= 0.947; ACC=

86.04%; sensitivity= 78.85%; specificity= 90.68%; PPV= 84.54%;

NPV= 86.90%) (Table 3).

The number of predictor variables in the best training models

was reduced by more than a third before BEs removal (11 ASVs;

0.11%) and by more than half thereafter (45 ASVs; 0.46%).

Validation of these models with the test samples revealed that the

differences in diagnostic accuracy estimators concerning the best

test models were less than 1.95% before deletion and 1.75%

afterwards (Table 3). Applying the training models consisting of

only seven ASVs (0.07%) before the BEs removal and 23 (0.23%)

thereafter to the test samples yielded diagnostic accuracy values

above the thresholds for: AUC >0.900; sensitivity and PPV

>80.00%; and specificity, NPV, and ACC >85.00% (Table 3).

The ROC curves of the best models before and after BEs

removal and their AUC values are represented in Figure 5 (All

samples) and Figure 6 (Test samples). Data Sheet 9 contains a list of

all the taxa that were part of each of the best predictive models and

the periodontal condition they predicted. The diagnostic accuracy

parameters obtained by all models calculated by reducing the

number of predictor variables are set out in Data Sheet 10.

3.4.3 Taxa predictive of health and periodontitis
before and after the removal of BEs

Table 4 illustrates the main taxa predictive of periodontal health and

periodontitis. These were defined by focusing on taxa whose species-level

taxonomy was determined and were part of the best models before

removing the BEs. Moreover, taxa with a defined species-level taxonomy
TABLE 2 Predictive models for distinguishing health from periodontitis using all the study samples.

Before BEs removal

Model
No. ASVs

(% detected)
No. Species
(% detected)

AUC SE SP PPV NPV
ACC

(Up-Low)

BestA 16 (0.16%) 11 (1.92%) 0.944 90.73 87.16 82.08 93.56
88.57

(90.70–86.15)

OtherB 9 (0.09%) 5 (0.87%) 0.936 87.22 88.82 83.49 91.47
88.19

(90.35–85.74)

OtherB 4 (0.04%) 3 (0.52%) 0.908 82.11 87.99 81.59 88.36
85.68

(88.04–83.05)

After BEs removal

Model
No. ASVs

(% detected)
No. Species
(% detected)

AUC SE SP PPV NPV
ACC

(Up-Low)

BestA 200 (2.03%) 99 (17.28%) 0.935 81.79 91.51 86.20 88.58
87.69

(89.89–85.20)

OtherB 90 (0.91%) 55 (9.60%) 0.938 83.39 89.65 83.92 89.28
87.19

(89.43–84.66)

OtherB 20 (0.20%) 19 (3.32%) 0.927 80.83 88.20 81.61 87.65
85.30

(87.69–82.65)
Analyses were performed using high-abundance taxa (i.e., >0.20). The percentages of detected ASVs and species were calculated with respect to the total number of different ASVs and species
detected by at least one of the groups being compared (9,859 ASVs; 573 species). Taxa that could not be classified at the species level (“unclassified”) were counted once, meaning that the number
of species detected is the minimum that could be obtained.
A-”Best” was the best model obtained by the mathematical procedure implemented in the mixOmics package (Rohart et al., 2017).
B- “Other” were the models obtained from the “best” model that were created by progressively removing the predictor ASVs with the lowest contribution factor.
ACC, accuracy; ASVs, amplicon sequence variants; AUC, area under the curve; BEs, batch effects; Low, lower boundary (limits of accuracy); No., number; NPV, negative predictive value; PPV,
positive predictive value; Up, upper boundary (limits of accuracy).
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and a contribution value ≤-0.10 for health or ≥0.10 for disease in at least

one of the best models after removing the BEs were also included.

Overall, predictive taxa of periodontitis influenced the models

more than those of health: 23 main disease-predictor ASVs vs. 10

main health-predictor ASVs. In this respect, T. forsythia-AV15

contributed the most in all the models. Concerning other taxa that

acted as main predictors in all models, S. oralis subsp. dentisani clade

058-AV1042 is highlighted as a health predictor, and F. nucleatum

subsp. vincentii-AV10, M. faucium-AV213, Parvimonas sp.

HMT110-AV21, and T. denticola-AV38 as periodontitis predictors.

Furthermore, C. rectus-AV20, D. invisus-AV68, and F. alocis-AV19

also predicted disease in all models, but their contribution to some of

them was <0.10 (Table 4).

Some taxa with contribution values >-0.10 or <0.10 before

maintained their low contribution or even disappeared from the

models after removing BEs. Examples of this would be S. sanguinis-
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AV228 as health-predictor and F. nucleatum subsp. polymorphum-

AV44 as periodontitis-predictor. Conversely, other taxa

significantly increased their contribution to the models after

removing BEs, such as Rothia aeria-AV6 for health or P. brachy-

AV51 and P. gingivalis-AV8 for periodontitis (Table 4).

None of the main predictive taxa with contribution values

≤-0.10 or ≥0.10 appeared only in models before BEs were

removed. On the contrary, others showing these values were

found exclusively after correction as predictors of 1) health - H.

parainfluenzae-AV78 and H. sputorum-AV382 and AV564; and 2)

periodontitis - F. fastidiosum-AV97, Prevotella sp. HMT304-

AV217, Sacchari BTASV096126-AV37, S. constellatus-AV101 and

T. denticola-AV150 (Table 4).

In the models constructed after eliminating the BEs, there were

species for which distinct ASVs predicted the two opposite clinical

conditions under study, unlike the case before removal. The species
TABLE 3 Predictive models for distinguishing health from periodontitis using the training and test samples.

Before BEs removal

Model
No. ASVs

(% detected)
No. Species
(% detected)

Samples AUC SE SP PPV NPV
ACC

(Up-Low)

BestA 35 (0.36%) 26 (4.54%)

Train 0.945 90.91 85.40 80.17 93.54
87.57

(90.26–84.46)

Test 0.955 86.54 90.06 84.91 91.19
88.68

(92.23–84.23)

OtherB 11 (0.11%) 6 (1.05%)

Train 0.944 89.95 86.96 81.74 93.02
88.14

(90.76–85.08)

Test 0.947 88.46 91.30 86.79 92.45
90.19

(93.49–85.96)

OtherB 7 (0.07%) 4 (0.70%)

Train 0.931 85.17 88.20 82.41 90.16
87.01

(89.75–83.84)

Test 0.937 83.65 91.93 87.00 89.70
88.68

(92.23–84.23)

After BEs removal

Model
No. ASVs

(% detected)
No. Species
(% detected)

Samples AUC SE SP PPV NPV
ACC

(Up-Low)

BestA 100 (1.01%) 60 (10.47%)

Train 0.937 81.82 90.37 84.65 88.45
87.01

(89.75–83.84)

Test 0.947 78.85 90.68 84.54 86.90
86.04

(89.98–81.27)

OtherB 45 (0.46%) 36 (6.28%)

Train 0.931 81.82 89.13 83.01 88.31
86.25

(89.07–83.03)

Test 0.943 78.85 89.44 82.83 86.75
85.28

(89.32–80.43)

OtherB 23 (0.23%) 21 (3.66%)

Train 0.923 79.90 89.44 83.08 87.27
85.69

(88.55–82.42)

Test 0.941 80.77 88.82 82.35 87.73
85.66

(89.65–80.85)
Analyses were performed using high-abundance taxa (i.e., >0.20). The percentages of detected ASVs and species were calculated with respect to the total number of different ASVs and species
detected by at least one of the groups being compared (9,859 ASVs; 573 species). Taxa that could not be classified at the species level (“unclassified”) were counted once, meaning that the number
of species detected is the minimum that could be obtained.
A-”Best” was the best model obtained by the mathematical procedure implemented in the mixOmics package (Rohart et al., 2017).
B- “Other” were the models obtained from the “best” model that were created by progressively removing the predictor ASVs with the lowest contribution factor.
ACC, accuracy; ASVs, amplicon sequence variants; AUC, area under the curve; BEs, batch effects; Low, lower boundary (limits of accuracy); No., number; NPV, negative predictive value; PPV,
positive predictive value; Up, upper boundary (limits of accuracy).
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affected when all samples were used were: Actinomyces sp. HMT172

(Sal_x0Hxx= AV577; Sal_x0Px= AV260); A. tannerae (Sal_x0Hxx=

AV630; Sal_x0Px= four ASVs); F. periodonticum (Sal_x0Hxx=

three ASVs; Sal_x0Px= AV298); Neisseria perflava (Sal_x0Hxx=

three ASVs; Sal_x0Px= AV190), Prevotella melaninogenica

(Sal_x0Hxx= AV166; Sal_x0Px= AV255) and R. mucilaginosa

(Sal_x0Hxx= AV48; Sal_x0Px= AV148). However, this only

occurred with the first two species if the train/test specimens were

employed (Data Sheet 9).

Lastly, contrary to the differential abundance results,

contrasting the condition predicted for each common ASV before

vs. after the BEs corrections did not reveal any that predicted the

opposite clinical status. Among the common species, only the

Streptococcus unclassified to the species level predicted health
Frontiers in Cellular and Infection Microbiology 11
before removing the BEs and both conditions thereafter (Data

Sheet 9).
4 Discussion

Previous publications have evaluated the salivary microbiota of

periodontally healthy and diseased patients to identify both taxa

with differential abundances and those with a predictive ability to

distinguish between study groups (Chen et al., 2015; Damgaard

et al., 2019; Lundmark et al., 2019; Sun et al., 2020; Ma et al., 2021;

Relvas et al., 2021). However, these investigations present severe

methodological shortcomings related to their sample sizes, either

not exceeding 60 individuals in total (Chen et al., 2015) and/or 25 in
A

B

FIGURE 5

Potential of the salivary microbiota to distinguish health from periodontitis using all samples (ROC curves). (A) Before removing the batch effects;
and (B) After removing the batch effects. ASVs, amplicon sequence variants; AUC, area under the curve.
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some study groups (Damgaard et al., 2019; Sun et al., 2020; Ma

et al., 2021; Relvas et al., 2021), or even presenting major imbalances

between groups (i.e., 25 healthy vs. 100 periodontitis) (Ma et al.,

2021). This makes it difficult to understand and differentiate clinical

conditions, as individual variations may be confounded with real

biological differences (Meuric et al., 2017; Cai et al., 2021); in

predictivity analyses, this leads to the obtention of overfitted and

non-generalizable models (Kuhn and Johnson, 2013). Moreover,

producing narrative reviews combining diverse findings to define a

consensus profile for each health status is also not optimal. The

methodological differences in the sequencing workflows employed

in the studies can affect the diversity results (de la Cuesta-Zuluaga

and Escobar, 2016; Robinson et al., 2016; Nearing et al., 2021).

Biological heterogeneity and a validation process are other

methodological premises that must be fulfilled in diagnostic
Frontiers in Cellular and Infection Microbiology 12
predictivity studies. For experts in the diagnostic accuracy field,

the lack of subjects with distinct degrees of disease severity might

favor overestimating a model’s accuracy parameters (Dinnes et al.,

2005; Reitsma et al., 2009). A validation process, preferably

external, is also needed to ensure the applicability of predictive

models in other populations (Moons et al., 2015). However, some

of the research published so far only included severe cases of the

disease (Damgaard et al., 2019; Lundmark et al., 2019; Sun et al.,

2020) and in none of them, validation of the predictive models

obtained was carried out (Chen et al., 2015; Damgaard et al., 2019;

Lundmark et al., 2019; Sun et al., 2020; Ma et al., 2021; Relvas

et al., 2021).

These limitations can be overcome by performing 16S-MB

studies in which sequences from different studies are analyzed

under the same bioinformatics protocol and using the same
A

B

FIGURE 6

Potential of the salivary microbiota to distinguish health from periodontitis using test samples (ROC curves). (A) Before removing the batch effects;
and (B) After removing the batch effects. ASVs, amplicon sequence variants; AUC, area under the curve.
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TABLE 4 Main predictor taxa of periodontal health and periodontitis in saliva.

Taxonomy levels Models with all samples
Models with train &

test samples

ASVid Genus Species ASV
Before

BEs removal
After

BEs removal
Before

BEs removal
After

BEs removal

Predictor taxa of periodontal health in saliva

AV00078 Haemophilus parainfluenzae unclassified -0.12 -0.13

AV00382 Haemophilus sputorum BTASV221825 -0.12 -0.12

AV00564 Haemophilus sputorum unclassified -0.17 -0.18

AV00159 Ochrobactrum anthropi BTASV124479 -0.10

AV01019
Peptostreptococcaceae

[XI][G-5]
bacterium_HMT493 BTASV114299

AV00006 Rothia aeria BTASV063887 -0.12 -0.12

AV00425 Streptococcus
oralis subsp. dentisani

clade 058
unclassified

AV01042 Streptococcus
oralis subsp. dentisani

clade 058
unclassified -0.13 -0.15 -0.20 -0.19

AV00228 Streptococcus sanguinis unclassified -0.18

AV00571 Veillonella rogosae unclassified

Predictor taxa of periodontitis in saliva

AV00128 Alloprevotella tannerae unclassified 0.13 0.15

AV00061 Bacteroidales [G-2] bacterium_HMT274 unclassified

AV00041 Campylobacter gracilis BTASV155368 0.11 0.14

AV00020 Campylobacter rectus BTASV188427 0.11 0.11 0.15

AV00068 Dialister invisus BTASV044355 0.11 0.10 0.10

AV00019 Filifactor alocis BTASV124203 0.18 0.13 0.22

AV00097 Fretibacterium fastidiosum unclassified 0.18 0.22

AV00044 Fusobacterium
nucleatum

subsp. polymorphum
unclassified

AV00010 Fusobacterium
nucleatum

subsp. vincentii
unclassified 0.35 0.17 0.27 0.18

AV00298 Fusobacterium periodonticum unclassified 0.11

AV00213 Mycoplasma faucium unclassified 0.13 0.17 0.17 0.21

AV00021 Parvimonas sp. HMT110 unclassified 0.23 0.18 0.22 0.22

AV00129
Peptostreptococcaceae

[XI][G-5]
saphenum unclassified 0.17 0.22

AV00189
Peptostreptococcaceae

[XI][G-6]
nodatum BTASV174812 0.17 0.21

AV00051
Peptostreptococcaceae

[XI][G-9]
brachy BTASV129419 0.17 0.19

AV00008 Porphyromonas gingivalis BTASV154369 0.16 0.19

AV00217 Prevotella sp. HMT304 unclassified 0.16 0.17

AV00037 Sacchari BTASV096126 unclassified 0.10 0.10

AV00237 Stomatobaculum longum unclassified 0.10

AV00101 Streptococcus constellatus unclassified 0.17 0.19

(Continued)
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statistical methods. This allows the analysis of enormous sample

sizes, which ensures robust and reliable results (Zaura et al., 2021).

Nevertheless, before conducting a 16S-MB study, it is essential

to consider the best methodological practices based on the available

evidence (Regueira-Iglesias et al., 2023a). However, to our

knowledge, the only 16S-MB study to date on salivary microbiota

(Ruan et al., 2022) fails to meet several of these methodological

practices. This study analyzed sequences from distinct gene regions

and clustered them into 97% similarity OTUs to obtain taxa

correlations without considering the compositionality of the data

or assessing the influence of BEs.

The present is the first 16S-MB study to analyze salivary

microbiota’s differential abundance and predictive capacity for

identifying taxa distinguishing periodontal health from

periodontitis. For the first time, these analyses on oral microbiome

data were performed before and after BE removal under a CoDA

analysis approach. In particular, datasets from 10 Illumina V3-V4

region bioprojects were merged, and ~800 samples were assigned to

one of two clinical groups for evaluation. The patients included had

different degrees of disease severity, preferable in predictive analyses

since studies on only severe cases tend to overestimate diagnostic

performance (Dinnes et al., 2005; Reitsma et al., 2009). A strict and

unified bioinformatics protocol was applied to process the sequences.

This included the employment of ASVs and an oral-specific database

for taxonomic assignment (Escapa et al., 2020). In addition, external

validation of the predictive models was carried out, as recommended

by the TRIPOD guidelines (Moons et al., 2015).

The novel nature of our research conditioned us to compare our

results with those of non-16S-MB articles that employ differential

abundance and predictivity analyses (Chen et al., 2015; Damgaard

et al., 2019; Lundmark et al., 2019; Sun et al., 2020; Ma et al., 2021;

Relvas et al., 2021). However, based on the above arguments, these

comparisons must be interpreted cautiously.
4.1 Quality assessment of metadata
and sequences

It is critical to report metadata correctly for meaningful genomic

sequence-sample environment linkage. Efforts have been made to
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standardize the minimum gene sequence information to be reported

(Yilmaz et al., 2011). The recommended 70-variable checklist

conceived for the oral environment is not yet widely used and, more

importantly, has its limitations (Vangay et al., 2021). Considering this

and given the limited data stored in the relevant repositories, we created

a 16-variable checklist based on the minimum metadata required to

perform the present 16S-MB study. This was then used to assess the

quality of the metadata of the included studies.

The authors of ~38% of the articles that met the inclusion criteria

had to be contacted to acquire metadata or for clarification purposes.

Subsequently, as noted in a meta-analysis of the respiratory

microbiome (Broderick et al., 2023), a third of these were ultimately

rejected. Moreover, 80% of the included bioprojects had low- or

medium-quality metadata lacking key clinical characteristics, as

reported (Broderick et al., 2023). The full-text manuscripts also often

had to be revised to obtain the information required.

Conversely, however, the robustness of the results of our study

is guaranteed for two reasons. First, the strict quality filter was

applied to the 16S rRNA gene sequences of the selected bioprojects.

Second, they all had an average number of ≥10,000 sequences

(range of average sequences/bioproject= 87,193-10,773).
4.2 Differential abundance analysis before
and after the removal of BEs

Although commonly employed in non-16-MB studies for

differential abundance analysis (Chen et al., 2015; Lundmark et al.,

2019; Relvas et al., 2021), tools such as DESeq2 (Love et al., 2014) or

LEfSe (Segata et al., 2011) should not be used. These tools do not

account for compositionality and are sensitive to sparsity, leading to

unacceptably high false positive rates (Gloor et al., 2017). Analyses

relying on logarithmically transformed data, such as the CLR

performed here, account not only for the compositionality but also

the sparsity and over-dispersion that are inherent in the microbiome

data (Wang and LêCao, 2020; Narayana et al., 2021). Thus, these

should be performed instead (Quinn et al., 2019). On the other hand, it

was also mandatory for us to perform a logarithmic transformation to

apply theWang and Lê Cao (2023) protocol for removing BEs, as some

of the included approaches required it.
TABLE 4 Continued

Taxonomy levels Models with all samples
Models with train &

test samples

ASVid Genus Species ASV
Before

BEs removal
After

BEs removal
Before

BEs removal
After

BEs removal

Predictor taxa of periodontitis in saliva

AV00015 Tannerella forsythia BTASV153103 0.61 0.23 0.45 0.30

AV00038 Treponema denticola BTASV138814 0.24 0.19 0.26 0.25

AV00150 Treponema denticola unclassified 0.11 0.12
Cells are colored according to the periodontal condition predicted by the taxon in question: the green color is associated with periodontal health and red with periodontitis. The taxa listed in the
table are those with a defined species-level taxonomy that are part of the models before removing batch effects. In addition, it also includes those with a defined species-level taxonomy and a
contribution factor in at least one of the predictive models after removing batch effects: ≤-0.10 (health) or ≥0.10 (periodontitis). If no numerical value is indicated but the cell is colored, the
contribution factor was >-0.10 (health) or <0.10 (periodontitis).
ASV, amplicon sequence variant; ASVid, amplicon sequence variant identifier; BEs, batch effects.
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As anticipated, the present study’s use of analyses that remove

heterogeneity from data caused by unwanted sources of variation

(i.e., BEs) while also preserving the impact of real biological factors

(Wang and LêCao, 2020; Narayana et al., 2021) resulted in a

reduction of the total number of ASVs with differential

abundance by approximately one-third. Moreover, nearly 45% of

the ASVs with differential abundance between the groups before the

BE removal were not retained thereafter. The taxa affected most

were those with small or negligible rather than large or medium

effect sizes (80 and 27 ASVs, respectively). This highlights that, as

might be anticipated, most spurious associations had a low impact.

These spurious associations of exposure with microbiome features

are due to an imbalanced distribution between batches (Ma, 2019)

and are of common appearance when pooling non-normalized

samples from different studies (Gibbons et al., 2018).

4.2.1 Taxa with differential abundance in health
and periodontitis before and after the removal
of BEs

Some of the taxa demonstrating a differential abundance about

health or periodontitis, both before and after the removal of BEs, have

previously been found to be more abundant in the same health

conditions. Examples are the commensal species S. oralis subsp.

dentisani (Sun et al., 2020) and the pathogens F. alocis (Lundmark

et al., 2019; Diao et al., 2021; Narita and Kodama, 2022), F. nucleatum

(Damgaard et al., 2019; Narita and Kodama, 2022), M. faucium

(Damgaard et al., 2019; Relvas et al., 2021), T. forsythia (Lundmark

et al., 2019; Sun et al., 2020; Diao et al., 2021; Relvas et al., 2021; Narita

and Kodama, 2022) and T. denticola (Narita and Kodama, 2022).

Similarly, others only strongly associated with periodontitis before the

elimination of BEs, such as C. rectus (Diao et al., 2021) and D. invisus

(Narita and Kodama, 2022), or only thereafter, such as P. saphenum

(Damgaard et al., 2019) and P. HMT304 (Acharya et al., 2019), have

been linked to this disease by other authors.

On the other hand, some of the contradictions we identified

with the findings reported in the literature may arise because our

analysis was conducted at the variant level. Consequently, we have

identified how species traditionally more abundant in health, such

as R. mucilaginosa (Narita and Kodama, 2022), have different ASVs

for each condition. In line with this, removing BEs may have

conditioned our discovery that species associated with a particular

clinical status, such as N. perflava (health) (Narita and Kodama,

2022) and P. melaninogenica (periodontitis) (Diao et al., 2021) both

have ASVs for both conditions. Conversely, after removing BEs, we

confirmed the role of species widely known to be associated with

health, like C. concisus (Lundmark et al., 2019) and H.

parainfluenzae (Diao et al., 2021; Relvas et al., 2021) and

periodontitis, such as P. gingivalis (Damgaard et al., 2019; Sun

et al., 2020). This suggests their association with both conditions

before BEs removal may have been masked by the presence of BEs.

4.3 Predictive models before and after the
removal of BEs

In the present study, a small proportion of the salivary taxa had

an outstanding ability (AUC≥0.90) (Hosmer et al., 2013) to
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distinguish between periodontal conditions before the removal of

BEs, both in the models using all the samples (16 ASVs) and those

built using training specimens and subsequently validated (35

ASVs). Moreover, these models achieved excellent sensitivity and

PPV (>80%) (De Luca Canto et al., 2015) and excellent or good

specificity and NPV (>85%) (De Luca Canto et al., 2015). These

performance parameters are better than those provided by other

predictive studies with methodological shortcomings (Chen et al.,

2015; Damgaard et al., 2019; Ma et al., 2021).

After the removal of BEs, the outstanding ability of saliva in

terms of AUC to distinguish health from disease was not altered.

However, our all-sample and training/test-specimen models

showed a decrease in all the other diagnostic classification

parameters (except specificity), which did not significantly

condition their interpretation (De Luca Canto et al., 2015).

Most importantly, after removing BEs, our models required

around twelve (all: 200 ASVs) and three (training/test: 100 ASVs)

times more predictor taxa. This latter finding contrasts the results

from the differential abundance analysis, where the number of taxa

fell when BEs were removed. Consistent with the contributions

made by Goh et al. (2017), our predictive results showed that BEs

can be confounded with hidden biological heterogeneity of the

subpopulation. Consequently, when BEs are eliminated, that

removal may prejudice interclass differences, creating less robust

classifiers. Thus, we argue that removing BEs may not be

appropriate for predictivity analysis.

On the other hand, by reducing the predictor variables in, e.g.

training/test models, we observed that even using as few as four

ASVs before BEs removal or 20 ASVs after, it was still possible to

classify healthy and periodontitis subjects optimally. These findings

corroborate the reliability, interpretability, and applicability of the

models obtained (Kuhn and Johnson, 2013).

4.3.1 Taxa predictive of health and periodontitis
before and after the removal of BEs

S. oralis subsp. dentisani clade 058, a species commonly

associated with health in the human mouth (López-López et al.,

2017; Jansen et al., 2021), is described here as a health-predictor

taxa in all the models. Indeed, reports have referred not only to its

inhibitory activity over microorganisms traditionally considered to

be oral pathogens, such as Aggregatibacter actinomycetemcomitans,

F. nucleatum, Prevotella intermedia, Streptococcus mutans, and

Streptococcus sobrinus (López-López et al., 2017; Jansen et al.,

2021); but also to its ability to alkalinise the extracellular

environment via the arginine deiminase system (López-López

et al., 2017). Furthermore, in accordance with Diao et al. (2021),

who observed that a lower abundance ofH. parainfluenzaemight be

a biomarker of periodontitis, our models found that this species

predicted health after removing BEs.

On the other hand, similar to that reported in non-16S-MB studies,

we confirmed in all the salivarymodels the periodontitis-predictive role

of the widely known periodontopathogens F. alocis (Chen et al., 2015;

Lundmark et al., 2019; Ma et al., 2021), F. nucleatum (Lundmark et al.,

2019; Ma et al., 2021), T. forsythia (Chen et al., 2015; Lundmark et al.,

2019; Ma et al., 2021; Narita and Kodama, 2022) and T. denticola

(Narita and Kodama, 2022). Moreover, after removing the BEs, the
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models found that S. constellatus was predictive of disease, as described

in previous work (Ma et al., 2021).

As observed in the differential abundance analyses before and

after BEs removal, the models after their exclusion found that

different ASVs from the same species predicted the opposite

clinical states. These findings indicate that the bioinformatic

concept of ASV can have a real biological meaning (Callahan

et al., 2017; Prodan et al., 2020; Regueira-Iglesias et al., 2023a).

Consequently, associating a species-level taxon with a particular

health condition might not always be appropriate.

On the other hand, unlike the differential abundance results, no

ASV predicted opposite periodontal conditions before vs. after the

removal of BEs. Consequently, in the present series, predictive

modeling enabled us to better understand saliva’s health- and

disease-associated taxa than the differential abundance analysis.
4.4 Strengths and limitations of the
present study

As explained above, our 16S-MB study considered methodological

best practices based on the available evidence (Regueira-Iglesias

et al., 2023a).

Among the main strengths of our research were the high sample

sizes of the two study groups (>450 health, >300 periodontitis) and

the biological heterogeneity of their samples (i.e., different degrees

of disease severity). These characteristics avoided the obtention of

over-fitted and non-generalized models (Dinnes et al., 2005;

Reitsma et al., 2009; Kuhn and Johnson, 2013; Papoutsoglou

et al., 2023) and allowed the creation of training and test groups

of sufficient size to evaluate the performance of such models

(external validation). These requirements must be met in any

diagnostic predictivity study (Kuhn and Johnson, 2013; Moons

et al., 2015).

The employment of the same variable selection procedure and

modeling technique before and after the removal of BEs allowed, for

the first time in the oral microbiome literature, to evaluate the

influence of such effects on the results obtained. Since the removal

of BEs was assessed using five different methods (Wang and Lê Cao,

2023), the most optimal one for our data could be chosen.

Furthermore, in contrast to previous non-16S-MB articles

(Chen et al., 2015; Damgaard et al., 2019; Sun et al., 2020; Diao

et al., 2021; Ma et al., 2021; Relvas et al., 2021), we did not only

calculate AUC values as an accuracy parameter as this is insufficient

to evidence the suitability of a diagnostic biomarker (Kuhn and

Johnson, 2013). We evaluated the ability to detect periodontally

healthy or periodontitis patients using other classification

parameters (ACC, sensitivity, specificity, PPV, and NPV).

As another advantage, we incorporated an automated

procedure that, starting from the best models obtained, allowed

us to identify the minimum number of predictors to obtain optimal

discrimination and classification parameters.

On the other hand, one of the main limitations of our study was

that, although the initial aim was to assess several periodontal

conditions, we were only able to evaluate health vs. periodontitis.

Not enough samples were detected for other conditions to perform the
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analyses, ensuring minimum quality standards. Finally, ~17% of the

full-text excluded articles had used the Illumina technology but had not

stored their sequences in public repositories. Further publications were

eliminated for inadequate metadata reporting or were included but had

low-quality metadata. Consequently, in line with the National

Microbiome Data Collaborative Workshop report (Vangay et al.,

2021), storing sequences and their corresponding metadata in public

databases should be mandatory. Minimum quality standards should

also be fulfilled to facilitate the reproducibility of future research and

large-scale 16S-MB studies.

The findings described here contribute to advancing NGS clinical

metagenomics (Chiu and Miller, 2019), offering novel insights into

periodontal diagnostics. The increasing trend towards improvement in

terms of cost and time of this technology could favor implementing

microbiome-based diagnostic tools in daily clinical practice.

In conclusion, the removal of BEs controls false positive ASVs in

the differential abundance analysis. However, their elimination implies

a significantly larger number of predictor taxa to achieve optimal

performance, creating less robust classifiers. As all the provided models

can accurately discriminate health from periodontitis, implying good/

excellent sensitivities/specificities, saliva demonstrates potential clinical

applicability as a precision diagnostic tool for periodontitis.
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Wang, Y., and LêCao, K. A. (2020). Managing batch effects in microbiome data. Brief
Bioinform. 21, 1954–1970. doi: 10.1093/bib/bbz105
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