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The recent birth of the immunometabolism field has comprehensively

demonstrated how the rewiring of intracellular metabolism is critical for

supporting the effector functions of many immune cell types, such as myeloid

cells. Among all, the transcriptional regulation mediated by Hypoxia-Inducible

Factors (HIFs) and Nuclear factor erythroid 2-related factor 2 (NRF2) have been

consistently shown to play critical roles in regulating the glycolytic metabolism,

redox homeostasis and inflammatory responses of macrophages (Mjs). Although
both of these transcription factors were first discovered back in the 1990s, new

advances in understanding their function and regulations have been

continuously made in the context of immunometabolism. Therefore, this

review attempts to summarize the traditionally and newly identified functions

of these transcription factors, including their roles in orchestrating the key events

that take place during glycolytic reprogramming in activated myeloid cells, as

well as their roles in mediating Mj inflammatory responses in various bacterial

infection models.
KEYWORDS
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Introduction

Immunometabolism is an emerging field of research that studies the metabolic

regulation of immune function by integrating both biochemistry and immunology on a

cellular and systemic level. Although the term “immunometabolism” first appeared in

literature in 2011, the importance of metabolites for immune cell function has been

reported many years ago (Alonso and Nungester, 1956; Oren et al., 1963; Newsholme et al.,

1986; Fukuzumi et al., 1996; Mathis and Shoelson, 2011). In fact, intracellular metabolism
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has always been recognized to play a role more than bioenergetics.

For instance, the difference in amino acid metabolism has been

traditionally used to define macrophages (Mjs) subsets, with M1 or

M[LPS(+IFNg)] converting arginine into nitrogen oxide (NO) via

inducible Nitric Oxide Synthase (iNOS), while M2 or M[IL-4]

converting arginine into ornithine via arginase-1 (Corraliza et al.,

1995; Modolell et al., 1995; Munder et al., 1998; Murray et al., 2014).

Interestingly, in the past, intracellular metabolism was not included

in immunological research except for the studies of metabolic

diseases, such as obesity or diabetes (O'Neill et al., 2016). This

was attributed to a lack of robust and sensitive technologies to

directly assess how metabolic pathways are linked to immune cell

functions. However, recent advancements made in technologies,

such as mass spectrometry-based metabolomics and Seahorse

analyzers, now confer possible means to study the contribution of

metabolic changes in immune functions.

Among all the immune cell types, the metabolic functions of

myeloid cells, such as Mjs and Dendritic cells (DCs), are the most

characterized. First discovered by Metchnikoff for their abilities to

phagocytose and kill microbes, Mjs are now appreciated as innate

immune cells that can detect infection or tissue damage by

expressing pattern recognition receptors (PRRs), which are

germline-encoded receptors that can bind to conserved

compounds derived from microbes or damaged tissues

(Medzhitov and Janeway, 2000; Seong and Matzinger, 2004). The

successful binding of these ligands to their receptors then activate a

series of phosphorylation cascades, which relay this sensing

information intracellularly and activate the corresponding

transcription factor to transcribe the appropriate set of genes in

response to the external stimuli. The classical example of this is the

binding of lipopolysaccharide (LPS) to Toll-like receptor 4 (TLR4).

LPS is a molecule derived from the outer membranes of gram-

negative bacteria, therefore, it is often used as a mimetic of bacterial

infection. Upon binding to TLR4, LPS activates a series of

phosphorylation cascades, such as Akt and MAPKs, then the

subsequent activation of transcription factors, such as NF-кB and

AP-1, leading to the transcription of genes related to inflammation,

phagocytosis and killing of bacteria. Although the signaling and

transcription events post LPS-stimulation has been well

characterized, how intracellular metabolic circuits support these

events remained a mystery until the metabolites involved

were profiled.

In 2010, it was first described in Mjs that LPS stimulation led to

the enhancement of glycolytic flux, which can be divided into two

time-dependent phases: 0-4hr and 4-12hr (Rodrıǵuez-Prados et al.,

2010). The first phase of enhancement, known as the early stage of

glycolytic reprogramming, was much slower than the second phase,

known as the late stage of glycolytic reprogramming.

Transcriptional analyses revealed that during the enhancement of

glycolytic flux, the expression of genes related to glycolysis was

upregulated while the genes that encode for proteins involved in the

oxidative phosphorylation were suppressed. Similar findings were

reported in activated DCs whereby TLR agonists induced a

metabolic switch to glycolytic metabolism with an impairment in

mitochondrial respiration (Krawczyk et al., 2010; Everts et al.,

2012). Taken together, these studies have demonstrated that LPS-
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activated myeloid cells adopt a unique metabolic profile analogous

to the Warburg effect, which is a form of cellular metabolism in

tumor cells characterized with high levels of glucose uptake,

conversion from glucose to lactose, and a decline in oxidative

phosphorylation levels (Warburg et al., 1927).

Subsequent studies published after the aforementioned ones

have now elucidated the molecular mechanisms behind the

induction of glycolysis and its linkage with inflammation, as well

as the induction of the resolution phase of inflammation. Notably,

the transcriptional regulation mediated by Hypoxia-Inducible

Factors (HIFs) and Nuclear factor erythroid 2-related factor 2

(NRF2) orchestrate some of these key mechanisms. Thus, their

traditionally well-characterized roles and newly elucidated

functions are summarized in this review, followed by a revisit of

the key events that take place during the glycolytic reprogramming

in myeloid cells.
Hypoxia-inducible factors

Hypoxia-Inducible Factors (HIFs) is a family of transcription

factors that are known to activate the transcription of genes in

response to decrease in available oxygen, or hypoxia. Although

HIFs were first discovered in 1991 for their role in mediating

cellular responses against hypoxia (Semenza et al., 1991), it is now

revealed that they also plays a vital role in mediating the

transcriptional programs related to inflammation, angiogenesis,

survival, and glucose metabolism (Ruas and Poellinger, 2005;

Tannahill et al., 2013). The importance of discovering this family

of transcription factors was eventually recognized by awarding the

2019 Nobel Prize in Physiology or Medicine to Gregg Semenza, Peter

Ratcliffe and William Kaelin, the three scientists that significantly

contributed to our understanding of how cells sense and adapt to

oxygen availabilities.

In general, members of the HIF family are heterodimeric beta

helix-loop-helix (HLH) transcription factors composed of an a and

a b subunit, in which the a subunit is unstable and oxygen sensitive,

while the b subunit is constitutively expressed and insensitive to

oxygen. To date, three known a subunits, HIF-1a, HIF-2a and

HIF-3a, as well as three b subunits, HIF-1b, HIF-2b and HIF-3b,
have been identified (Reisz-Porszasz et al., 1994; Wang and

Semenza, 1995; Jiang et al., 1996; Jiang et al., 1997; Pugh et al.,

1997; Huang et al., 1998; Ema et al., 1999; O'Rourke et al., 1999;

Masson et al., 2001). Among all, HIF-1a and HIF-2a are the most

characterized. For HIF-1a specifically, it is structurally

characterized with a N-terminal basic HLH followed by Per-

ARNT-Sim (PAS) domains, oxygen-dependent-degradation

(ODD) domains, and two transcription activation domains in the

C-terminus (Figure 1A). The N-terminal basic domain is critical for

HIF-1 binding to the consensus sequence of its target genes, which

is known as hypoxia-response elements (HRE): 5’-TACGTG-3’

(Wang and Semenza, 1993; Melillo et al., 1995). The HLH and

PAS domains on the other hand are important for the

heterodimerization between the a and b subunits. The ODD

domains contain critical conserved proline residues, where they

can be hydroxylated by prolyl hydroxylases (PHDs) in the presence
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of oxygen and target HIF-1a for proteasomal degradation (Ivan

et al., 2001; Jaakkola et al., 2001; Masson et al., 2001; Yu et al., 2001).

Finally, there are two transcription activation domains in the C-

terminus: N terminal transactivation domain (N-TAD) and C

terminal transactivation domain (C-TAD). While N-TAD is

located within the ODD domain, C-TAD is near the end of the

C-terminus and harbors a conserved asparagine residue, in which

its hydroxylation can inhibit the transactivation capacity of HIF-1a
(Mahon et al., 2001).
The regulation of HIF-1a stability

Given the short half-life of HIF-1a (~5 minutes) (Huang et al.,

1998), past efforts in research have been dedicated to elucidating the

mechanisms behind the regulation of HIF-1a degradation. In

general, HIF-1a can be degraded by the classical ubiquitin

proteasome system (UPS), which is dependent on proline

hydroxylases (PHDs) and von Hippel-Lindau (VHL) ubiquitin

ligase, or alternatively via the autophagy-lysosomal pathway

(Hubbi et al., 2013). Other non-canonical pathways that mediate

HIF-1a degradation independent of UPS and autophagy have also

been reported in past studies (Iommarini et al., 2017). In the UPS

model, both oxygen-dependent proline hydroxylation by PHDs and

VHL-mediated ubiquitination are required (Maxwell et al., 1999;
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Cockman et al., 2000; Ohh et al., 2000; Bruick and McKnight, 2001;

Epstein et al., 2001). Specifically, under normoxic condition, PHDs

hydroxylate HIF-1a on two proline residues, Pro402 and Pro564

(for human HIF-1a), within the ODD domain (Ivan et al., 2001;

Jaakkola et al., 2001; Masson et al., 2001; Yu et al., 2001). The

hydroxylation sites allow VHL to mediate ubiquitination and

eventually proteasomal degradation (Figure 1B). However, under

hypoxic condition, without oxygen, PHDs activity is inhibited and

thus prevent HIF-1a from being degraded. The stabilized HIF-1a
can then translocate into the nucleus where it forms a dimer with

HIF-1b, which constitutes the HIF-1 complex required for the

transcription of its targeted genes (Figure 1C).

As previously mentioned, HIF-1a can also be degraded by the

autophagy-lysosomal pathway under certain conditions,

specifically, by macroautophagy or chaperone-mediated

autophagy (CMA). Macroautophagy involves the sequestration of

long-lived proteins and aggregates within the autophagosome and

delivering it to the lysosome for degradation. This process is

mediated by Sequestosome 1 (SQSTM1) or neighbor of BRCA1

gene 1 (NBR1) (DePavia et al., 2016). Indeed, past studies have

shown blocking autophagic inhibition by knocking down SQSTM1

impaired the induction of HIF-1a by Q6, a hypoxia-activated

prodrug (Liu et al., 2014). This notion was reinforced by the

reduction of HIF-1a levels upon AZD-2014-mediated inhibition

of mammalian target of rapamycin complex 1/2 (mTORC1/2),
B C D
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FIGURE 1

The regulation of HIF-1a degradation and function. (A) Diagram that illustrates the different domains of HIF-1a. bHLH and PAS domains are
important for the formation of heterodimeric complex with HIF-1b and binding to DNA. N-TAD domain contains key proline residues (P402, P564)
where prolyl hydroxylase (PHD) hydroxylates. C-TAD domain contains a key asparagine residue (N803) that factor inhibiting HIF (FIH) hydroxylates.
(B) Diagram that illustrates PHD-VHL-dependent degradation of HIF-1a and the inhibition of HIF-1a transactivation capacity by FIH under normoxic
condition. (C) Diagram that illustrates HIF-1 transcriptional activation of its targeted genes. Specifically, HIF-1a that escaped from its proteasomal
degradation, combines with HIF-1b, to form a heterodimer transcription factor known as HIF-1. Along with its co-activators (such as PKM2, p300/
CBP), HIF-1 then binds to its targeted genes, which are characterized with a hypoxia response element (HRE) and transcribes them. (D) Diagram that
illustrates HIF-1a degradation via the non-canonical chaperone-mediated autophagy pathway. In this model, HSPA8 recognizes the KFERQ-like
motif of HIF-1a and binds to it. STUB1, which is associated with HSPA8 as a complex, catalyzes K63 ubiquitination on HIF-1a, targeting it for
lysosomal degradation in a LAMP2A-dependent manner. All figures are made by Biorender.com.
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which activates autophagy (Zheng et al., 2015). Unlike

macroautophagy, CMA involves heat-shock cognate protein of

70kDA (HSC70) targeting its substrate, such as HIF-1a (Hubbi

et al., 2013), to lysosome-associated membrane protein type 2A

(LMAP2A) for degradation. Under this specific condition, E3 ligase

STIP1 homology and U-box containing protein 1 mediate HIF-1a
K63 ubiquitination instead of VHL (Ferreira et al., 2013; Ferreira

et al., 2015) (Figure 1D).

Finally, past studies have reported that under specific conditions,

HIF-1a can also be degraded without the involvement of VHL and

lysosomes. Specifically, in these studies, authors have shown thatWD

repeat and SOCS box-containing protein 1 (WSB1) can stabilize HIF-

1a by ubiquitinating VHL in cancer cells (Kim et al., 2015). MDM2,

another E3-ubqiutin-protein ligase, was also reported to ubiquitinate

HIF-1a independent of its hydroxylation by binding to tumor

suppressor proteins, such as TAp73 or p53 (Ravi et al., 2000;

Amelio et al., 2015). Past studies have also shown that post-

translational modifications other than hydroxylation, such as SET7/

9-mediated methylation, LSD1-mediated demethylation, p300-

mediated acetylation, SIRT2-mediated deacetylation, can all

regulate HIF-1a stability (Geng et al., 2012; Seo et al., 2015;

Kim et al., 2016). Taken together, these studies have revealed the

diverse ways of how HIF-1a stability can be regulated, and such

diversity may allow the fine-tuning of HIF-1 transcriptional output in

response to a wide range of external stimuli.
The regulation of HIF-1a
transactivation capacity

Apart from the proline hydroxylation mediated by PHDs, HIF-

1a is also hydroxylated by Factor Inhibiting HIF (FIH) at Asn803

(human HIF-1a) located within the C-TAD domain during

normoxic condition (Mahon et al., 2001). This asparagine

hydroxylation inhibits the transcriptional activity of HIF-1 by

sterically blocking the recruitment of coactivators CBP/p300

(Mahon et al., 2001). Similar to PHDs, FIH catalyzes its

hydroxylation reaction via the oxidative decarboxylation of 2-

oxoglutarate, producing carbon dioxide and succinate as by

products. Like PHDs, the enzymatic activity of FIH is also critically

dependent on its catalytic center of iron in its ferrous state (Fe+2),

which is maintained by the reducing action of ascorbic acid (Knowles

et al., 2003; Pagé et al., 2008). Knockout studies of FIH revealed that it

is an essential regulator of metabolism as mice deficient of FIH have

decreased body masses with an elevated metabolic rate (Zhang et al.,

2010). Moreover, these mice also have improved glucose and lipid

homeostasis, thus making them resistant to weight gain induced by

high-fat-diet (Zhang et al., 2010).

Although FIH and PHDs are iron (II)-dependent dioxygenases,

they have significant structural differences, which underlie their

differential regulation of HIF-1 transcriptional output. For instance,

FIH has broad functional pockets that allow O2 and other co-factors to

bind tightly, whereas PHDs have a narrow opening of active site (Lee

et al., 2003; Flashman et al., 2010). This structural difference enables

FIH to work efficiently despite low O2 availability, while PHDs remain
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inactive in these situations (Rani et al., 2022). More importantly, this

difference in the binding affinity for O2 between FIH and PHDs

underlies the graded HIF-1 transcriptional response in response to a

wide range of hypoxic conditions. Apart from their differences in

binding affinity for O2, FIH and PHDs also exhibit differences in their

functional inhibition by TCA cycle metabolites and oxidative stress. For

instance, an in vitro study has shown that while succinate and fumarate

can competitively inhibit PHDs by occupying their active sites, they

have no effect on FIH (Koivunen et al., 2007). On the other hand,

citrate and oxaloacetate can inhibit both PHDs and FIH (Koivunen

et al., 2007). In response to oxidative stress, FIH was found to be more

sensitive to its inhibition in comparison to PHDs. Specifically, one in

vitro study has shown that the activity of FIH was significantly more

inhibited by tert-butyl hydroperoxide-induced oxidative stress than

PHDs (Masson et al., 2012). Taken together, these studies demonstrate

that the differential responses between FIH and PHDs to external

stimuli underlie the spectrum of HIF-1 transcriptional reprogramming.

Finally, apart from catalyzing asparagine hydroxylation, an

early in vitro study has also revealed that FIH could perform

secondary functions, such as acting as a corepressor with VHL to

block histone deacetylases from binding to DNA (Mahon et al.,

2001). Indeed, another recent study has shown that overexpressing

FIH can inhibit the mRNA of GLUT1 even in hypoxia condition, in

addition to normoxic condition (Wang et al., 2014). This reinforces

the possibility that FIH can regulate HIF-1 transcriptional activity

independent of its hydroxylation activity.
The inflammatory role of HIF-1a in
LPS-activated Mjs

Although the transcriptional role of HIF-1a under hypoxic

condition is well established, its role in mediating inflammation in

activated Mjs has only been recently elucidated. The investigation

first began in 2003 with the initial characterization of myeloid cells

that are genetically deficient of Hif1a from Ly2Cre-Hif1afl/fl mice

(Cramer et al., 2003). In this study, the authors found that myeloid

cells that lack HIF-1a have impaired ATP levels, motility,

invasiveness, bactericidal activity, and aggregation (Cramer et al.,

2003), thereby implicating the role that HIF-1a plays in regulating

metabolism and inflammation. This notion was further supported

later by studies that show overexpressing HIF-1a leads to the

upregulation of M1 signature markers (Takeda et al., 2010; Wang

et al., 2017) post LPS and IFNg stimulation. Taken together, these

earlier studies have illustrated a positive role that HIF-1a plays in

mediating an inflammatory response in activated M1 Mjs.
To elucidate the mechanisms underlying HIF-1a involvement

in inflammatory response in activated Mjs, chromatin

immunoprecipitation of HIF-1a was performed and revealed that

HIF-1a binds to many glycolytic genes, such as Slc2a1, Ldha, Hk2,

Pfkp, as well as proinflammatory genes, such as Il1b and Nos2 in

LPS-activated Mjs (Melillo et al., 1995; Peyssonnaux et al., 2007;

Tannahill et al., 2013). The transcription of glycolysis genes is

critical for driving Mjs towards an aerobic glycolytic metabolism,

which is essential for fueling many intracellular inflammatory
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machineries, such as Pentose Phosphate Pathway (PPP)-derived

NADPH production for Nitric Oxide Synthase (NOSes) and

NADPH Oxidases (NOXes), TCA cycle-derived citrate for de

novo lipid synthesis. On the other hand, the transcription of

proinflammatory genes directly contributes to the production of

inflammatory cytokines. Apart from LPS stimulation, RNA-

sequencing analysis also revealed that almost half of Interferon

gamma (IFNg)-induced genes in Mjs are HIF-1a-dependent
(Braverman et al., 2016). Taken together, these studies have

revealed the direct and indirect roles that HIF-1a play in

orchestrating an effective inflammatory response in an

activated Mjs.
Understanding how important the transcriptional role of HIF-

1a is in activated Mjs, there is now an increasingly growing interest

to elucidate the molecular factors that are required for its

transcriptional activity. For instance, recent studies have shown

that PKM2, which is a pyruvate kinase in the last rate-limiting step

in glycolysis, can act as a cofactor for HIF-1a (Luo et al., 2011;

Palsson-McDermott et al., 2015) post LPS stimulation. Specifically,

PKM2 can transition from its active tetrameric state to its dimeric

state, then translocate into the nucleus and interact with HIF-1a to

promote its transcriptional regulation. Inhibitors, such as DASA-58

and TEPP-46, that block the dimerization of PKM2 could impair

HIF-1 activity and reduced inflammation in in vivo pathogenic

models (Palsson-McDermott et al., 2015). Overall, these studies

have identified the cofactors needed for HIF-1 transcription, and

how the manipulation of these cofactors confer possible means to

regulate HIF-1 transcriptional output for therapeutic purposes.
Introduction to nuclear factor
erythroid 2-related factor 2

Reactive oxygen species (ROS), i.e. super oxide anions (O2
•−)

and hydrogen peroxide (H2O2), and reactive nitrogen species

(RNS), i.e. nitric oxide (NO)-derived peroxynitrite (ONOO-), are

generated as a result of intracellular metabolism and upon exposure

to extracellular stimuli (Ma, 2010; Finkel, 2011). Although their

uncontrolled production can result in oxidative stress that abrogates

cellular function and contributes to the development of many

inflammatory diseases, when regulated properly, oxidants are

important signaling molecules for a wide range of cellular

processes (Finkel, 2011; Sies et al., 2022), as well as mediating the

inactivation of pathogens. For instance, the generation of O2
•− from

NOX2 is critical for the anti-microbial function of Mjs (Brüne

et al., 2013). Similarly, the generation of mitochondrially-derived

ROS has been recently shown to be activated by TLR4 signaling and

critical for Mj anti-bacterial responses (West et al., 2011). Finally,

the generation of ROS from other sources, including xanthine

oxidase (Ives et al., 2015) and peroxisomes (Di Cara et al., 2017)

have also been reported to play an important role in mediating the

intracellular killing of bacteria in Mjs.
A key transcription factor that regulates the abundance of ROS

is known as the nuclear factor erythroid 2 (NFE2)-related factor 2

(NRF2). Similar to Nrf1 and Nrf3, NRF2 belongs to the cap “n”
Frontiers in Cellular and Infection Microbiology 05
collar (CNC) subfamily of basic-region leucine zipper (bZIP)

transcription factor (Oyake et al., 1996). First discovered in 1994

for its role in erythropoiesis and platelet development (Moi et al.,

1994), it was later revealed that it was essential for mediating the

induction of drug-metabolizing and ROS detoxification enzymes,

such as NAD(P)H:quinone oxidoreductase 1 (Itoh et al., 1997). All

these enzymes share a common DNA sequence, known as the

antioxidant response element (ARE), where NRF2 binds to

(Nguyen et al., 2003). Specifically, the ARE sequence is 41-base-

pair, and contains a conserved sequence, 5’-TGACnnnGC-3’, where

n represents any base (Rushmore et al., 1991).

Given the importance of NRF2 in regulating cellular responses

to oxidative stress, past decades of research have been invested in

elucidating the regulation of NRF2 function and found that NRF2 is

always degraded under basal conditions by Kelch-like erythroid

cell-derived protein with CNC homology-associated protein 1

(KEAP1)-mediated ubiquitination-proteasomal degradation.

KEAP1 was identified as a substrate adaptor of CUL3 (a E3

ubiquitin ligase) via a yeast two-hybrid screen (Itoh et al., 1999).

The molecular and structural analysis of NRF2 has revealed that it

contains seven NRF2-ECH homology domains (Neh1-7), with each

domain serving a distinct function (Hayes and Dinkova-Kostova,

2014) (Figure 2A). For instance, the Neh1 domain includes a CNC-

bZIP region that is critical for the DNA binding activity of NRF2, as

well as its association with small musculoaponeurotic fibrosarcoma

(sMaf) proteins as dimerization partners (Motohashi and

Yamamoto, 2004). The Neh2 domain contains the highly

conserved DLG and ETGE motifs, which are important for the

interaction between KEAP1 and NRF2. This domain also includes

the seven lysine residues where they can be ubiquitylated and

mediate NRF2 for subsequent proteasomal degradation (Itoh

et al., 1999; McMahon et al., 2003; Tong et al., 2006). The Neh3

domain, which contains the transactivation activity, activates the

transcription of NRF2 targeted genes, together with Neh4 and Neh5

domains (Katoh et al., 2001; Nioi et al., 2005; Sekine et al., 2016).

Finally, Neh6 domain is involved in regulating NRF2 stability

independent of KEAP1 (Chowdhury et al., 2013), while Neh7

domain is involved in suppressing the transcriptional activity of

NRF2 (Wang et al., 2013). Overall, these studies have demonstrated

the intimate link between the structure of NRF2 and the regulation

of its function.
The regulation of NRF2 stability

The relatively short half-life of NRF2 (18.5 min) suggests its

function is primarily regulated by its stability (Itoh et al., 2003).

Indeed, cycloheximide-mediated inhibition of protein synthesis

impeded basal and induced expression of NRF2-targeted genes,

and that NRF2 can be stabilized with its half-life increased up to

200 min (Ma, 2013; Canning et al., 2015). Since NRF2 is a master

transcription factor regulating antioxidative defense mechanisms, its

basal levels are always maintained to be very low due to its constant

ubiquitination and proteasomal-degradation mediated by the

KEAP1/CUL3 complex. As previously mentioned, KEAP1 acts as a
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substrate adaptor by linking NRF2 to CUL3, thereby mediating the

ubiquitination of NRF2 by CUL3. Interestingly, the interaction

between KEAP1 and NRF2 is always in a ratio of 1:2, where two

KEAP1 proteins interact with one NRF2 as a dimer within the Neh2

domain (Padmanabhan et al., 2006; Tong et al., 2006; Lo et al., 2017).

Specifically, structural analyses of KEAP1 have shown that KEAP1

contains two protein-interacting domains, known as the BTB domain

in the N-terminal region, and the Kelch repeats in the C-terminal

region (Figure 2B). While the BTB domain mediates the binding of

KEAP1 to CUL3, the Kelch repeats mediate the binding of KEAP1 to

NRF2 (Li et al., 2004; Padmanabhan et al., 2006; Ogura et al., 2010).

In between the Kelch repeats and BTB domain lies the linker region,

which is rich in cysteine residues that are prone to be oxidized by

reactive radicals or electrophilic reagents. Under conditions where

redox homeostasis is disrupted (i.e. ROS overproduction), these

radicals can readily react with these key cysteine residues, including
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C151, C273 and C288 (Eggler et al., 2005; Hong et al., 2005; He and

Ma, 2010; McMahon et al., 2010; Baird et al., 2013), and presumably

induce a conformational change of KEAP1. This enables NRF2 to

dissociate from KEAP1 and translocate to the nucleus where it

activates the expression of genes that encode antioxidative proteins,

such as catalase, glutathione-disulfide reductase and thioredoxin

reductase (Figure 2C).

Apart from the classical model of KEAP1/CUL3-mediated

NRF2 ubiquitination, past studies have reported that NRF2

stabi l i ty can be modified by other post-translat ional

modifications, and interactions with other proteins. For instance,

NRF2 can be phosphorylated by ERK, JNK, AKT, PKC, CK2 and

PERK, in which their phosphorylation increases the stability of

NRF2 (Huang et al., 2002; Cullinan et al., 2003; Yuan et al., 2006;

Apopa et al., 2008; Hayes et al., 2015). On the other hand, p38 and

GSK3-mediated phosphorylation destabilizes NRF2 (Hayes and
B

C

A

FIGURE 2

The regulation of NRF2 degradation and function. (A, B) Diagram that illustrates the different domains of NRF2 (A) and KEAP1 (B), with each domain
harbors different functions. Specifically, KEAP1 also harbors various critical cysteine residues that readily respond to oxidative stress. (C) Diagram that
illustrates NRF2 degradation and function under basal condition (left) and oxidative stress (right) respectively. Under basal condition, NRF2 is
constitutively degraded by KEAP1 through the proteasome. However, under oxidative stress condition, ROS/electrophiles disrupt KEAP1
conformation by reacting with its critical cysteine residues, thus releasing NRF2 and allowing it to escape from degradation. The escaped NRF2 then
translocate into the nucleus, along with sMaf proteins, bind to its targeted genes, which are characterized with antioxidant response element (ARE),
and transcribes them. All figures are made by Biorender.com.
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Dinkova-Kostova, 2014). Apart from phosphorylation, NRF2 was

also shown to be glycated, and its deglycation indirectly induced by

fructosamine-3-kinase stabilizes NRF2 (Sanghvi et al., 2019).

In recent years, the regulationofNRF2by SQSTM1 (alsoknownas

p62) is increasingly appreciated. First reported in 2007, Liu et al. found

that the overexpression of p62 led to NRF2 nuclear translocation and

activation of NRF2-targeted genes (Liu Y. et al., 2007). The underlying

mechanism was then elucidated three years later by several groups,

where they found that p62 interacts with KEAP1, specifically the

NRF2-binding site. Therefore, an ectopic expression of p62

can outcompete NRF2 for KEAP1, sequestering KEAP1 into

aggregates or autophagosomes and impedes KEAP1-mediated NRF2

degradation (Copple et al., 2010; Fan et al., 2010; Komatsu et al., 2010;

Lau et al., 2010). Interestingly, anARE element was also found to be in

the p62 promoter, thereby supporting the notion that a positive

feedback loop exists between the transcription of p62 and inhibition

of NRF2 degradation (Jain et al., 2010). Apart from this, another

positive feedback loop also exists between p62-mediated KEAP1

degradation and activation of NRF2, as reported by Copple et al.

In their study, they found that overexpression of p62 significantly

accelerated the degradation of KEAP1 whereas the inhibition of

p62 expression increased KEAP1 expression (Copple et al., 2010).

Similar results were also reported in liver-specific, p62-deficient mice,

in which the liver-specific expression of KEAP1 was significantly

reduced in comparison to its wild-type counterparts (Taguchi et al.,

2012). Overall, it is generally believed that the p62-dependent non-

canonical pathway results in prolonged activation of NRF2, in which

this condition is found to be favorable for cancer cells to thrive as

it confers cryoprotection and antioxidative defensemechanisms (Jiang

et al., 2015). Taken together, these studies have demonstrated how

NRF2 stability can be diversely regulated, in which this diversity is

critical to optimize NRF2 transcriptional output in response to a wide

range of oxidative stress conditions.
The anti-inflammatory role of NRF2 in
LPS-activated Mjs

Although the role that NRF2 plays in regulating redox

homeostasis is well-established, how it regulates intracellular

metabolism and how this is linked to antioxidative defense in

activated Mjs is not completely understood. Early studies have

revealed both redox-dependent and independent roles that NRF2

play in suppressing inflammation in LPS-activated Mjs. For

instance, it was discovered that NRF2-activation by itaconate-

mediated alkylation of KEAP1 suppressed type I IFN responses in

LPS-activated Mjs (Mills et al., 2018). Specifically, authors in this

study found that itaconate and 4-octyl itaconate, which is a cell-

permeable itaconate derivate, deactivated KEAP1 by alkylation and

thereby activated NRF2-dependent antioxidative defense

mechanisms (Mills et al., 2018). The upregulation of NRF2 then

led to an impaired induction of type I IFN responses, HIF-1a levels,

proinflammatory cytokine production and glycolysis (Mills et al.,

2018). Overall, the study suggested that NRF2 controls Mj
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inflammation by metabolic regulation. In contrast to this study,

another study has found that NRF2 could suppress the transcription

of LPS-induced Il1b and Il6 by competing with RNA Polymerase II

binding (Kobayashi et al., 2016). Specifically, in this study, the

authors used ChIP-seq and ChIP-qPCR analyses to demonstrate

that in Ly2Cre: Keap1fl/fl mice where NRF2 is overexpressed in

myeloid cells, NRF2 could bind to the proximity of Il1b and Il6,

which blocked the recruitment of RNA Polymerase II binding to

their transcriptional start sites (Kobayashi et al., 2016). Overall,

these studies have shown that NRF2 can regulate inflammation in

ROS-dependent and independent ways.

How NRF2 controls inflammation by metabolic regulation

remains unclear. Recent studies have begun to characterize the

metabolism of Mjs by manipulating levels of NRF2 via genetic and

pharmacological means (Ding et al., 2019; Mornata et al., 2020;

Ryan et al., 2022). For instance, a recent study has profiled the

proteome, metabolome, and transcriptome of bone marrow-derived

Mjs (BMDMjs) isolated from WT, KEAP1-knockout or NRF2-

deficient mice (Ryan et al., 2022). In this study, the authors have

found that NRF2 significantly altered the proteome post LPS

stimulation, including alterations in redox, carbohydrate and lipid

metabolism (Ryan et al., 2022). Interestingly, the authors also found

that NRF2 can modulate mitochondrial morphology, specifically,

promoting their morphological transition from intermediate to

fused/elongated forms post LPS stimulation (Ryan et al., 2022).

Taken together, the authors found a correlation between these

metabolic changes to the suppression of IFNb responses in LPS-

activated Mjs. Apart from BMDMjs, recent research has also

identified an enrichment of NRF2-mediated transcriptional

signature in tumor-induced myeloid-derived suppressor cells

(MDSCs), which are immature myeloid cells that inhibit the

activation of T cells (Gabrilovich et al., 2007), the cytotoxic

functions of NK cells (Liu C. et al., 2007) and the induction of

T regulatory cells (Huang et al., 2006). For instance, Beury et al.

have first reported that NRF2 activation in MDSCs protects

them from oxidative stress and apoptosis, thereby increasing its

suppressive abilities and infiltration in tumors (Beury et al., 2016).

Metabolically, Ohl et al. have elucidated that NRF2-induction in

MDSCs increased their nutrient uptake through glycolysis, PPP and

mitochondrial metabolism, thus supporting their proliferative

abilities (Ohl et al., 2018). With respect to the pathways

that activate NRF2 in MDSCs, recent research performed

by Mohamed et al. have found that PKR-like endoplasmic

reticulum (ER) kinase (PERK) signaling leads to NRF2-activation

and its regulation on mitochondrial respiratory homeostasis, in

which is critical for the immunosuppressive functions of MDSCs

(Mohamed et al., 2020). Indeed, the authors found that the

suppression of PERK expression abrogated NRF2 signaling in

MDSCs, increased mitochondrial DNA content and activated

STING-dependent expression of anti-tumor Type I IFN

responses. Overall, these studies have demonstrated that NRF2

can exert its anti-inflammatory effects by intrinsically rewiring the

metabolism of activated inflammatory immune cells or by

supporting the expansion of immunosuppressive cell types.
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LPS-induced late phase of
glycolytic reprogramming

While the early phase of glycolytic reprogramming is vital to swiftly

rewire the metabolic circuits to fuel the immediate bioenergetic needs

of inflammatory machineries (0-4hr), the late phase of glycolytic

reprogramming is critical for reconfiguring intracellular metabolism

to sustain those needs for extended periods of time (6-24hr), and

ultimately for the induction of resolution of inflammation (end phase;

48-72hr) (Curtis et al., 2020). Unlike the early phase where the

induction is heavily dependent on post-translational modifications,

such as phosphorylation signaling cascades, the late stage of glycolytic

reprogramming relies on transcriptional regulation, with HIF-1a and

NRF2-mediated transcription being the most important in

myeloid cells.

As described previously, HIF-1a can be stabilized by TCA cycle

metabolites that mediate the inhibition of PHD activity. Indeed, the

reconfiguration of TCA cycle during the late stage of glycolytic

reprogramming significantly alters the abundance of TCA cycle

metabolites in LPS-activated Mjs. Specifically, this is achieved by

two metabolic breakpoints in the TCA cycle. The first breakpoint

takes place at the isocitrate dehydrogenase (IDH) level due to the

suppression of its mRNA expression (Tannahill et al., 2013; Jha

et al., 2015), NO-mediated cysteine nitrosation of IDH (Bailey et al.,

2019) and autocrine type I interferon signaling (De Souza et al.,

2019). As a result of the suppressed IDH activity, citrate then

accumulates and is re-directed towards itaconate through cis-

Aconitate by cis-aconitate decarboxylase or exported into the

cytoplasm by citrate transport protein. The accumulation of

cytosolic citrate can then be converted into acetyl-CoA through

ATP citrate synthase, which is critical for supporting de novo lipid

synthesis (Ryan and O'Neill, 2020) and histone acetylation of

inflammatory genes (Lauterbach et al., 2019; Ting et al., 2024b).

On the other hand, the accumulation of itaconate contributes to

the second metabolic breakpoint due to its effect on inhibiting the

activity of succinate dehydrogenase (SDH) (Cordes et al., 2016;

Lampropoulou et al., 2016), although the inhibitory effect of NO

on SDH has also been reported (Jha et al., 2015). Together, with the

increased influx of succinate derived from glutamine at the level of a-
ketoglutarate (anaplerosis) (Tannahill et al., 2013), both pathways

significantly increase the abundance of succinate, which inhibits the

activity of PHDs and stabilizes HIF-1a. The stabilized HIF-1a then

binds to HIF-1b and the HIF-1 complex activates downstream

targeted gene expression, including genes involved in glycolysis and

inflammation, such as Il1b (Tannahill et al., 2013). Apart from

stabilizing HIF-1a, dysregulated succinate metabolism can lead to

lysine succinylation, a novel post-translational modification that can

regulate enzymes involved in remodeling the epigenome (Park et al.,

2013; Tannahill et al., 2013). Specifically, succinylation can induce a

100-Da change in mass of targeted proteins and shield the positively

charged lysine side chains (Park et al., 2013). Enzymes, such as

PKM2, can be hypersuccinylated on lysine 311 which promotes its

tetramer-to-dimer transition, thereby inhibiting its pyruvate kinase

activity but activates its role as a co-factor for HIF-1a-dependent
transcription (Palsson-McDermott et al., 2015; Wang et al., 2017).
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Apart from HIF-1a-dependent transcription, NRF2-mediated

transcriptional regulation is also critical for regulating the late-

phase of glycolytic reprogramming. As previously described, the

accumulation of itaconate due to the remodeling of TCA cycle leads

to the alkylation of KEAP1 and subsequent activation of NRF2

(Mills et al., 2018). In addition to mediating the transcription of

antioxidative genes, NRF2 has been shown to limit LPS-induced

inflammatory responses through inhibiting RNA Polymerase II

binding to the promoters of Il1b and Il6 (Kobayashi et al., 2016),

suppressing HIF-1a-mediated glycolytic reprogramming (Mills

et al., 2018) and suppression of Type 1 IFN responses by

decreasing the mRNA stability of STING (Olagnier et al., 2018).

More recently, it has also been demonstrated that NRF2 can

regulate HIF-1a stability and its transcriptional function in a

NADPH-dependent manner (Ting et al., 2023b; Ting et al.,

2023a; Ting et al., 2024a). Specifically, it has been shown that the

enhanced activation of NRF2 led to the increased transcription and

translation of NRF2-targeted apoenzymes (Ting et al., 2023b).

These pools are proteins then detoxify ROS by consuming the

same NADPH pools that is required to synthesize ROS and stabilize

HIF-1a, eventually limiting HIF-1-dependent inflammation and

fine-tune Mj inflammatory responses (Figure 3).

Apart from fueling the effector functions of activated Mjs in a

sustained manner, the end phase of glycolytic reprogramming is also

important for the resolution of inflammation (48-72hr), which is

characterized by the subsidence, rather than accumulation, of

itaconate and succinate. For instance, a recent study has shown that

after the transient accumulation of itaconate and succinate (as a result

of the two breakpoints in the TCA cycle), pyruvate dehydrogenase

complex and oxoglutarate dehydrogenase complex were inhibited due

to the alteration of their lipoylation states (Seim et al., 2019).

The inhibition of these complexes led to the normalization of citrate,

itaconate and succinate levels, and correlated with a decline of HIF-1a
protein levels. Taken together, these studies illustrate that the re-

configuration of the TCA cycle is a highly dynamic and time

dependent process.
The role of HIF-1a in bacterial
infection models

HIF-1 is a master transcription factor that regulates the

expression of hypoxic, inflammatory, and glycolytic genes, thus its

role in mediating the inflammatory response of Mjs under hypoxic
environment has been previously investigated. Indeed, wound and

necrotic tissue foci have less oxygen availability (<1% oxygen) than

normal healthy tissue (2.5 – 9% oxygen) (Arnold et al., 1987;

Vogelberg and König, 1993; Negus et al., 1997), thus suggesting the

possibility that the antimicrobial functions performed by Mjs, such
as an increased ability to phagocytose, are regulated in part by the

hypoxic environment (Anand et al., 2007). In 2008, Michael Karin’s

group was the first group that characterized the relationship between

hypoxia and HIF-1a-mediated immunity, where they have shown

that NF-кB could bind to the promoter of Hif1a in LPS-stimulated

Mjs (Rius et al., 2008). They then showed that HIF-1a accumulation
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in Mjs infected with Group A Streptococcus (GAS) and P. aeruginosa

were dependent on IKK-b, one of the IкB kinases that activates NF-

кB by phosphorylating the inhibitor of NF-кB (Häcker and Karin,

2006). Notably, these findings were reproduced in hypoxic conditions

where IKK-b could regulate hypoxia-induced HIF-1a expression and

activity. Taken together, these results have demonstrated that NF-кB

is a hypoxia-regulated transcription factor that activates the

transcription of Hif1a, providing the first evidence that illustrates

how the inflammatory and hypoxic responses of Mjs are integrated.
With respect to how HIF-1a mediates bactericidal activities in

Mjs, this was first characterized by Randall Johnson’s group back in
2003, where the group has found that Group B Streptococcus (GBS)

was more viable in HIF-1a-deficient Mjs compared to its wild-type

counterparts, which suggests that HIF-1a is important for

intracellular killing of bacterial pathogens (Cramer et al., 2003).

This was subsequently confirmed in another study performed by

the same group, in which they found that HIF-1a-deficiency in

Mjs impaired their intracellular killing ability of both GAS and
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P. aeruginosa (Peyssonnaux et al., 2005). On the other hand, the

constitutive activation of HIF-1a in VHL-null mice have in turn

increased intracellular killing of GAS and P. aeruginosa. To assess

the role of HIF-1a in regulating myeloid cell bactericidal function in

vivo, the group then adopted an infection model of GAS and found

that mice with HIF-1a genetic deficiency in myeloid cells developed

greater necrotic skin lesions. Mechanistically, the group then

discovered that HIF-1a is critical for neutrophil-mediated

production of granule proteases and antimicrobial peptides, as

well as Mj-mediated secretion of nitric oxide and TNF-a
production. Similar findings were also reported by Braverman

et al., where the authors have adopted a murine M. tuberculosis

model and found that HIF-1a is responsible to regulate many IFN-

g-inducible responses in infected Mjs, such as production of nitric

oxide and other inflammatory cytokines and chemokines

(Braverman et al., 2016). Several years later, Knight et al. took a

step further and demonstrated that HIF-1a-dependent
transcription of Hig2 is critical for driving the formation of lipid
FIGURE 3

LPS-induced glycolytic reprogramming in myeloid cells. Diagram that illustrates the key events during the late phase of glycolytic reprogramming in myeloid
cells upon LPS stimulation. During the late phase, the increased rate of glycolysis then feeds into the TCA cycle, where two metabolic breakpoints take place.
The first break happens at the level of isocitrate dehydrogenase (IDH), leading to the accumulation of citrate and itaconate. Citrate can then be converted
back to acetyl-CoA by ACLY and supports de novo lipid synthesis and production of pro-inflammatory cytokines, as well as histone acetylation of
inflammatory genes. The second break happens at the level of succinate dehydrogenase due itaconate-mediated inhibition, thus leading to the
accumulation of succinate. Succinate, along with the production of reactive radicals derived from NADPH-dependent inflammatory enzymes, such as NOX2
and NOS2, inhibit the activities of PHD and FIH. This subsequently leads to the activation of HIF-1 and transcription of its targeted inflammatory and
glycolytic genes. To limit HIF-1-dependent-inflammation, NRF2 is activated in response to oxidative stress and itaconate-mediated alkylation of KEAP1. The
enhanced transcription and translation of NRF2-targeted antioxidative proteins then detoxify ROS by consuming the same pool of NADPH that is also
required to stabilize HIF-1a. This in turn increases the activity of PHD and FIH, which leads to the reduction of HIF-1 transcription function and ultimately the
fine-tuning of Mj inflammatory response. Red gear denotes HIF-1a transcriptional circuit, while blue gear denotes NRF2 transcriptional circuit. Both circuits
consume NADPH as a mechanism of co-regulation. All figures are made by Biorender.com.
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droplets in lungs of mice infected with M. tuberculosis, an activated

immune response from Mjs (Knight et al., 2018). The importance

of HIF-1a-mediated antimicrobial activity against M. tuberculosis

was also recently shown in human macrophages (Zenk et al., 2021).

Finally, the direct binding of HIF-1a to other targeted genes, such

as Il1b, has also been shown to be critical in limiting M. marium

infection of zebrafish (Elks et al., 2013; Ogryzko et al., 2019).

Specifically, studies have found that M. marinum infection of

zebrafish induced HIF-1a-dependent transcription of Il1b, which

then activated neutrophil-mediated production of nitric oxide and

protection against infection. Similar to M. marinum, mice with

genetic deficiency of HIF-1a in their myeloid cells also resulted in

increased bacterial burden and necrotic granulomas upon infection

by M. avium (Cardoso et al., 2015).

Apart from regulating inflammatory responses, HIF-1a is also a

central regulator of glycolytic responses, in which its induction serves as

the metabolic basis of host immunity. In 2011, Mihai Netea and

colleagues proposed the concept of “Trained Immunity” to describe

the phenomenon that innate immune cells, such as monocytes

and Mjs, can also display immunological memory of past insults

(Netea et al., 2011). For instance, Netea’s group first demonstrated that

b-glucan derived from C. albicans could induce trained immunity in

monocytes, where the first stimulation primed their enhanced

production of pro-inflammatory cytokines upon the second

stimulation (Quintin et al., 2012). Next, Netea’s group then

demonstrated that mTOR/HIF-1a-mediated glycolysis metabolically

supports the basis of trained immunity (Cheng et al., 2014). Specifically,

the group has found that AKT/mTOR/HIF-1a pathways was

downstream of b–glucan stimulation, and that training monocytes

with b–glucan against S. aureus sepsis was impaired in mice with

genetic deficiency of HIF-1a in myeloid cells. Apart from fungi, the

importance of HIF-1a-mediated glycolytic response in Mjs was also
observed in bacterial infection models, such as M. tuberculosis

(Braverman et al., 2016) and L. monocytogenes (Li et al., 2018).

Taken together, these studies have collectively demonstrated that

HIF-1a-mediated transcription of inflammatory and glycolytic genes

underlie Mj innate immunity against many different bacteria species.
The role of NRF2 in bacterial
infection models

Apart from HIF-1a, NRF2 also plays a central role in regulating

Mj inflammatory responses against bacterial infections, particularly

its role in regulating the transcription of its targeted genes. Among all,

its transcription of macrophage receptor with collagenous structure

(MARCO), an important receptor required for the phagocytosis of

bacteria, has been repeatedly shown to be critical in enhancing

antibacterial defenses of Mjs. For instance, Harvey et al. have first

demonstrated that sulforaphane (SFN)-induced NRF2 activation

restored bacteria recognition and phagocytic ability of alveolar Mjs
derived from patients with chronic obstructive pulmonary disease

(Harvey et al., 2011). Specifically, the authors found that SFN-

induced activation of NRF2 significantly enhanced the expression
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of MARCO and the ability of Mjs to phagocytose P. aeruginosa,

while the disruption of MARCO or NRF2 impaired their phagocytic

abilities. Similar findings were also reported by Pang et al., where the

authors found that Early growth response 1 (ERG1)-mediated

suppression of phagocytosing P. aeruginosa was due to inhibition

of NRF2 signaling (Pang et al., 2022). In this study, the authors have

found that P. aeruginosa induced ERG1 expression and autophagy-

related processes during infection of Mjs. The induction of

autophagy subsequently enhanced the degradation of p62 and

suppressed NRF2 levels. The impaired NRF2 levels then resulted in

the reduced transcription of MARCO and Macrophage scavenger

receptor 1 (MSR1), which is another scavenger receptor important

for phagocytosing bacteria. In addition to P. aeruginosa, Wang et al.

have also discovered similar results with E. coli infection, where they

found that IR-61, an inhibitor that disrupts the interaction between

KEAP1 and NRF2, augmented Mjs ability to phagocytose bacteria.

Mechanically, the authors utilized an in silico molecular ligand

docking analysis and found that IR-61 bound to KEAP1 and

induced NRF2 release and activation (Wang et al., 2023). Finally,

Luo et al. have discovered that itaconate is critical in supporting Mj
phagocytic abilities by enhancing NRF2-dependent transcription of

Cd36, which is another scavenger receptor of Mjs that is involved in
internalizing bacteria (Wang et al., 2023). Taken together, these

studies have collectively demonstrated that NRF2-dependent

transcription of scavenger receptors, such as MARCO, MSR1 and

CD36, are critical players in orchestrating Mj bactericidal responses.

Apart from supporting phagocytosis, NRF2 also regulates Mj
inflammatory responses against bacterial infection through

maintaining redox homeostasis, cell survival, the formation of

phagolysosomes and iron homeostasis. For instance, Sun et al.

showed that activation of NRF2 by oltipraz (OTZ), a synthetic

dithiolethione, is critical to protect M. tuberculosis-induced oxidative

injury and cell death of human Mjs (Sun et al., 2020). Specifically,

OTZ-induced NRF2 activation led to the transcription of antioxidative

genes and offered cryoprotection against M. tuberculosis-induced

oxidative stress. Apart from this, Nakajima et al. have found that

SFN-induced NRF2 activation increased Mjs control of M. avium by

promoting the formation and phagolysosome fusion and granuloma

formation (Nakajima et al., 2021). This is due to NRF2-dependent

transcription of Slc11a1 (NRAMP1) and Hmox1 (HO-1) as they are

involved in promoting phagosome-lysosome fusion and granuloma

formation respectively. Finally, Nairz et al. have shown that nitric oxide

production in Mjs is critical for NRF2-dependent transcription of

ferroportin-1 (Fpn1), an iron exporter that exports iron extracellularly

and prevents its acquisition by S. typhimurium (Nairz et al., 2013).

Specifically, in this study, the authors discovered that Mjs with Nos2

genetic deficiency have increased intracellular iron storage due to

impaired Fpn1 expression, thus allowing S. typhimurium to utilize its

iron content. Notably, nitric oxide promoted NRF2 activation and its

transcription of Fpn1, thus limiting the growth of S. typhimurium.

Overall, these studies have shown that NRF2 plays a positive role in

regulating Mjs responses against bacterial infection by regulating the

transcription of its targeted genes that are involved in a variety of

cellular processes.
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Conclusion

Recent advances in the immunometabolism field have

comprehensively demonstrated how the rewiring of intracellular

metabolic circuits are linked to the effector functions of Mjs, such
as the transcription of inflammatory cytokines and glycolytic genes.

Notably, the transcriptional regulation mediated by HIF-1a and

NRF2 play significant roles behind these processes. Although these

transcription factors were discovered back in the 1990s and their

pathways have been since well characterized, the birth of the

immunometabolism field has now revealed novel functions that

they can play, as well as the possibility that they can co-regulate

each other as a mechanism to fine tune Mjs inflammatory

responses. Understanding that multiple transcription factors are

responsible for relaying complex information of extracellular

changes into host cell responses through the activation or

inhibition of transcriptional circuits, future research should be

warranted to further elucidate the co-regulation between other

transcriptional circuits and identify their underlying co-regulators.

HIF-1a-mediated transcriptional responses in Mjs is a general
phenomenon against many types of bacteria (Werth et al., 2010).

Notably, the transcriptional regulation of HIF-1a on inflammatory

and glycolytic genes primarily orchestrate Mj inflammatory

responses, and the oxygen availability (degree of hypoxia) in the

environment helps to fine-tune its transcriptional output and the

extent of inflammation. While this multi-layered regulation of HIF-

1a responses is critical for Mj immunity and has been well

characterized, it also opens the possibility that pathogens can

evolve and adapt to this for its survival. Indeed, a recent study

has shown that hypoxia-induced HIF-1a-response in Mjs limited

the replication of C. burnetiid without affecting its viability, thus

allowing it to persist chronically and this may be linked to the

development of chronic Q fever (Hayek et al., 2019). Future

research should thus be warranted to investigate how pathogens

have developed mechanisms to resist and adapt to HIF-1a-
mediated immunity in Mjs, particularly in the context of chronic

bacterial infection or re-infection models.

Similar to HIF-1a, NRF2 also plays an essential role in

mediating Mj responses against bacterial infection, primarily by

enhancing its phagocytic abilities through upregulating its targeted

scavenger reports, as well as maintaining a favorable redox

environment and cell survival. Although many studies have

supported a positive role of NRF2 in promoting Mj bactericidal

responses, an interesting study has recently shown that M.

tuberculosis-induced early NRF2-responses in alveolar Mjs in fact
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hindered their ability to elicit a robust inflammatory response and

its effective control of bacterial growth (Rothchild et al., 2019). This

suggests thatM. tuberculosis may have developed mechanisms over

evolutionary time to infect a certain population of Mjs that

preferentially upregulate antioxidative defense mechanisms over

classical inflammatory responses. This may also explain the reason

behind the conflicting effectiveness of pharmacological NRF2

activators in limiting bacterial infection, especially when

compared against different types of bacteria species (Ali et al.,

2020). Therefore, future research should be warranted to elucidate

the mechanisms behind how different types of bacteria adapt to

NRF2-mediated responses in Mjs.
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